
Tutorial Software as Integrating Technology in
Complex Systems

-

logo
TBD

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This tutorial describes the integrating value of software in complex systems. The
extensive use of software technology to integrate other technologies has a signif-
icant impact on the product characteristics and on the product creation organization
and process. This tutorial provides insight in the relation between software and the
system, and it provides insight in the consequences for the product and the organi-
zation. Some recommendations are provided to cope with these consequences.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.1 status: concept July 3, 2023

1 Introduction

In this tutorial we will address the role of software in a complex system by using
a waferstepper as an illustrating case. The material of this tutorial reuses previous
articles and presentations of the Gaudí project. However about 50% of the material
is new.

2 Case: the waferstepper and it’s context

disclaimer

The case material is based on actual data, from a

complex context with large commercial interests. The

material is simplified to increase the accessibility,

while at the same time small changes have been

made to remove commercial sensitivity. Commercial

sensitivity is further reduced by using relatively old

data (between 5 and 10 years in the past). Care has

been taken that the illustrative value is maintained

ASML builds wafersteppers, lithography equipment used by semiconductor
manufacturers. The lithography equipment determines to a high degree the perfor-
mance and cost of the semiconductor manufacturing.

Figure 1: ASML Twinscan AT1100

Figure 1 shows one of the most recent ASML products, the Twinscan AT1100.
This is an 193nm high NA scanner, capable of handling 300 mm wafers.

The main function of the waferstepper is to “print” the electronic circuit infor-
mation on the wafer. The waferstepper is only exposing the wafer, the actual circuit
is formed by many processing steps in the semiconductor fab. Many (typical
hundreds) dies, identical electronic circuits, fit on one wafer. A few dies are

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 1

source

reticle

lens

wafer

Figure 2: What is an waferstepper

exposed at a time. The original information for the exposure resides on the mask
or reticle. This mask or reticle is 4 or 5 times larger than the final circuitry. Via an
extremely high quality, but expensive lens subsystem the original is projected on
the wafer, see figure 2.

n n+1

step

stepper:

scanner:

250

mm/s

wafer

reticle

slit

static exposure of field

dynamic exposure through slit

t

v
y

t

v
x

v
y

e
x
p

o
s
e

e
x
p

o
s
e

s
te

p

e
x
p

o
s
e

e
x
p

o
s
e

s
te

p

Figure 3: From stepping to scanning

Modern wafersteppers actually do the exposure scan-wise, where both reticle
and wafer move and the light is passing through a narrow slit, see figure 3. Scanning
is using the lens more effectively than static exposure of the entire area.

Lithography customers use a few key specifications for the lithography operation,
see also figure 4:

• Critical Dimension (CD) control or imaging

• Overlay

The Critical Dimension (CD) control defines how accurate the linewidth of
structures can be controlled. This parameter strongly influences the final perfor-
mance (speed, power) of the electronic circuitry.

The overlay is defined as the repositioning accuracy of successive exposures.
Electronic circuitry is build by exposing and processing layer by layer. Hence the

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 2

130 nm

10 nm

line

width

critical

dimension

45 nm overlay

imaging alignment

Figure 4: Key specifications waferstepper

same wafer is exposed many times, with days to weeks in between, where the next
layer must be at (nearly) the same position. The overlay amongst others strongly
influences the density of electronic components that can be obtained.

250
180

130
100

70
50

1997 1999 2001 2003 2005 2007

lin
e

w
id

th
in

 n
m

100

1000

10

Figure 5: Moore’s law

The entire semiconductor industry is driven by Moore’s law, see the visual-
ization in figure 5. Most competitors try to leapfrog each other by being faster than
Moore’s law, creating an extremely competitive environment, with large stakes.

In order to achieve the required performance figures technical budgets are used,
see figure 6. Such a budget is a decomposition of the allowed performance figure
into subsystem or component level contributions. Note that the addition of contri-
butions is not always linear; systematic effects add linear, stochastic effect add
quadratic.

