Abstract

Undergraduates need a teaching style that fits their (lack of) experience. Especially in systems engineering this is an issue, since systems engineering connects to so many different stakeholders with so many different concerns. Students need to get aware of the inherent ambiguities, uncertainties and unknowns in the systems world, in contrast to the focused world of mono-disciplinary engineering.
Well-defined problems

Well-defined methods, techniques, formalisms

Questions have the right answer

Dominant teaching style: knowledge transfer and skill training

Subject of interest is technical

- strength of bridge
- Bode plots in control
- bridge will sustain up to x ton
- control is converging and stable
- no unpredictable humans
- no inconceivable nature
Goals of Teaching SE at Undergraduate Level

to make students aware of
+ the impact of working in a large organization, e.g.
 processes, organizations, roles, responsibilities, economy and financials
+ the communication challenges between:
 various technical disciplines
 various less technical stakeholders
+ the ill-defined and multi-dimensional nature of system problems
 uncertainties, unknowns, ambiguities, dynamics, conflicting needs and goals
+ the impact of external conditions on the system and its design
 human behavior, natural phenomena
+ system life cycle

to provide insight in available methods, techniques, and concepts
The Context that a Student will Enter

- **tools**
- **procedures**
- **processes**
- **colleagues**
- **managers**
- **time**
- **pressure**
- **politics**

components
- **organization**
- **documentation**
- **cost**

finance
- **EBITA**
- **RONA**
- **ROI**
- **NRE**

business functions
- **Quality ass.**
- **logistics**
- **production**
- **sales**
- **service**

customer/life cycle
- **legacy**
- **installed base**
- **problems**

projects
- **schedules**
- **BoM**
- **WBS**

business functions
- **cost**
- **margin**
- **sales price**

human
- **CEO**
- **CFO**
- **managers**
- **colleagues**

process/organization
- **processes**
- **procedures**
- **tools**
- **organization**

systems engineering
- **requirements**
- **engineering**
- **testing**
- **documentation**
- **changes**

"hard" technology
- **technology**
- **functions**
- **products**
- **systems**

systems engineering
- **testing**
- **documentation**
- **changes**

students
- **project leader**
- **other disciplines**

tools
- **procedures**
- **processes**
- **colleagues**
- **managers**
- **time**
- **pressure**

Teaching Systems Engineering to Undergraduates
4 Gerrit Muller

version: 0.1
July 19, 2020
IMWEcontextExperience
Systems Engineering processes, methods, and techniques have a high "common sense" level.

Without experience they can easily be perceived as open doors.

How to get inexperienced students in a perceptive mode, such that they appreciate the subject matter?
Role Play as Teaching Paradigm

management team
- process
- organization
- people
- business, finance

design team
- customer understanding
- requirement specification
- concept selection
- partitioning, interfaces, functionality
- qualities, e.g. performance, cost, reliability
- technology choices

teams of 3 to 5 students per team
-guided process: some theory apply in role play brief reporting and discussion
-case that relates to their knowledge
A time-box is a fixed amount of time allocated to perform one activity.

We iterate many times over different viewpoints. Every viewpoint is addressed multiple times with new insights from other viewpoints.
Didactic Model; Homework

- Classroom
- Flip charts
- Homework
- PPT
- Old PPT
- Flip charts
- Homework
- New PPT

1/2 day → few days or weeks → 1/2 day

Time

This didactic model is very intense. Students are exhausted after 1/2 day.

Classroom
Small steps on flip charts
(or paper)

Homework
Consolidate results in PowerPoint or Visio
Case Requirements and Example

case requirements

- multi-disciplinary aspects
- original discipline of students should be clearly present
- students must have some affinity with the application
- open definition: unclear problem, large solution space

Example: Tree Cutting Robot for mechanical engineering students

mechanics is dominant

vision and control require

electronics and software

background:

Less young people are willing to work in the wild and mountainous areas in Norway, Canada, or USA to cut trees for wood production.

product:

Robot that supports the cutting and processing of trees so that less people are needed.
Example Designs of Tree Cutting Robot
Class Room Fills itselfs with Flip Charts
Material for Design is Based on CAFCR+

What does Customer need in Product and Why?

