The Tool Box of the System Architect

by Gerrit Muller University of South-Eastern Norway-NISE
 e-mail: gaudisite@gmail.com
 www.gaudisite.nl

Abstract

The toolbox of a systems architect is filled with a quite diverse collection of tools. We will discuss the "intellectual" tools, practical low-tech tools, a number of classes of computer assistance tools, and architecting related standards.
Classification of Architecting Tools

Noncomputer Tools
- **Human-experience-based methods**
- Techniques
- Patterns

Low Tech Tools
- Paper
- Pen
- Yellow note stickers

Facilitation
- Workshops

Computer-Based Tools

Borrowed Advanced Tools
- Spreadsheet
- Drawing
- Scripting
- Simulation

General-Purpose Tools
- Excel
- Visio
- Python

Organization Infrastructure
- Configuration management
- Product data management
- Change control

Standards

Process Oriented
- ISO 9000, CMM-I

Concept Oriented
- IEEE 1471

Artifact Oriented
- DoD/AF
- SysML

The Tool Box of the System Architect

Gerrit Muller

version: 0.1

September 6, 2020

TBSAtoolsMap
4 Quadrant Comparison of computerized and human tools

<table>
<thead>
<tr>
<th></th>
<th>humans</th>
<th>tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>strength</td>
<td>focus on overview</td>
<td>tool dominates</td>
</tr>
<tr>
<td></td>
<td>identify essentials</td>
<td>focus on details</td>
</tr>
<tr>
<td></td>
<td>understand relationships</td>
<td>no understanding</td>
</tr>
<tr>
<td></td>
<td>insight, intuition</td>
<td>fragmentation</td>
</tr>
<tr>
<td></td>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>weakness</td>
<td>limited capacity</td>
<td>"infinite" storage capacity</td>
</tr>
<tr>
<td></td>
<td>erroneous behavior</td>
<td>"infinite" processing capacity</td>
</tr>
<tr>
<td></td>
<td>incomplete</td>
<td>complete</td>
</tr>
<tr>
<td></td>
<td>biased</td>
<td>neutral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no errors</td>
</tr>
</tbody>
</table>
Tools Support Processing of Large Amounts of Details

The Tool Box of the System Architect

version: 0.1
September 6, 2020
KDAWSToolsDiabolo
From Data to Understandable Information

The Tool Box of the System Architect

version: 0.1
September 6, 2020
TBSAdataFlow

The diagram illustrates the process of transforming raw data into understandable information. The process begins with collecting raw data from various sources such as design, suppliers, standards, regulations, partners, and customers. The raw data is then formalized, which can be expanded by automation support. The formalized data is analyzed, and intermediate data is created. Selecting and simplifying the intermediate data results in more detailed information. Interpreting and presenting the results and explanation provide less detail.

Keywords: design, suppliers, standards, regulations, partners, customers, collect, formalize, generate/instantiate, select & simplify, analyse, results and explanation, intermediate data, expanded data, by automation support.
The Tool Box of the System Architect

Gerrit Muller

version: 0.1
September 6, 2020
TBSApyramidDataFlow

Data Flow Mapped on Pyramid

- collect
- formalize
- repository
- generate/instantiate
- analyze
- select & simplify
- interpret & present

number of details:

- 10^0
- 10^1
- 10^2
- 10^3
- 10^4
- 10^5
- 10^6
- 10^7

system

multi-disciplinary

mono-disciplinary

generated/instantiated
The Tool Box of the System Architect

Formality Levels in Pyramid

The chart illustrates the relationship between the number of details and the formality levels. The chart is divided into three main sections:

1. **System**
 - Mono-disciplinary
 - Multi-disciplinary

2. **Communication-Oriented**
 - Less formal, uncertainties, unknowns, variable backgrounds, concerns

3. **Machine-Readable**
 - Well defined, repeatable, reusable
 - More formal, more rigorous

The chart shows that as the number of details increases, the formality level also increases, moving from mono-disciplinary to multi-disciplinary to machine-readable.