These budgets are based on models of the system. Of course every model is a
simplification of reality. Figure 7 shows the many components in the system that in
one way or the other influence the overlay. It is immediately clear that the overlay
budget takes only a limited set of influences into account, the ”significant” ones.

When the performance requirements of the system increase (as dictated by
Moore’s law) more and more components start to fall into the significant category,
causing an exponential increase of adjustment and control complexity.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 3

process

overlay

80 nm

reticle

15 nm

matched

machine

60 nm

process

dependency

sensor

5 nm

matching

accuracy

5 nm

single

machine

30 nm

lens

matching

25 nm

global

alignment

accuracy

6 nm

stage

overlay

12 nm

stage grid

accuracy

5 nm

system

adjustment

accuracy

2 nm

stage Al.

pos. meas.

accuracy

4 nm

off axis pos.

meas.

accuracy

4nm

metrology

stability

5 nm

alignment

repro

5 nm

position

accuracy

7 nm

frame

stability

2.5 nm

tracking

error phi

75 nrad

tracking

error X, Y

2.5 nm

interferometer

stability

1 nm

blue align

sensor

repro

3 nm

off axis

Sensor

repro

3 nm

tracking

error WS

2 nm

tracking

error RS

1 nm

Figure 6: Overlay budget (1999)

Lens

Metroframe

RS
Sensor-
frame +
IF Block

RS Chuck

Reticle

IF

Ref-IF

HP Rack

SS
Motor

Z-sensors

Li
gh

t
En

er
gy

LoS
Motor

WS Chuck

Wafer
IF

SS Motor
LoS

Motor

Ref-IF
IF

Block

Z-mirror

WS Balance Mass

Air Foot

RS Bal
Mass

Airshower RS

Airshower WS

MO

PAC/PA

Metrolog
y

Airmount
s

Acceler
ometer

s

Acceler
ometer

s

Baseframe

: Fiducial

Athena

LS

P and T in Lens

Compartment

Data Delay

Airmount Noise,
Limited Vibration

Isolation

Metroframe
Temperature Drift

-> Effect on Showers
-> Effect on Position of

mirrors and IF's

ATHENA Measurement
Accuracy

ATHENA Mounting
Accuracy/Stability

Disturbance of
Horizontal WS Servo by

LS setpoints

Lens Heating

Accuracy of
Lensmanipulators

T at top element of Lens
(Mag)

Inaccurate Lens
acceleration
Feedforward

Wafer Expansion by
Exposure

Wafer Distortion due
to Wafer table/chuck

Wafer Expansion by
input temperature

offset

Metroframe vibration due to
water cooling (lens and

coolplates)

Sound

P and T of Air,
Turbulences

Reticle Errors

Reticle Heating

Reticle Clamping
induced DistortionFiducial Stability

Fiducial Calibration

TIS Measurement

Fiducial Stability

Fiducial Calibration

Metrology inaccuracy

Metrology Errors

HP Inaccuracy

Servo error

Chuck expansion

Heat flow from LoS into
IF beams

Heat flow from SS into
WS chuck

Chuck deformation

Chuck Dimensional
Stability

Gravity Compensator
noise

Feedforward errors

Heat flow from LoS into
IF beams and
compartment

Heat flow from SS into
RS chuck and
compartment

Illumination settings (NA)

Overlay Influence Diagram.
(Maarten Bonnema, 19-3-1999)

T stability in LS
lightpath

Lens Dynamics

P&T correction of Lens

Figure 7: Everything influences overlay

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 4

Exercise 1, 10 minutes
Make a 3 picture description (What, How, biggest challenge) of your own

system.
The key performance of the waferstepper, in terms of CD control, overlay

and productivity and the design choices depend on many context aspects, such as
the production environment, the business, the human stakeholders, and the many
involved technical disciplines.

