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Abstract

This tutorial describes the integrating value of software in complex systems. The
extensive use of software technology to integrate other technologies has a signif-
icant impact on the product characteristics and on the product creation organization
and process. This tutorial provides insight in the relation between software and the
system, and it provides insight in the consequences for the product and the organi-
zation. Some recommendations are provided to cope with these consequences.
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1 Introduction

In this tutorial we will address the role of software in a complex system by using
a waferstepper as an illustrating case. The material of this tutorial reuses previous
articles and presentations of the Gaudí project. However about 50% of the material
is new.

2 Case: the waferstepper and it’s context

disclaimer

The case material is based on actual data, from a 

complex context with large commercial interests. The 

material is simplified  to increase the accessibility, 

while at the same time small changes have been 

made to remove commercial sensitivity. Commercial 

sensitivity is further reduced by using relatively old 

data (between 5 and 10 years in the past). Care has 

been taken that the illustrative value is maintained

ASML builds wafersteppers, lithography equipment used by semiconductor
manufacturers. The lithography equipment determines to a high degree the perfor-
mance and cost of the semiconductor manufacturing.

Figure 1: ASML Twinscan AT1100

Figure 1 shows one of the most recent ASML products, the Twinscan AT1100.
This is an 193nm high NA scanner, capable of handling 300 mm wafers.

The main function of the waferstepper is to “print” the electronic circuit infor-
mation on the wafer. The waferstepper is only exposing the wafer, the actual circuit
is formed by many processing steps in the semiconductor fab. Many (typical
hundreds) dies, identical electronic circuits, fit on one wafer. A few dies are
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Figure 2: What is an waferstepper

exposed at a time. The original information for the exposure resides on the mask
or reticle. This mask or reticle is 4 or 5 times larger than the final circuitry. Via an
extremely high quality, but expensive lens subsystem the original is projected on
the wafer, see figure 2.
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Figure 3: From stepping to scanning

Modern wafersteppers actually do the exposure scan-wise, where both reticle
and wafer move and the light is passing through a narrow slit, see figure 3. Scanning
is using the lens more effectively than static exposure of the entire area.

Lithography customers use a few key specifications for the lithography operation,
see also figure 4:

• Critical Dimension (CD) control or imaging

• Overlay

The Critical Dimension (CD) control defines how accurate the linewidth of
structures can be controlled. This parameter strongly influences the final perfor-
mance (speed, power) of the electronic circuitry.

The overlay is defined as the repositioning accuracy of successive exposures.
Electronic circuitry is build by exposing and processing layer by layer. Hence the
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Figure 4: Key specifications waferstepper

same wafer is exposed many times, with days to weeks in between, where the next
layer must be at (nearly) the same position. The overlay amongst others strongly
influences the density of electronic components that can be obtained.
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Figure 5: Moore’s law

The entire semiconductor industry is driven by Moore’s law, see the visual-
ization in figure 5. Most competitors try to leapfrog each other by being faster than
Moore’s law, creating an extremely competitive environment, with large stakes.

In order to achieve the required performance figures technical budgets are used,
see figure 6. Such a budget is a decomposition of the allowed performance figure
into subsystem or component level contributions. Note that the addition of contri-
butions is not always linear; systematic effects add linear, stochastic effect add
quadratic.

These budgets are based on models of the system. Of course every model is a
simplification of reality. Figure 7 shows the many components in the system that in
one way or the other influence the overlay. It is immediately clear that the overlay
budget takes only a limited set of influences into account, the ”significant” ones.

When the performance requirements of the system increase (as dictated by
Moore’s law) more and more components start to fall into the significant category,
causing an exponential increase of adjustment and control complexity.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 3



process 

overlay

80 nm

reticle 

15 nm

matched 

machine

60 nm

process 

dependency 

sensor

5 nm

matching 

accuracy

5 nm

single 

machine

30 nm

lens 

matching

25 nm

global 

alignment 

accuracy 

6 nm

stage 

overlay

12 nm

stage grid 

accuracy

5 nm

system

adjustment

accuracy

2 nm

stage Al.

pos. meas.

accuracy

4 nm

off axis pos. 

meas. 

