
The Tool Box of the System Architect
-

10
0

10
6

10
3

10
9

10
3

10
9

10
6

n
u

m
b

e
r 

o
f

d
e

ta
ils

systems

multi-disciplinary

design

parts, connections,

lines of code

stakeholders

enterprise

enterprise context

tools to manage

large amounts 

of information

human

overview

e.g.

Doors

Core

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

This paper has been integrated in the book “Systems Architecting: A Business
Perspective", http://www.gaudisite.nl/SABP.html, published by

CRC Press in 2011.

Abstract

The toolbox of a systems architect is filled with a quite diverse collection of tools.
We will discuss the “intellectual” tools, practical low-tech tools, a number of
classes of computer assistance tools, and architecting related standards.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.1 status: draft September 6, 2020

http://www.gaudisite.nl/SABP.html


1 Introduction

The subject of tools for systems architecting creates numerous debates. We will
use a broad interpretation of the word tool, including intellectual tools, low-tech
tools (such as pen and paper), but we will also discuss computer assisted tools.
One of the key questions is when to apply what tool. An essential capability for
systems architects is to pick an appropriate tool, and, if needed, to adapt it to the
situation at hand.

We discussed in Sections ?? and ?? that the role of the systems architect
depends on the organizational context. Similarly, there are organizations that force
a set of tools on systems architects based on the perceived role and way of working
of system architects.

We base our discussion of tools on the deliverables, responsibilities and activ-
ities as described in Sections ?? and ?? (Figures ?? and ??). Key contribution of
systems architects in these sections is the simplification of complicated systems
into understandable essentials. Main challenges in achieving this contribution are
the heterogeneity of the system and its context, and the uncertainties and unknowns
in the system and its context. The goal is to make systems specification and design
decisions communicable, and to facilitate debate and reasoning about decisions.

Many organizations move in practice too fast to extensive use of computer
assisted tools. As consequence the architects and stakeholders move away from
overview and understanding essentials to more detailed concerns (that also have
be to be addressed!). The purpose of this section is to help understand the impact
of tool selection, and especially to bring balance in the application of intellectual
tools versus computer assisted tools.

2 Overview of Systems Architecting Tools

Figure 1 shows an overview and a classification of systems architecting tools. The
left side shows the tools that are independent of computers and related software
programs. The right hand side shows tools that depend on computers and specific
software. The bottom part of the figure shows some of the standards that impact
the selection and application of tools.

2.1 Human Experience Based tools

Experience is crucial for systems architects. Systems architects meet new approaches
during their entire career, and they build a rich frame of reference by seeing many
systems in many circumstances. Reflection on the way of working transforms
events into valuable experience: approaches are transformed into methods and
techniques, and problems and solutions are transformed into patterns.

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 1



noncomputer tools

human-experience-based

methods

techniques

patterns

low tech tools

paper

pen

yellow note stickers

computer-based tools

borrowed advanced tools

general-purpose tools

spreadsheet

drawing

scripting

simulation

architecting specific tools

organization infrastructure

configuration management

product data management

change control

standards

artifact oriented

frameworks

notations

formalisms

process oriented

ISO 9000, CMM-I
DoDAF

SysMLconcept oriented

IEEE 1471

Excel

Visio

Python

facilitation

workshops

Figure 1: Classification of Architecting Tools

Methods describe an approach in terms of objective, the order or logic of steps to
follow, the techniques that can be applied, and the models, tools, notations,
and formalisms that can be supportive.

Techniques are ways to address a specific aspect of a problem. For example, how
to analyze timing requirements and problems. Techniques can be supported
by specific tools and formalisms. A technique may require specific models.
For instance, the analysis of response time may require functional flow models.

Patterns are recognized problem-solution combinations, including the consider-
ations in what context and circumstances a solution is appropriate for the
problem. Patterns can be highly technical, e.g. the publish-subscribe pattern
in software to solve flexibility and extendibility needs. However, patterns can
also be high level organizational or business, such as considerations about
products versus services in Figure ??.

2.2 Low-tech tools

Systems architects, like building architects, often make sketches. The sketches are
on napkins, paper, flip-charts, white-boards, using pens, pencils et cetera. Sketching
is a fast way to express and exchange ideas, and as such has to be values as
essential part of the systems architect toolbox. Note that similarly other low tech
means, such as folded paper, wire frames, and yellow note stickers provide fast and
intuitive ways to express and exchange ideas.