waferstepper

processing tracks

metrology

matching

contamination
fab

layout

operator

reticules

wafer

devices
resists

fab

logistics

fab automation

SPC

yield

optimization

wafer

logistics

inspection and

monitoring
fab

infrastructure

fab cost

model

utilization

maintenance

reticule

logistics

reticule

production

semiconductor

design

Figure 8: Fab Context of Waferstepper

The key performance in the production environment depends on the wafer-
stepper itself, but also on many other aspects in the context of the waferstepper, as
shown in Figure 8. For example, the wafer and the reticule themselves influence
the performance as well as the measurement, processing and logistics of wafers
and reticules.

yield

value of

performance

(MHz)

CD control

key driver trade-off

other players:

 equipments vendors

 system integrators

 lease companies

 fab designers

 consultants

 mask makers

 resist makers

 wafer makers

 OEM’s: laser

 intimate partners: lens
business models of the customer:

 design houses

 foundries

 vertical integration
Limited number of customers;

Many systems per customer

Figure 9: Business Context

In the business context, Figure 9 a balancing act is performed between yield
and CD control with a significant impact on the final chip performance (power
and speed). The business context is a complex playing field with many players,
such as equipments vendors, system integrators, lease companies, fab designers,
consultants, mask makers, resist makers, and wafer makers and many different
kinds of customers: design houses, foundries, and vertical integrated companies.

Figure 10 shows the stakeholders in the human context. The stakeholders are

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 5

"external" "internal"

managers

business manager

marketing manager

product manager

operational manager

project leader

sales manager

quality manager

logistics manager

line manager

technology manager

customer

purchaser

decision maker

user

operator

maintainer

suppliers

component manufacturer

outsourced design

engineers

system engineers

experts

manufacturing engineers

customer support

other

government

customer's customer

banks, insurance

Figure 10: Human Context: Stakeholders

both internal as well as external. All stakeholders have their particular concerns,
interests, rhythms, and contributions. The design emerges from a complex psychosocial
interaction between all these stakeholders.

lithography

mechanics

dynamics

imaging

optics

measurement

construction
construction

materials
optical

materials
lens

gratings

lasers

lamps

dose

control

measurement

gratings
SW control

home

sensors

interferometers

robotics

C&T

servo's

actuators

motors

modes
stiffness

temperature

sensitivity

air

showers

cooling

vacuum

clamping

mirrors

measurement

lasers

capacitive

sensors

hall

sensors
real time

executives digital

infrastructure

digital

signal

processing

analog

signal

processing

pre-

amplifiers

light

sensor

dose

sensor

energy

pulse

timing

frequency

bandwidth

uniformity

coatings

UV senistivity transmission

reflection

Figure 11: Multitude of Disciplines

The system is developed by a large number of different experts. Figure 11
shows many of the involved technologies, and therefor the involved technical disci-
plines.

Figure 12 summarizes all the mentioned different contexts of the waferstepper.
The waferstepper is in itself a very complex system, operating in a heterogeneous
and complex context.

Problems arising from the complexity of this context become visible in a rather
late stage of development: during integration or worse in the customer’s fab. The
problems are often detected during the integration, when (often well tested) compo-
nents have to work together, see Figure 13. The solution of these problems takes
more time than planned, causing project delays. The dynamics, the uncertainties,
the unknowns and the heterogeneity of these systems engineering aspects makes
complex systems engineering into a challenge.
Exercise 2, 10 minutes

Make a 3 picture description (Application context, Value chain, technologies)