accuracy

4nm

metrology 

stability

5 nm

alignment

repro

5 nm

position

accuracy

7 nm

frame

stability

2.5 nm

tracking

error  phi

75 nrad

tracking

error X, Y

2.5 nm

interferometer

stability

1 nm

blue align

sensor

repro

3 nm

off axis

Sensor

repro

3 nm

tracking

error  WS

2 nm

tracking

error RS

1 nm

Figure 6: Overlay budget (1999)

Lens

Metroframe

RS 
Sensor-
frame + 
IF Block

RS Chuck

Reticle

IF

Ref-IF

HP Rack

SS 
Motor

Z-sensors

Li
gh

t 
En

er
gy

LoS 
Motor

WS Chuck

Wafer
IF

SS Motor
LoS 

Motor

Ref-IF
IF 

Block

Z-mirror

WS Balance Mass

Air Foot

RS Bal 
Mass

Airshower RS

Airshower WS

MO

PAC/PA

Metrolog
y

Airmount
s

Acceler
ometer

s

Acceler
ometer

s

Baseframe

: Fiducial

Athena

LS

P and T in Lens 

Compartment

Data Delay

Airmount Noise, 
Limited Vibration 

Isolation

Metroframe 
Temperature Drift 

-> Effect on Showers
-> Effect on Position of 

mirrors and IF's

ATHENA Measurement 
Accuracy

ATHENA Mounting 
Accuracy/Stability

Disturbance of 
Horizontal WS Servo by 

LS setpoints

Lens Heating

Accuracy of 
Lensmanipulators

T at top element of Lens 
(Mag)

Inaccurate Lens 
acceleration 
Feedforward

Wafer Expansion by 
Exposure

Wafer Distortion due 
to Wafer table/chuck

Wafer Expansion by 
input temperature 

offset

Metroframe vibration due to 
water cooling (lens and 

coolplates)

Sound

P and T of Air,
Turbulences

Reticle Errors

Reticle Heating

Reticle Clamping 
induced DistortionFiducial Stability

Fiducial Calibration

TIS Measurement

Fiducial Stability

Fiducial Calibration

Metrology inaccuracy

Metrology Errors

HP Inaccuracy

Servo error

Chuck expansion

Heat flow from LoS into 
IF beams

Heat flow from SS into 
WS chuck

Chuck deformation

Chuck Dimensional 
Stability

Gravity Compensator 
noise

Feedforward errors

Heat flow from LoS into 
IF beams and 
compartment

Heat flow from SS into 
RS chuck and 
compartment

Illumination settings (NA ) 

Overlay Influence Diagram.
(Maarten Bonnema, 19-3-1999)

T stability in LS 
lightpath

Lens Dynamics

P&T correction of Lens

Figure 7: Everything influences overlay

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 4



Exercise 1, 10 minutes
Make a 3 picture description (What, How, biggest challenge) of your own

system.
The key performance of the waferstepper, in terms of CD control, overlay

and productivity and the design choices depend on many context aspects, such as
the production environment, the business, the human stakeholders, and the many
involved technical disciplines.
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Figure 8: Fab Context of Waferstepper

The key performance in the production environment depends on the wafer-
stepper itself, but also on many other aspects in the context of the waferstepper, as
shown in Figure 8. For example, the wafer and the reticule themselves influence
the performance as well as the measurement, processing and logistics of wafers
and reticules.
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Figure 9: Business Context

In the business context, Figure 9 a balancing act is performed between yield
and CD control with a significant impact on the final chip performance (power
and speed). The business context is a complex playing field with many players,
such as equipments vendors, system integrators, lease companies, fab designers,
consultants, mask makers, resist makers, and wafer makers and many different
kinds of customers: design houses, foundries, and vertical integrated companies.

Figure 10 shows the stakeholders in the human context. The stakeholders are
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Figure 10: Human Context: Stakeholders

both internal as well as external. All stakeholders have their particular concerns,
interests, rhythms, and contributions. The design emerges from a complex psychosocial
interaction between all these stakeholders.
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Figure 11: Multitude of Disciplines

The system is developed by a large number of different experts. Figure 11
shows many of the involved technologies, and therefor the involved technical disci-
plines.

Figure 12 summarizes all the mentioned different contexts of the waferstepper.
The waferstepper is in itself a very complex system, operating in a heterogeneous
and complex context.