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 2



It might be a challenge to capture these sketches for further communication,
later re-use, and archiving. However, with today’s ubiquitous digital cameras this
is easily captured. Later in the process these sketches get captured electronically
in more structured form, e.g. in Visio.

2.3 Facilitation tools

System architects can contribute to teams by applying facilitation techniques, as
described in Section ??. An example is the organization of work shops, where
teams can explore and share ideas effectively. There are many more facilitation
tools and techniques, such as:

• the use of flip charts to create a common memory on the wall

• the use of balanced feedback, e.g. soliciting benefits and concerns

• working in teams and plenary groups

• preparing meetings together with the leader

• round robin or random order contributions to get input from less dominant
team members

2.4 Borrowed Advanced Tools

Systems architects cooperate with a large amount of experts. Every expert has its
own set of tools. Sometimes the architect borrows such tool and adapt it to be used
as system level. For example, mechanical engineers are used to tolerance budgets.
Systems architects use budgets for many different system qualities (e.g. response
time), where granularity of the budget and the algorithms behind the budget have
to be adapted to the quality at hand. Most tools in systems architecting find their
origin somewhere in another discipline.

2.5 Architecting Specific Tools

The problems to be addressed by a tool and the solutions for these problems need to
be well-defined and repeatable Before a computer assisted tool can be made. The
nature of many systems architecting problem is often quite opposite, with charac-
teristics such as heterogeneous, uncertainties and unknowns. The systems archi-
tecting effort is mostly spend in understanding the problem. Solving well under-
stood problems in a repeatable and predictable way is the domain of engineering.

Most systems specific tools are more engineering related (nailing down all
detailed information to facilitate the ordering, production, sales, and support of
the system) than architecting related. Examples are tools to capture requirements

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 3



(e.g. Doors), functional and physical architectures such as IDEF0 (e.g. Core), or
object oriented architectures in for instance SysML.

2.6 General Purpose computer based tools

Architects and engineers use computers all the time for many different purposes.
Architects will use a lot of general purpose tools, such as spreadsheets (e.g. Excel),
drawing programs (e.g. Visio), scripting (e.g. Python), or simulation (e.g. Python,
MATLAB or many others).

The general purpose nature of these tools makes them attractive for architects,
since that helps them to cope with heterogeneity, unknowns and uncertainties.
The class of more advanced tools can be too restrictive to allow adaptation to the
problem at hand and its circumstances.

2.7 Tools prescribed by the organization infrastructure

Organizations do have an engineering tool infrastructure that systems architects can
not ignore. However, systems architects have to decide when and how to interface
to the organizational infrastructure. Examples of typical organizational infrastruc-
tures are many data bases and repositories for engineering related information:

Configuration management describing the parts and the rules how the parts can
be configured. This repository can be part of a larger system such as an
Enterprise Resource Planning (ERP) system (typically SAP).

Product Data Management (PDM) storing all product and part related information
required for the Customer Oriented Process.

Change Control and Problem Report data bases, where all Change Requests,
Internal Problem Reports, and Field Problem reports are stored.

System architects sometimes have to work for some time outside these systems,
because these systems tend to slow down more creative work full of unknowns and
uncertainties. The challenge for project leaders and systems architects is to migrate
to these systems at the right moment: using these systems too early slows dona too
much, starting to use them too late might cause loss of information and quality
problems.

2.8 Process Oriented Standards

There are many process oriented standards that influence the way of working of
systems architects. For example the maturity models in CMM-I more or less
prescribe most of the tools (Configuration management, change control) discussed
in the previous paragraphs.

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 4



Process oriented standards tend to be agnostic for specific tools. In general
these standards try to capture best practices from the past in an attempt to preventing
past mistakes. Systems architects in practice suffer when these processes are imple-
mented to the letter rather than the intent. An unintended side effect can be that
systems architects are transformed into administrators, while their main contri-
bution is in content rather than administration.

2.9 Concept oriented Standards

Some standards try to capture the shared understanding of the architecting disci-
pline. A good example is the IEEE 1471 standard, where the concepts stake-
holders, concerns, architecture description, and viewpoints are captured. These
standards do no prescribe a way of working but provide a set of concepts and their
relations to ease communication.