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 6

lithography

mechanics

dynamics

imaging

optics

measurement

construction
construction

materials
optical

materials lens

gratings

lasers

lamps

dose

control

measurement

gratings
SW control

home

sensors

interferometers

robotics

C&T

servo's
actuators

motors
modes

stiffness
temperature

sensitivity

air

showers

cooling

vacuum

clamping

mirrors

measurement

lasers

capacitive

sensors
hall

sensors real time

executives
digital

infrastructure

digital

signal

processing

analog

signal

processing

pre-

amplifiers

light

sensor

dose

sensor

energy

pulse

timing

frequency

bandwidth

uniformity

coatings

UV senistivitytransmission

reflection

"external" "internal"

managers

business manager

marketing manager

product manager

operational manager

project leader

sales manager

quality manager

logistics manager

line manager

technology manager

customer

purchaser

decision maker

user

operator

maintainer

suppliers

component manufacturer

outsourced design

engineers

system engineers

experts

manufacturing engineers

customer support

other

government

customer's customer

banks, insurance

waferstepper

processing tracks

metrology

matching

contamination
fab

layout

operator

reticles

wafer

devices
resists

fab

logistics

fab automation

SPC

yield

optimization

wafer

logistics

inspection and

monitoring
fab

infrastructure

fab cost

model

utilization

maintenance

reticle

logistics

reticle

production

semiconductor

design

waferstepper

market, business

multitude of disciplines

stakeholders

fab context

other players:

 equipments vendors

 system integrators

 lease companies

 fab designers

 consultants

 mask makers

 resist makers

 wafer makers

 OEM’s: laser

 intimate partners: lens
business models of the customer:

 design houses

 foundries

 vertical integration
Limited number of customers;

Many systems per customer

yield

value of

performance

(MHz)

CD control

key driver trade-off

Figure 12: Complexity of Waferstepper Context

component 1

component 4

component 3

component 2

integration and test

scheduled

closing date

delay

Do you have any design

issues for the design meeting?

The default answer is: No.

realized

closing date

During integration numerous

problems become visible

Figure 13: Symptom: Delays appear during Integration

of your own system.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 7

3 The Role of Software in General

100%

time

re
la

ti
ve

ef

fo
rt

SWelectronics

mechanics

physics/chemistry, etc.

1970 2000

Figure 14: The relative contribution of software effort as function of time

The contribution of different technologies to the total system has changed
dramatically during the last century. Figure 14 shows a schematic overview of
the relative contribution of the different technologies to the total system.

sensor
optical

device

mechanical

device

C
o
n
tr
o
l

Fe
ed

b
ac
k

human user

application SW

control SW

digital electronics

analog or power electronics

mechanical

device
sensor

optical

device

local

automation

or safety

legend

Figure 15: The Control Hierarchy of a system along the Technology dimension

The different technologies contribute in different ways to the total system. The
differences between the technologies will provide insight in the specific role of
software in an overall system. Figure 15 uses the control viewpoint to look at
the different roles of the technologies. Mechanical and Physical devices act as
actuators and sensors. The power for mechanical or physical devices is in one way
or the other generated by power supplies or amplifiers. Those power supplies or
amplifiers are based on analog electronics, sometimes with specific high frequency
technology.

The input signal for the analog electronics is often generated in digital electronics.
The digital electronics is then controlled by control software. The set-points for
the control are generated by application software. Finally some human being is the
operator of the machine and ultimately determines what the system must do.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 8

Software
Digital

Electronics

Analogue / power

Electronics
Mechanics

abstractconcrete

intangibletangible

immaturemature

material cost

production lead-time flexible?

Figure 16: Characterization of disciplines, ordered along the level of abstraction

From control point of view the technologies contribute in an asymmetric way to
the system: a clear control hierarchy. Note that for performance or safety reasons
many control shortcuts are present, ranging from mechanical interlocks to PID
controllers implemented in low level software.

Figure 16 shows the same technologies ordered along the horizontal axis. The
vertical axis shows a number of characteristics per technology that appear to be
(inverse) proportional with the height in the control hierarchy: concreteness, tangi-
bility, maturity, material cost, and production lead time. For example, mechanical
constructs are very concrete and tangible, the engineering discipline is well-known,
and the cost and the production lead time are directly related to the materials used
and to the construction process. In contrast, software constructs are abstract and
intangible, the software engineering discipline is in its early infancy, and the cost
and lead time are practically zero.

