
Submethods in the CR Views
-

logo
TBD

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This chapter describes the Conceptual view and the Realization view. Both views
are supported by a set of submethods to describe multi-disciplinary design, for
example several decompositions and models are provided.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.5 status: finished September 1, 2020

1 Introduction

Decomposition is widely used in the conceptual and realization view. Section 2
describes a few decompositions, and introduces interfaces. From components to
system qualities is more than a simple accumulation of component data. The
system behavior and characteristics are described by qualities in Section 3. The
conceptual and realization views also provide information to support the project
manager. Section 4 describes some submethods to support project management.

2 Decomposition

Decomposition and modularity are well known concepts, which are the funda-
mentals of software engineering methods. A nice article by Parnas [11] discusses
decomposition methods.

The decomposition can be done along different axes. Subsection 2.1 shows
construction as axis, and Subsection 2.2 shows the functional decomposition. The
decomposition into concurrent activities and the mapping on processes, threads and
processors is called the execution architecture, which is described in Subsection 2.4.

The design of complex systems always requires multiple decompositions, for
instance a construction and a functional decomposition. Subsection 2.3 describes
a submethod to cope with multiple decompositions. The relations between the
decompositions are described by mappings, described in Subsection 2.5.

Decompositions results in components. The interfacing between components
is discussed in Subsection 2.6.

2.1 Construction Decomposition

The construction decomposition views the system from the construction point of
view, see Figure 1 for an example. In this example the decomposition is structured
to show layers and the degree of domain know-how. The vertical layering defines
the dependencies: components in the higher layers depend on components in the
lower layers. Components are not dependent on components at the same or higher
layer. The amount of domain know how provides an indication of the added value
of the components. More generic components are more likely to be shared in a
broader application area, and are more likely to be purchased instead of being
developed.

The construction decomposition is mostly used for the design management. It
defines units of design, as these are created and stored in repositories and later
updated. The atomic units are aggregated into compound design units. In software
the compound design units are often called packages, in hardware they are called
modules. The blocks in Figure 1 are at the level of these packages and modules.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 1

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view PIP

browseviewport menu

adjust
view

TXT

hardware

driver

applications

services

toolboxes

domain specific generic

signal processing subsystem control subsystem

Figure 1: Example of a construction decomposition of a simple TV. The vertical
axis is used for layers, where higher layers depend on lower layers, but not vice
versa. In horizontal direction the left hand side shows the domain specific compo-
nents, the right hand side shows the more generic components.

Packages and modules are used as unit for testing and release and they often
coincide with organizational ownership and responsibility.

In hardware this is quite often a very natural decomposition, for instance into
cabinets, racks, boards and finally integrated circuits, Intellectual property (IP)
cores and cells. The components in the hardware are very tangible. The relationship
with a number of other decompositions is reasonably one to one, for instance with
the work breakdown for project management purposes.

The construction decomposition in software is more ambiguous. The structure
of the code repository and the supporting build environment comes close to the
hardware equivalent. Here files and packages are the aggregating construction
levels. This decomposition is less tangible than the hardware decomposition and
the relationship with other decompositions is sometimes more complex.

2.2 Functional Decomposition

The functional decomposition decomposes end user functions into more elementary
functions. The elementary functions are internal, the decomposition in elementary
functions is not easily observable from outside the system. In other words, the
what is worked out in how. Be aware of the fact that the word function in system
design is heavily overloaded. No attempt is made to define the functional decompo-
sition more sharply, because a sharper definition does not provide more guidance to
architects. Main criterium for a good functional decomposition is its useability for
design. A functional decomposition provides insight how the system will accom-
plish its job. MASCOT [2] is an example of a method where a functional decom-
position is based on data flow.

Figure 2 shows an example of (part of) a functional decomposition for a camera

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 2

storage

acquisition

processing
compress

encoding

display

processing

de-

compress decoding
display

acquisition

Figure 2: Example functional decomposition camera type device

type device. It shows a data flow with communication, processing, and storage
functions and their relations. This functional decomposition is not addressing the
control aspects, which might be designed by means of a second functional decom-
position, this time taken from the control point of view.

2.3 Designing with Multiple Decompositions

Most designers don’t anticipate cross system design issues. During the preparation
of design team meetings designers often do not succeed in submitting system level
design issues. This limited anticipation is caused by the locality of the viewpoint,
implicitly chosen by the designers. The designers are, while they working on
a component, concerned about many design characteristics. Examples of design
characteristics are Signal to noise ratio (SNR), accuracy, memory usage, processor
load, and latency.

Figure 3 shows a method to help designers to find system design issues, based
on the Question space. The question space is a three dimensional space. Two
dimensions are the decomposition dimensions (construction and functional); the
last dimension is the design characteristic dimension. The design characteristics
on this axis must be specific and quantifiable. A source of inspiration to find these
characteristics are the qualities, described in Chapter ??, where the challenge is to
find the specific and quantified characteristics that contribute to the quality.

For every point in this 3D space a question can be generated in the following
way:
How about the <characteristic> of the <component> when performing <function>?
Which will result in questions like:
How about the memory usage of the user interface when querying the database?

The designers will not be able to answer most of these questions. Simply
asking these questions helps the designer to change the viewpoint and discover
many potential issues. Fortunately, most of the (not answered) questions turn out

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 3

memory usage

export

server

print

server

database

server

SNR accuracy latencyprocessing

brightnessnextplay movierender filmquery DB

What is the memory usage of

the user interface

when querying the DB

import

server

user

interface

when performing <function>?

of the <component>

How about the <characteristic>

characteristics

components

functions

...

...

...