Problems arising from the complexity of this context become visible in a rather
late stage of development: during integration or worse in the customer’s fab. The
problems are often detected during the integration, when (often well tested) compo-
nents have to work together, see Figure 13. The solution of these problems takes
more time than planned, causing project delays. The dynamics, the uncertainties,
the unknowns and the heterogeneity of these systems engineering aspects makes
complex systems engineering into a challenge.
Exercise 2, 10 minutes

Make a 3 picture description (Application context, Value chain, technologies)
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Figure 12: Complexity of Waferstepper Context
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3 The Role of Software in General
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Figure 14: The relative contribution of software effort as function of time

The contribution of different technologies to the total system has changed
dramatically during the last century. Figure 14 shows a schematic overview of
the relative contribution of the different technologies to the total system.
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Figure 15: The Control Hierarchy of a system along the Technology dimension

The different technologies contribute in different ways to the total system. The
differences between the technologies will provide insight in the specific role of
software in an overall system. Figure 15 uses the control viewpoint to look at
the different roles of the technologies. Mechanical and Physical devices act as
actuators and sensors. The power for mechanical or physical devices is in one way
or the other generated by power supplies or amplifiers. Those power supplies or
amplifiers are based on analog electronics, sometimes with specific high frequency
technology.

The input signal for the analog electronics is often generated in digital electronics.
The digital electronics is then controlled by control software. The set-points for
the control are generated by application software. Finally some human being is the
operator of the machine and ultimately determines what the system must do.
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Figure 16: Characterization of disciplines, ordered along the level of abstraction

From control point of view the technologies contribute in an asymmetric way to
the system: a clear control hierarchy. Note that for performance or safety reasons
many control shortcuts are present, ranging from mechanical interlocks to PID
controllers implemented in low level software.

Figure 16 shows the same technologies ordered along the horizontal axis. The
vertical axis shows a number of characteristics per technology that appear to be
(inverse) proportional with the height in the control hierarchy: concreteness, tangi-
bility, maturity, material cost, and production lead time. For example, mechanical
constructs are very concrete and tangible, the engineering discipline is well-known,
and the cost and the production lead time are directly related to the materials used
and to the construction process. In contrast, software constructs are abstract and
intangible, the software engineering discipline is in its early infancy, and the cost
and lead time are practically zero.
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Figure 17: Exponential Pyramid, from requirement to bolts and nuts

The translation of system requirements to detailed mono-disciplinary design
decisions spans many orders of magnitude. The few statements of performance,
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cost and size in the system requirements specification ultimately result in millions
of details in the technical product description: million(s) of lines of code, connec-
tions, and parts. Figure 17 shows this dynamic range as a pyramid with the system
at the top and the millions of technical details at the bottom.
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Figure 18: Waferstepper Example

In Figure 18 the pyramid is annotated with some examples from the wafer-
stepper case. The key-drivers are clearly at a very high abstraction level. The
highly simplified description of the waferstepper, based on Figure 2 is also at this
very high abstraction level. The Millions of lines of source code are at the very
detailed level.
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Figure 19: From Components to System Qualities

Figure 19 shows another illustration of the level of abstraction in this pyramid.
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At the lowest abstraction levels the components are shown. Many (atomic) compo-
nents are mono-disciplinary. Components are aggregated into multi-disciplinary
subsystems. These subsystems cooperate to perform system level functions. The
cooperating system level functions result in certain system level qualities, such as
overlay, critical dimension control, and productivity.
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system qualities

SW

SW
 im
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determ
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Figure 20: Role of Software

The software implements the functionality and realizes the system level qualities.
The software is the integrating technology: it implements the behavior of the
cooperating components, and in that way determines the actual system level qualities,
see Figure 20
Exercise 3, 10 minutes

Make a toplevel decomposition of the software in your system and estimate the
amount of software of the constituting parts

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 11



4 Software Requirements

When SW engineers demand "requirements", then they expect frozen inputs to be
used for the design, implementation and validation of the software. So far, however,
we have discussed system requirements. System requirements describe the what at
system level. The system requirement specification can be a limited document, at
least if the authors focus on the most important and relevant system functions and
characteristics.
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Figure 21: System versus Software Requirements

The translation of system requirements into detailed mono-disciplinary design
decisions spans many orders of magnitude. The few statements of performance,
cost and size in the system requirements specification ultimately result in millions
of details in the technical product description: million(s) of lines of code, connec-
tions, and parts. The technical product description is the accumulation of mono-
disciplinary formalizations. Figure 21 shows this dynamic range as a pyramid with
the system at the top and the millions of technical details at the bottom.