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7 mono-

disciplinary

multi-

disciplinary

system
system

requirements

design

decisions

parts

connections

lines of code

n
u

m
b

e
r

o
f

d
e

ta
ils

re
se

a
rc

h
 f

o
cu

s

Figure 17: Exponential Pyramid, from requirement to bolts and nuts

The translation of system requirements to detailed mono-disciplinary design
decisions spans many orders of magnitude. The few statements of performance,

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 9

cost and size in the system requirements specification ultimately result in millions
of details in the technical product description: million(s) of lines of code, connec-
tions, and parts. Figure 17 shows this dynamic range as a pyramid with the system
at the top and the millions of technical details at the bottom.

source

reticule

lens

wafer

10 Mloc

overlay:

CD control:

productivity:

45nm

10nm

100Wph

Figure 18: Waferstepper Example

In Figure 18 the pyramid is annotated with some examples from the wafer-
stepper case. The key-drivers are clearly at a very high abstraction level. The
highly simplified description of the waferstepper, based on Figure 2 is also at this
very high abstraction level. The Millions of lines of source code are at the very
detailed level.

components

subsystems

functions

source

mirrors

fiducials

lens elements

flaps

air showers

frames

motors

sensors

robot

bolts

nuts

air mounts

PCBs

ICs

cables

cabinets

OS

computer

disks

monitor

drivers

database

user interface

TCP/IP

comms package

laser

illuminator

lens stages handlers

metro frame

electronics infra

prepare scan and

expose

align and

calibrate

transport wafer transport reticle

system qualities

overlay

CD control

productivity

Figure 19: From Components to System Qualities

Figure 19 shows another illustration of the level of abstraction in this pyramid.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 10

At the lowest abstraction levels the components are shown. Many (atomic) compo-
nents are mono-disciplinary. Components are aggregated into multi-disciplinary
subsystems. These subsystems cooperate to perform system level functions. The
cooperating system level functions result in certain system level qualities, such as
overlay, critical dimension control, and productivity.

components

subsystems

functions

system qualities

SW

SW
 im

plem
ents functionality

determ
ines em

erging qualities

Figure 20: Role of Software

The software implements the functionality and realizes the system level qualities.
The software is the integrating technology: it implements the behavior of the
cooperating components, and in that way determines the actual system level qualities,
see Figure 20
Exercise 3, 10 minutes

Make a toplevel decomposition of the software in your system and estimate the
amount of software of the constituting parts

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 11

4 Software Requirements

When SW engineers demand "requirements", then they expect frozen inputs to be
used for the design, implementation and validation of the software. So far, however,
we have discussed system requirements. System requirements describe the what at
system level. The system requirement specification can be a limited document, at
least if the authors focus on the most important and relevant system functions and
characteristics.

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

system

multi-disciplinary

mono-disciplinary

n
u

m
b

e
r

o
f

d
e

ta
ils

software

requirements

system
requirements

Figure 21: System versus Software Requirements

The translation of system requirements into detailed mono-disciplinary design
decisions spans many orders of magnitude. The few statements of performance,
cost and size in the system requirements specification ultimately result in millions
of details in the technical product description: million(s) of lines of code, connec-
tions, and parts. The technical product description is the accumulation of mono-
disciplinary formalizations. Figure 21 shows this dynamic range as a pyramid with
the system at the top and the millions of technical details at the bottom.

The amount of details in a software requirements specification is several orders
of magnitude more than the amount of details in the systems requirements specifi-
cation. Figure 22 shows the software “subsystem” in its context. All the relations
of the software subsystem with its context must be reflected in the software require-
ments specification. The software requirements specification is part of the detailing
process of the system design and implementation.

The user interface and system behavior depends on many design choices. The
software in most systems is the technology that implements both user interface
and system behavior. Embedded systems interact with the physical world. The
software implements the control of actuators and sensors that perform the inter-

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 12

software

subsystem
user interface

system behavior

limited

computing resources

control of

physical subsystems:

sensors, actuators

operational choices

synergy, tools, ...

