The Art Of Innovation; How to bypass countless hurdles?

by Gerrit Muller Buskerud and Vestfold University College

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Mature companies grow often via consolidation and incremental innovation. They have so much focus on their running business that there is little room for significant innovations. However, for long-term business, companies need solutions beyond the ordinary. In this presentation we look at practical hurdles of significant innovations in several case studies. We analyze some aspects further, e.g. innovation models, roles in innovation, the market, and funding.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

January 23, 2022 status: draft

version: 0.2

Genealogy of Kongsberg Industry

Why Innovation and Solutions beyond the Ordinary?

Why is **Innovation** such popular **buzzword**?

Sales price erosion -> low margin

Innovation maintains sales price and margin

Why "Solutions beyond the Ordinary"?

Mature companies grow via consolidation and incremental innovation

Mature companies struggle to innovate significantly; creating Solutions beyond the Ordinary is rather difficult for them

What happens when current markets get saturated and current solutions get obsolete?

How can we fill the market-product-technology pipeline for the next 30 years?

Margin Problem Due to Price Erosion

Innovation is the Escape

Market Product Life Cycle

Where is Kongsberg Industry?

S-curve, Automotive Example

Performance = $f(power, weight, v_{max}, fuel consumption, price)$

[Gorbea 2008] Carlos Gorbea, Ernst Fricke, and Udo Lindemann, The Design of Future Cars in a New Age of Architectural Competition,

Significant Innovation

What is Innovation?

How, that is the Question

The vision and harsh reality

Figure of Contents[™]; 10 Hurdles

Examples of Significant Innovations

1980: MRI scanners

The Beginning of MRI scanners

From Research to Development

from one physics laboratory to multiple clinical hospitals

From Development to Specials

technology development proceeds rapidly; serve luminary hospitals with specials

From Specials to Regular

everything grows, however, early processes do not scale

Approaches to Innovation

Exisiting Process Framework May not Fit

processes and procedures

sales

supply chain, purchasing, logistics

manufacturing

installation, configuration, commissioning

maintenance

after sales

however, may constrain need and solution exploration

Various Innovation Approaches

DARPA, grand challenge

SFI, EU funding (precompetitive)

Skunkworks Lockheed Martin -> KM

start-up

Teknologiparken Kongberg

campus (parken) Oslo Cancer Cluster

High Tech Campus Eindhoven

incubators KTH Stockholm

Philips personal health

venture capitalists

open innovation

1990: Medical Workstation EasyVision

The beginning of EasyVision

From Demonstrator to Product

from unconstrained coding to systems engineering

Adding other Applications

other clinical users, other images, new applications

Re-use by Others

software re-used by other department in other location

Re-use in New Unknown Market

creating new business in new market

Various Roles in Innovation

Successful Innovation = Technological + Market

System Architect links technology and market

Conservative SEs and PLs

systems engineering responsibilties performance dependability

project leader responsibilties budget

risk avoiding risk management attitude solution beyond the creative ordinary attitude

time

Marketing <> Sales!

			- 4		
m	OK	' /	\sim t	In	\sim
111	ar	N		111	
	$\mathbf{\omega}$	1.	U L		\mathbf{M}
					$\mathbf{\mathcal{O}}$

understands and sees many (potential) customers

smells (latent) needs

transforms them in business

creates the future

sales

sells what is available

convinces customers

poor sales people only demand more from D&E

determines today's business

Requirements discovery: Market-as-Laboratory

extreme: test Internet responses

Semiconductor Equipment Start-up

The Tragedy of a Technology Start-up

10

From research to RD model

from flexibility for experts to production workhorse

From RD model (not) to Market Intro

despite exceeding good performance no funding

hit by the financial crisis

How to get the Money?

Valley of Death

Summary of Experiences

Lessons Learned

R&D

Research: *inspire* rather than *constrain*

Predevelopment: when start including process constraints?

Early development and deployment: *requirement discovery* (market-as-laboratory)

Development and engineering: how to scale in all directions?

management

How to foster long term under short term pressure

How to survive the *valley of death*?

Pacing as early phase progress method

Final Challenge

Challenge

How do we prepare Kongsberg/Norway successes for the next 30 years?

Who will take all hurdles and create tomorrow's solutions beyond the ordinary?