2.10 Artifact Oriented Standards

In the defense world several frameworks have been created defining the artifacts
that can describe an architecture. Typical examples are DoDAF and MoDAF of
respectively the USA Department of Defense and the UK Ministry of Defense.
These frameworks do not define the process, but rather limit themselves to defining
the artifacts that may describe the architecture. These standards tend to see the
artifacts as electronics artifacts with a significant degree of formalization to facil-
itate computer assistance.

Part of the Systems Engineering community has transformed UML from the
software engineering world into a more systems oriented modeling language SysML.
SysML is a set of formalisms to create artifacts that can be used for computer
assisted tools.

3 Human versus Computer Assisted Tools

One of the main challenges is to decide when and for what to use computer assisted
tools, as stated in the introduction. Figure 2 shows a so-called four quadrant
analysis of intellectual (human) tools and computer assisted tools. The four quadrants
are obtained by adding a second dimension: strength and weakness.

Strengths of humans , based on their intellect, are:

• to be able to focus on overview

• to be able to identify the essentials

• to understand relationships

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 5



toolshumans

st
re
n
g
th

w
ea
kn
es
s stren

g
th

w
ea
kn
ess

limited capacity

erroneous behavior

incomplete

biased

tool dominates

focus on details

no understanding

fragmentation

focus on overview

identify essentials

understand relationships

insight, intuition

synthesis

"infinite" storage capacity

"infinite" processing capacity

complete

neutral

no errors

Figure 2: 4 Quadrant analysis of computerized and human tools

• to have insight and intuition

• to be able to synthesize (to combine heterogeneous information into a
meaningful picture)

Strengths of computers , based on current technological level, are:

• near-infinite storage capacity

• near-infinite processing capacity

• the ability to be complete by storing all information

• to be neutral, without emotions, opinions, or (political) interests

• to be perfect in execution, making no errors

Weaknesses of humans , inherent to their social and psychological background,
are

• storage and processing capacity is limited.

• showing behavior that is erroneous

• memory is imperfect, information is often incomplete

• biased, for emotional, social or political reasons

Weaknesses of computers , inherent to their mechanistic technical nature, are:

• the tool dominates, because there is no “reasonable” flexibility

• the information is in full detail, moving the focus on details

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 6



• computers do not have any understanding (garbage in, garbage out)

• the data tends to be fragmented, only stored relations are present.

10
0

10
6

10
3

10
9

10
3

10
9

10
6

n
u

m
b

e
r 

o
f

d
e

ta
ils

systems

multi-disciplinary

design

parts, connections,

lines of code

stakeholders

enterprise

enterprise context

tools to manage

large amounts 

of information

human

overview

e.g.

Doors

Core

Figure 3: Tools Support Processing of Large Amounts of Details

The idea behind the four quadrants is that the weaknesses of humans can be
compensated by the strengths of computers and vice versa. If we map these charac-
teristics on the pyramids of Figure ?? then we see that human intellect is required at
the higher abstraction levels where we strive for understanding between heteroge-
neous stakeholders. Computer assisted tools bring most of their value where large
amounts of data have to be managed and processed. Most computer assisted tools
address a limited set of concerns, such that the problem is well defined and the
solutions can be applied repeatable and predictable. Many computer assisted tools
are mono-discipline oriented, since disciplines capture repeatable knowledge.

4 Flow: from Data to Overview and Understanding

design

suppliers

standards

regulations

partners

customers

collect

formalize repository

generate/

instantiate

select & 

simplify

interpret & 

present

analyse

less detail

more detail

intermediate

data

results and

explanation

expanded data

by automation support

raw data

Figure 4: From Data to Understandable Information

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 7



We have seen in the previous Subsection that computer based tools create most
of their value when large amounts of data have to be managed and processed. Other
discussions that pop up when computer assistance is used is the degree of formal-
ization and the use of automated outputs. Figure 4 shows the flow from input
data up to the moment that the results are being used by a heterogeneous group of
stakeholders. The figure shows the following functions:

Collect data from many inputs, e.g. the design, suppliers, standards, regulations,
partners, and customers. The output of this function is a collection of raw
data: data that still has to be processed to make it useful.

Formalize to be able to enter the data into computer based tools. The nature of
the formalization is to look for appropriate abstractions to capture this data.
The consequence of the abstraction is that the amount of detail can decrease
slightly, for instance because repeated data is captured more structurally.

Repositories are used to store the formalized data so that this data can be used for
many different purposes. For example an information model can be stored
as entity relation ship model plus a data dictionary to capture all formatting
details. This information model data can be used to generate data structures
and code, it can be used to generate test cases for compliance testing, and
the data can be used for analysis.