The amount of details in a software requirements specification is several orders
of magnitude more than the amount of details in the systems requirements specifi-
cation. Figure 22 shows the software “subsystem” in its context. All the relations
of the software subsystem with its context must be reflected in the software require-
ments specification. The software requirements specification is part of the detailing
process of the system design and implementation.

The user interface and system behavior depends on many design choices. The
software in most systems is the technology that implements both user interface
and system behavior. Embedded systems interact with the physical world. The
software implements the control of actuators and sensors that perform the inter-
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Figure 22: Why is the Software Requirement Specification so Large?

action with this physical world. The related hardware-software interface (HSI) is a
broad interface. The HSI determines many software design choices, and becomes
part of the software requirements specification. Software needs a computing infras-
tructure to be executed upon. The computing infrastructure is always limited,
putting constraints on the software. The combination of performance and cost
requirements are translated into resource management requirements for the software
subsystem. The software development department and environment result in opera-
tional requirements for the software subsystems. For instance in terms of tools and
languages, and in terms of programming conventions and rules.
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Figure 23: And why is the Software Requirement Specification never up-to-date?

The amount of details in the software requirements specification is huge. One
of the consequences is that this specification is never complete nor up-to-date,
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see Figure 23. The environment of the software requirements specification is in
practice highly dynamic. The outside world is changing in many ways (market,
competition, legislation, fashion, and format). A small change in the outside world
(top-down) may cause many changes in the software requirements. Design and
implementation problems (technical, cost, effort, and duration) trigger bottom-
up changes that may propagate into changes of the system requirements specifi-
cation. Bottom-up changes can also trigger an avalanche of changes in the software
requirements.
Exercise 4, 2 minutes

How many pages are in your Software Requirements Specification?
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5 Evolution and Growth
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Figure 24: Block Diagram of a Waferstepper

In many domains systems evolve slowly from more or less purely mechanical
systems to complex software-intensive systems. Many subsystems still have some
dominant technology. Figure 24 shows the subsystem decomposition in the wafer-
stepper case. Dominant technologies are optics in the laser, illuminator, and lens
subsystems, mechanics in the reticle stage, reticle handler, wafer stage, and wafer
handler, and more general physics in measurement and in contamination and temper-
ature control.
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Figure 25: Control Hierarchy of a Waferstepper

The same subsystems can be shown in the electronics communication view, as
in Figure 25. The dominant subsystems in Figure 24 have become simple nodes in
the communication view.

The historic evolution in these systems is that subsystems start as independent
subsystems, connected by a few straightforward synchronization signals. Over
time dependencies are developing, when subsystems start to interfere, or when
system performance requires more complex types of interaction.
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Figure 26: Frequency of Control Actions

One of the discriminating design parameters is the frequency of doing certain
operations. For example, if some adjustment has to be done once in the system
lifetime, than a factory or installation adjustment can be done manually. If this
adjustment is complex or critical it might be supported by (SW) tools. However,
when an adjustment is required for every wafer, then the adjustment will be automated
for reasons of productivity and operational costs. Figure 26 shows an exponential
time axis with different typical frequencies of control actions. In general the more
frequent those control actions can be preformed the more stable and predictable the
performance will be. However, high frequent control actions are often much more
complicated than low frequent actions. Part of the complexity of high frequent
actions is caused by the required cooperation between many subsystems (and technologies0
to implement the automated high frequent control action.
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Figure 27: Evolution of System Control
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During the historic evolution from independent subsystems, with little or no
automated adjustments, to continuously cooperating subsystems, full of high frequent
automated adjustments, more and more software coupling is growing. Figure 27
shows the SW stacks early in the evolution and late in the evolution.
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Figure 28: Consequences of Evolution