- Customer What
 - Customer objectives

- Customer How
 - Application

- Product What
 - Functional
 - Conceptual

- Product How
 - Realization

drives, justifies, needs

enables, supports
Steps for First 2 Sessions

1. select case to work on
2. discuss possible solutions
3. discuss specification
4. make design
5. make construction decomposition
6. make functional design
7. make presentation of specification and design
8. make second and third design
9. compare three designs
10. make list of design criteria
11. make list of design choices
12. update specification
13. define performance use case
14. specify performance
15. make performance model
Steps for Second 2 Sessions

1. make core spec
2. why are these specifications needed
3. describe usage
4. make key driver graph
5. make story
6. make use case(s)
7. analyze design impact
8. assess story based on 5 story telling criteria
9. improve story
10. improve key driver graph
11. make cost of ownership model
12. explore alternative designs
13. update specification
14. make draft management presentation
Last Session

Customer objectives

Application

Functional

Conceptual

Realization

Life cycle

1 specify life time

2 draw dev. life cycle

3 describe logistics and manufacturing

4 describe installation and acceptance

5 describe maintenance

6 update specification

7 analyze design impact
Summary of all Steps

<table>
<thead>
<tr>
<th>Customer objectives</th>
<th>Application</th>
<th>Functional</th>
<th>Conceptual</th>
<th>Realization</th>
<th>Life cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. select case to work on</td>
<td>2. discuss possible solutions</td>
<td>3. discuss specification</td>
<td>4. make design</td>
<td>5. make construction decomposition</td>
<td>6. make functional design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. make presentation of specification and design</td>
<td></td>
<td>8. make second and third design</td>
<td>9. compare three designs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. make list of design criteria</td>
<td>11. make list of design choices</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16. why are these specifications needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. describe usage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. make key driver graph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. make story</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. make use case(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. analyze design impact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. assess story based on 5 story telling criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. improve story</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0. improve key driver graph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. make cost of ownership model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. update specification</td>
<td></td>
<td>12. explore alternative designs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14. make draft management presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. specify life time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. update specification</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Steps:

- 2. draw dev. life cycle
- 3. describe logistics and manufacturing
- 4. describe installation and acceptance
- 5. describe maintenance
Stretching from Comfort Zone into Unknowns

Customer objectives
Application
Functional
Conceptual
Realization
Life cycle

1. select case to work on
2. why are these specifications needed
3. describe usage
4. make key driver graph
5. make story
6. analyze design impact
7. make use case
8. assess story based on story telling criteria
9. improve story
10. improve key driver graph

1. specify life time
2. draw dev. life cycle
3. describe logistics and manufacturing
4. describe installation and acceptance
5. describe maintenance
6. make presentation of specification and design
7. make functional design
8. compare three designs
9. make second and third design
8. make functional design
7. make presentation of specification and design
6. make functional design
5. make second and third design
4. describe installation and acceptance
3. describe logistics and manufacturing
2. draw dev. life cycle
1. specify life time

start in well known territory
stretch 0 multi-disciplinary
multiple concepts

stretch 1 requirements
keep iterating

stretch 2 customers
keep iterating

stretch 3 humans, nature "reality"
keep iterating

keep iterating

keep iterating

keep iterating

stretch 4 life cycle

Teaching Systems Engineering to Undergraduates
version: 0.1
July 19, 2020
TSEU summary Annotated
Guides the students through a journey.

Stretches students one step at a time.

Regularly forces students out of their comfort zone.

Provides feedback on their intermediate deliverables.

Helps students to reflect on their experience.

Provides theory JIT (Just In Time: appreciation and application).

Illustrates theory with examples from practice.

Keeps the pace high.

Initiates frequent breaks (this approach costs lots of mental energy).

Unfreeze students: let them sketch, stimulate creativity and imagination.
The sessions can be a lot of fun for students and teacher. Some interesting concepts pop-up. The increase of awareness can be observed. Some nice visualizations or animations are shown.

Time-boxes can vary from 5 to 20 minutes. Sometimes a few steps have to be skipped.

Too funny concepts or stories distract. Teams that get stuck in unrealistic proposal. Students that miss sessions; participation is mandatory. Teams that stick to the initial solution.
Course slides:

http://www.gaudisite.nl/BachelorSDallSlides.pdf

Background CAFCR model:

Short introduction course in Systems engineering:

http://www.gaudisite.nl/ShortIntroCourseSESlides.pdf