Generation and Instantiation can be applied on prescriptive data in the repos-
itory to generate or instantiate components, stubs or test harnesses.

Analysis techniques are applied on the data to determine characteristics of the
design. For example, the form, shape and material characteristics of compo-
nents can be used to calculate the center of gravity of components and of the
aggregate of multiple components. Another example is that configurations
can be analyzed for feasibility and performance.

Selection and Simplification is a function that is applied by humans (architects or
designers) to make the results ripe for communication and discussion. The
output of automated analysis techniques is often rather detailed and highly
formal, while the essential aspects are hidden in a huge amount of other
details.

Interpretation and Presentation are the last steps in making the information acces-
sible and understandable for the broader group of stakeholders. In interpre-
tation the meaning of the the outputs is added: is a center of gravity deviation
of 10mm a problem or is it quite good? The presentation is the format of the
output, what visualization will engage the stakeholders, how to ensure that
the information relates to the mental model of the diverse stakeholders?

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 8



A common mistake made by engineers is that they show their own intermediate
data to stakeholders that use a different mental framework themselves. The conse-
quence is that the communication is quite incomplete and the risk is significant that
stakeholders will disconnect or will not give any reaction even when necessary.

Systems architects have to make the last steps of selection, simplification, inter-
pretation and presentation. Note also that these steps bring their own risks: every
simplification is only valid within its limits, so architects are also responsible to
monitor the validity of discussions and decisions in light of the used simplifica-
tions.

design

suppliers

standards

regulations

partners

customers

sample

model

select & 

simplify

interpret & 

present

analyze

less detail

more detail

intermediate

data

results and

explanation

raw data

guess & 

estimate

Figure 5: Data Flow Early in Creation Process

Early in the development projects architects are using a slightly simplified flow
to facilitate system specification and design, as shown in Figure 5. This figure
shows that early in the process many estimates and guesses are used, and that less
formalization is used. Remember that formalization and computer based tools are
especially relevant when large amounts of data have to be processed and managed.
More simple models can be used by architects as long as the amount of information
is small.

Figure 6 maps the data flow on the pyramid with the abstraction levels. This
mapping shows again the relation between the amount of information and the kind
of tools to be used: repositories, generator tools and analysis tools are typically
computer assisted, while the intellectual challenges of selection, simplification,
interpretation, and presentation are human activities.

Figure 7 summarizes these areas of application in the pyramid. The bottom
parts of the pyramid with large amount of details can be characterized as more
formal and requiring more rigor. Formalization requires well defined problems,
data, and operations that are repeatable. The data is machine readable to allow
automated tools. The use of repositories facilitates re-use over systems and compo-
nents.

The upper part of the pyramid is characterized by the combination of quite
heterogeneous data with uncertainties and unknowns used ba heterogeneous group
of stakeholders with variable backgrounds and concerns. This upper part is less

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 9



10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

mono-

disciplinary

multi-

disciplinary

systemn
u

m
b

e
r 

o
f

d
e

ta
ils

collect

formalize repository

generate/

instantiate

select & 

simplify

interpret & 

present

generated/ 

instantiated

analyze

Figure 6: Data Flow Mapped on Pyramid

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

mono-

disciplinary

multi-

disciplinary

system

n
u

m
b

e
r 

o
f

d
e

ta
ils

more formal, more rigorous

less formal,

communication-

oriented

generated/ 

instantiated

machine

readable

well defined

repeatable

reusable

heterogeneous

uncertainties, unknowns

variable backgrounds, concerns

SysML

DOORS

IDEF0

10
8

10
9

Figure 7: Formality Levels in Pyramid

formal and oriented towards communication, discussion and decision making.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 10

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html


Version: 0.1, date: July 26, 2010 changed by: Gerrit Muller
• logo: KDAWStoolsDiabolo
• no further changelog maintained yet

Version: 0, date: July 23, 2010 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
The Tool Box of the System Architect
September 6, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 11


	Introduction
	Overview of Systems Architecting Tools
	Human Experience Based tools
	Low-tech tools
	Facilitation tools
	Borrowed Advanced Tools
	Architecting Specific Tools
	General Purpose computer based tools
	Tools prescribed by the organization infrastructure
	Process Oriented Standards
	Concept oriented Standards
	Artifact Oriented Standards

	Human versus Computer Assisted Tools
	Flow: from Data to Overview and Understanding