During this evolution many paradigm shifts are made. Unfortunately the engineered
and managers are unaware of the paradigm shifts, and processes and design are
not adopted accordingly. Figure 28 shows some of the consequences of such an
evolution. Performance and functionality demands cause an increase of complexity;
the increase of the complexity threatens the reliability of the system. The original
system, with more or less independent subsystems required about 150k lines of
code. Such a system can be well understood by a single system designer; the
overview fits in a single human mind. The evolved system requires several millions
lines of code. In practice that means that the overview is lost, or best case that the
complete picture can be reconstructed with a limited set of senior designers. The
evolved system suffers significantly from the much higher degree of coupling and
the lack of one-to-one relationship between system function and subsystem.
Exercise 5, 10 minutes

Visualize the (SW) evolution of your system. What is your current phase?
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6 Why do we always have problems with software?
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Figure 29: Different Focus of Software and System

In the previous sections we have seen that software is much more abstract and
less tangible than the more conventional technologies. We have also seen that the
software is the implementation technology of the system behavior, and function-
ality. The software implementation is the determining factor for the actual system
performance. An additional source of problems in product creation is the different
focus of the software engineering discipline and the system engineering discipline,
see Figure 29.

Observation of SW engineering teams shows that the main concerns are: config-
uration management, release procedure, tools, SW processes, and SW problem and
change requests. The qualities that get a lot of attention from the software crew are
functionality, maintainability, and variability. As a consequence of these concerns
and qualities the design focus is on concepts that help to structure and concepts of
generic mechanisms.

The System engineering concerns are quite different: integral design (quality,
balance), system context, life-cycle, operational processes. The qualities that get a
lot of attention by system engineers are productivity, image quality, and reliability.
These system level concerns and qualities create a focus on concepts related to
domain models and descriptive models of the system design.

The education of software engineers addresses many software technology issues,
such as: languages, operating systems, algorithms, and formal methods. The
system engineering education is less technological and addresses issues such as:
principles, heuristics, analysis and synthesis, and processes.

The characterization above shows that system and software engineers have a
completely different focus and education, while they have a intimate relationship:
SW implements behavior, functionality and actual performance!
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Figure 30: Caricature of a SW Architecture

The differences in focus and education also result in completely different views
on the system design itself. Figure 30 shows a caricature of a software architecture.
The diagram shows all kinds of generic software mechanisms and their layering.
The only reference to the actual system functionality is in the box called appli-
cation.
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Figure 31: Caricature of Physics Systems View

In contrast Figure 31 shows a caricatured of the system view of the Physics
engineer. This view is dominated by the optical elements and characterizations.

From systems point of view the relation between the optical path and the
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Figure 32: Relation SW and Physics

required control, in software, is important. Figure 32 adds the control aspects to the
physics viewpoint. The system engineer is responsible for the multi-disciplinary
design. For example the trade-off to solve a image quality requirement in the
physics components or to solve it by some software controlled adjustment procedure.

This simple example of the physics and software viewpoint shows the differ-
ences in language and system perception by the involved engineers. Many system
level problems are caused by the limited understanding of the hardware and physics
by the software engineers.
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Figure 33: Symptoms of too isolated SW efforts
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This problem is worsened by the limited awareness by most managers of both
this limited understanding as well as the crucial integrating role of the software.
The software developments and the system development are intimately related as
shown above. Nevertheless the software departments are often quite isolated from
the other engineering disciplines. Figure 33 shows a number of the symptoms of
this isolation and the potential counter measures.

Exercise 6, 5 minutes
What is the degree of integration or isolation of SW in your organization?
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7 Conclusion
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Figure 34: Different Mindsets and Characteristics

The creation of a product is focused on ceating a sellable system that fits well in
the customer’s context. The system is realized by many different disiciplines. The
more conventional hardware oriented disciplines can be characterized by tangi-
bility, concreteness, goods flow costs and lead times, and physics laws. The much
younger software discipline, and to some degree the also young digital hardware
discipline can be characterized by intangibility, abstraction, no goods flow costs,
and the "everything is possible" mindset.

The hardware technologies determine the intrinsic performance limits, while
the controlling software determines the actually realized performance. The system
engineers, hardware engineers and software engineers use different languages,
have different mindsets, have different concerns and address different qualities.
These disciplines are highly complementary. The product creation process will be
improved by more interaction and communication between these complementary
engineers. Figure 34 shows these considerations in a single diagram.
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