Figure 22: Why is the Software Requirement Specification so Large?

action with this physical world. The related hardware-software interface (HSI) is a
broad interface. The HSI determines many software design choices, and becomes
part of the software requirements specification. Software needs a computing infras-
tructure to be executed upon. The computing infrastructure is always limited,
putting constraints on the software. The combination of performance and cost
requirements are translated into resource management requirements for the software
subsystem. The software development department and environment result in opera-
tional requirements for the software subsystems. For instance in terms of tools and
languages, and in terms of programming conventions and rules.

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

system

multi-

disciplinary

mono-

disciplinary

n
u

m
b

e
r

o
f

d
e

ta
ils

software

requirements

system

requirements

market

competition legislation

fashion format

changes

technical

cost

effort

duration

problems

a
v

a
la

n
c

h
e

Figure 23: And why is the Software Requirement Specification never up-to-date?

The amount of details in the software requirements specification is huge. One
of the consequences is that this specification is never complete nor up-to-date,

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 13

see Figure 23. The environment of the software requirements specification is in
practice highly dynamic. The outside world is changing in many ways (market,
competition, legislation, fashion, and format). A small change in the outside world
(top-down) may cause many changes in the software requirements. Design and
implementation problems (technical, cost, effort, and duration) trigger bottom-
up changes that may propagate into changes of the system requirements specifi-
cation. Bottom-up changes can also trigger an avalanche of changes in the software
requirements.
Exercise 4, 2 minutes

How many pages are in your Software Requirements Specification?

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 14

5 Evolution and Growth

laser

light source

illuminator

beam

shaping

lens

projection

reticle stage

positioning

wafer stage

positioning

m
e

a
s
u

re
m

e
n

t

a
lig

n
m

e
n

t,
 l
e

v
e

lli
n

g

reticle

handler

input/output

wafer

handler

input/output

C&T

contanimation,

temperature

system

control

coordination

light

reticles

wafers

Figure 24: Block Diagram of a Waferstepper

In many domains systems evolve slowly from more or less purely mechanical
systems to complex software-intensive systems. Many subsystems still have some
dominant technology. Figure 24 shows the subsystem decomposition in the wafer-
stepper case. Dominant technologies are optics in the laser, illuminator, and lens
subsystems, mechanics in the reticle stage, reticle handler, wafer stage, and wafer
handler, and more general physics in measurement and in contamination and temper-
ature control.

laser
illumi-

nator
lens

reticle

stage

wafer

stage

measure-

ment

reticle

handler

wafer

handler
C&T

system

control

coordination

vertical

motion

hori-

zontal

motion

vertical

motion

hori-

zontal

motion

ethernet

VMEVME

Figure 25: Control Hierarchy of a Waferstepper

The same subsystems can be shown in the electronics communication view, as
in Figure 25. The dominant subsystems in Figure 24 have become simple nodes in
the communication view.

The historic evolution in these systems is that subsystems start as independent
subsystems, connected by a few straightforward synchronization signals. Over
time dependencies are developing, when subsystems start to interfere, or when
system performance requires more complex types of interaction.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 15

110
-3

10
3

10
6

per

wafer

per

die

SW

sampling

per

day

preventive

maintenance

per

batch

seconds

trend with increasing

performance requirements

Figure 26: Frequency of Control Actions

One of the discriminating design parameters is the frequency of doing certain
operations. For example, if some adjustment has to be done once in the system
lifetime, than a factory or installation adjustment can be done manually. If this
adjustment is complex or critical it might be supported by (SW) tools. However,
when an adjustment is required for every wafer, then the adjustment will be automated
for reasons of productivity and operational costs. Figure 26 shows an exponential
time axis with different typical frequencies of control actions. In general the more
frequent those control actions can be preformed the more stable and predictable the
performance will be. However, high frequent control actions are often much more
complicated than low frequent actions. Part of the complexity of high frequent
actions is caused by the required cooperation between many subsystems (and technologies0
to implement the automated high frequent control action.

static

calibra-

tion

simple

sequen-

cer

data

management

user interface

production

and

installation

support
exposure control

job controlmetro

user interface
automation

interface

dynamic calibration

feedforward monitoring

monitoring and optimization

1990
150 kloc

2000
2000 kloc

infrastructure
data

store

Figure 27: Evolution of System Control

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 16

During the historic evolution from independent subsystems, with little or no
automated adjustments, to continuously cooperating subsystems, full of high frequent
automated adjustments, more and more software coupling is growing. Figure 27
shows the SW stacks early in the evolution and late in the evolution.

C
o

m
p

le
x
it
y

loss of overview (150kloc fits in 1 mind, 2Mloc not)

(more than?) exponential increase of coupling

1:1 relation HW:SW becomes n:m relation

R
e

lia
b

ili
ty

threatens

paradigm

shift!
autonomous

subsystems

integrated

system

causes

P
e

rf
o

rm
a

n
c
e

a
n

d
 f
u

n
c
ti
o

n
a

lit
y

d
e

m
a

n
d

s

Figure 28: Consequences of Evolution

During this evolution many paradigm shifts are made. Unfortunately the engineered
and managers are unaware of the paradigm shifts, and processes and design are
not adopted accordingly. Figure 28 shows some of the consequences of such an
evolution. Performance and functionality demands cause an increase of complexity;
the increase of the complexity threatens the reliability of the system. The original
system, with more or less independent subsystems required about 150k lines of
code. Such a system can be well understood by a single system designer; the
overview fits in a single human mind. The evolved system requires several millions
lines of code. In practice that means that the overview is lost, or best case that the
complete picture can be reconstructed with a limited set of senior designers. The
evolved system suffers significantly from the much higher degree of coupling and
the lack of one-to-one relationship between system function and subsystem.
Exercise 5, 10 minutes

Visualize the (SW) evolution of your system. What is your current phase?

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 17

6 Why do we always have problems with software?

SW engineering focus
qualities

functionality

maintainability

variability

concepts

structure

(generic) mechanisms

concerns

configuration management

release procedure

tools

SW processes

SW problems, change requests

education

languages

operating systems

algorithms

formal methods

System engineering focus
qualities

productivity

image quality

reliability

concerns

integral design (quality, balance)

system context

lifecycle

operational processes

concepts

domain requirements

models

education

principles

heuristics

analysis and synthesis

processes

Figure 29: Different Focus of Software and System

In the previous sections we have seen that software is much more abstract and
less tangible than the more conventional technologies. We have also seen that the
software is the implementation technology of the system behavior, and function-
ality. The software implementation is the determining factor for the actual system
performance. An additional source of problems in product creation is the different
focus of the software engineering discipline and the system engineering discipline,
see Figure 29.

Observation of SW engineering teams shows that the main concerns are: config-
uration management, release procedure, tools, SW processes, and SW problem and
change requests. The qualities that get a lot of attention from the software crew are
functionality, maintainability, and variability. As a consequence of these concerns
and qualities the design focus is on concepts that help to structure and concepts of
generic mechanisms.

The System engineering concerns are quite different: integral design (quality,
balance), system context, life-cycle, operational processes. The qualities that get a
lot of attention by system engineers are productivity, image quality, and reliability.
These system level concerns and qualities create a focus on concepts related to
domain models and descriptive models of the system design.

The education of software engineers addresses many software technology issues,
such as: languages, operating systems, algorithms, and formal methods. The
system engineering education is less technological and addresses issues such as:
principles, heuristics, analysis and synthesis, and processes.

The characterization above shows that system and software engineers have a
completely different focus and education, while they have a intimate relationship:
SW implements behavior, functionality and actual performance!

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 18

Registry

NameSpace

server

Monitor

Broker

Event

manager

Transparant

Communication

Persistent

Storage

Abstraction

Layer

Device

independent

format

Plug-in

framework

Queue

manager

Spool server

Resource

scheduler

Plug & play

Configurable

pipeline

Property editor Session

manager

Compliance

profile

Application

Figure 30: Caricature of a SW Architecture

The differences in focus and education also result in completely different views
on the system design itself. Figure 30 shows a caricature of a software architecture.
The diagram shows all kinds of generic software mechanisms and their layering.
The only reference to the actual system functionality is in the box called appli-
cation.

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..
uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

Figure 31: Caricature of Physics Systems View

In contrast Figure 31 shows a caricatured of the system view of the Physics
engineer. This view is dominated by the optical elements and characterizations.

From systems point of view the relation between the optical path and the

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 19

measure

adjust

calibrate

analyse

process

log

control

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..

uniformity

lens

wafer

reticule

aerial image

NA

abberations

transmission

Figure 32: Relation SW and Physics

required control, in software, is important. Figure 32 adds the control aspects to the
physics viewpoint. The system engineer is responsible for the multi-disciplinary
design. For example the trade-off to solve a image quality requirement in the
physics components or to solve it by some software controlled adjustment procedure.

This simple example of the physics and software viewpoint shows the differ-
ences in language and system perception by the involved engineers. Many system
level problems are caused by the limited understanding of the hardware and physics
by the software engineers.

symptoms

SW people are clustered together

SW is alpha tested before system integration

SW team uses own specification and design process

SW specification is in SW jargon or formalism

colocation per function, subsystem or quality

higher level processes are shared

continuous system integration

counter measures

interaction between SW,

HW and system engineers

Figure 33: Symptoms of too isolated SW efforts

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 20

This problem is worsened by the limited awareness by most managers of both
this limited understanding as well as the crucial integrating role of the software.
The software developments and the system development are intimately related as
shown above. Nevertheless the software departments are often quite isolated from
the other engineering disciplines. Figure 33 shows a number of the symptoms of
this isolation and the potential counter measures.

Exercise 6, 5 minutes
What is the degree of integration or isolation of SW in your organization?

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 21

7 Conclusion

SW engineering

different focus:

" qualities

" concerns

" concepts

" education

System

intangible

abstract

no goods flow costs

"everything is possible"

HW engineering
tangible

concrete

goods flow costs & lead times

physics laws

product: sellable self-sustained entity

operating in a broader context

inherent

performance

reliability

actual

performance

reliability

Figure 34: Different Mindsets and Characteristics

The creation of a product is focused on ceating a sellable system that fits well in
the customer’s context. The system is realized by many different disiciplines. The
more conventional hardware oriented disciplines can be characterized by tangi-
bility, concreteness, goods flow costs and lead times, and physics laws. The much
younger software discipline, and to some degree the also young digital hardware
discipline can be characterized by intangibility, abstraction, no goods flow costs,
and the "everything is possible" mindset.

The hardware technologies determine the intrinsic performance limits, while
the controlling software determines the actually realized performance. The system
engineers, hardware engineers and software engineers use different languages,
have different mindsets, have different concerns and address different qualities.
These disciplines are highly complementary. The product creation process will be
improved by more interaction and communication between these complementary
engineers. Figure 34 shows these considerations in a single diagram.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 22

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

History
Version: 0.1, date: 26 April, 2005 changed by: Gerrit Muller

• changed status to concept
Version: 0, date: 13 April, 2005 changed by: Gerrit Muller

• Created, no changelog yet

Gerrit Muller
Tutorial Software as Integrating Technology in Complex Systems
July 3, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 23

	Introduction
	Case: the waferstepper and it's context
	The Role of Software in General
	Software Requirements
	Evolution and Growth
	Why do we always have problems with software?
	Conclusion