Figure 3: The question generator for multiple decompositions generates a question
for every point in the Question space. The generic question is shown at the top.
An example is shown below. The table shows a partial population for the three
dimensions. The question at the bottom is generated by substituting one value
from every row.

to be irrelevant. The answer to the memory usage question above might be insignif-
icant or small. The more detailed memory usage questions are irrelevant as long
as the total functionality fits in the available memory.

The architect can apply a priori know-how to select the most relevant questions
in the 3D space, for instance:

Critical for system performance Every question that is directly related to critical
aspects of the system performance is relevant. For example What is the CPU
load of the motion compensation function in the streaming subsystem? will
be relevant for resource constrained systems.

Risk planning wise Questions regarding critical planning issues are also relevant.
For example Will all concurrent streaming operations fit within the designed
resources? will greatly influence the planning if resources have to be added.

Least robust part of the design Some parts of the design are known to be rather
sensitive, for instance the priority settings of threads. Satisfactory answers
should be available, where a satisfactory answer might also be we scheduled
a priority tuning phase, with the following approach.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 4

Suspect parts of the design Other parts of the design may be suspect for a number
of reasons. Experience, for instance, learns that response times and throughput
do not get the required attention of software designers (experience-based
suspicion). Or we may have to allocated an engineer to the job with insuffi-
cient competence (person-based suspicion).

Some questions address a line or a plane in the multi dimensional space. An
example of such an improved question is a memory budget for the system, thereby
addressing all memory aspects for both functions and components in one budget.

2.4 Execution Architecture

The execution architecture is the run-time architecture of a system. The process1

decomposition plays an important role in the execution architecture. Figure 4
shows an example of a process decomposition.

image handlingscan control

scan

control

acq

control

recon

control

xDAS recon

db

control

disk

scan

UI

image handling

UI

archiving

control

media

import

export

network

display

control

display device hardware

server

process

UI process

legend

Figure 4: An example of a process decomposition of a MRI scanner.

One of the main concerns for process decomposition is concurrency: which
concurrent activities are needed or running, and how do we synchronize these
activities? Two techniques to support asynchronous functionality are widely used
in operating systems: processes and threads. Processes are self sustained, which
own their own resources, especially memory. Threads have less overhead than
processes. Threads share resources, which makes them more mutually dependent.
In other words processes provide better means for separation of concerns.

The execution architecture must map the functional decomposition on the process
decomposition. This mapping must ensure that the timing behavior of the system
is within specification. The most critical timing behavior is defined by the dead
lines. Missing a dead line may result in loss of throughput or functionality. The
timing behavior is also determined by the choice of the synchronization methods,
by the granularity of synchronization and by the scheduling behavior. The most
common technique to control the scheduling behavior is by means of priorities.

1Process in terms of the operating system

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 5

This requires, of course, that priorities are assigned. Subsystems with limited
concurrency complexity may not even need multiple threads, but these subsystems
can use a single thread that keeps repeating the same actions all the time. The
mapping is further influenced by hardware software allocation choices, and by the
construction decomposition. A well known method in the hard real time domain
is DARTS (Design Approach for Real Time Systems) [3]. This methods provides
guidelines to identify hard real time requirements, translate them in activities and
to map activities on tasks. DARTS then describes how to design the scheduling
priorities.

In practice many components from the construction decomposition are used in
multiple functions, and are mapped on multiple processes. These shared compo-
nents are aggregated in shared or dynamic-link libraries (dll’s). Sharing the program
code run-time is advantageous from memory consumption point of view.

2.5 Relations between Decompositions

The decompositions that are made as part of the design are related to each other. A
mapping or allocation is required to relate a decomposition with another decompo-
sition. For instance the functional decomposition can be mapped on the construction
decomposition: functions are allocated to components in the construction decom-
position. Another example is that functions are mapped on threads in the execution
architecture.

The difficult aspect of these mappings is that in most systems n : m mappings
are needed. Every decompositions serves its own purposes, such as construction
and configuration management in the construction decomposition, performance
and image quality in the data flow functional decomposition, and timing and concur-
rency in the execution architecture. Each decomposition must clearly serve its
intended purpose. On top of that a clear mapping strategy must be described to
relate the decompositions.

2.6 Interfaces

The interfaces are the complement of the components in a decomposition. A lot
of work on interface specifications has been done, for instance in KOALA [14].
KOALA adds the notion of provides and requires interfaces to formalize depen-
dency relations. A powerful decoupling step is the use of protocols as described
by Jonkers [7]. Protocols according to [7] describe the functional and dynamic
behavior of interfaces.

In Subsection ?? the interfaces were already discussed in the context of external
interfaces in the functional view. The internal interface can be specified analogous
to the external interfaces. Part of the internal interface is also specified by an
internal information model, for instance modeled via entity relationship diagrams.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 6

The internal information model abstracts from the implementation, by modelling
the data concepts, relationships and activities. The internal information model
extends the external information model with data that are introduced as design
concepts. It can, for instance, show caches, indices and other structures that are
needed to achieve the required performance.

3 Quality Design Submethods

This section discusses submethods to achieve the objectives for some of the qualities
that will be discussed in Chapter ??. Performance is discussed in Subsection 3.1.
Budgetting, a submethod that can be used for several qualities, is described in
Subsection 3.2. Submethods for Safety, Reliability and Security are discussed in
Subsection 3.3. Start up and Shutdown are discussed in Subsection 3.4. Subsection 3.5
describes briefly submethods with respect to Value and Cost. Subsection 3.6 discusses
granularity, an important the design consideration.

3.1 Performance Modeling

trecon =

nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcol-overhead

tcorrections(nx ,ny)

trow-overhead

tcontrol-overhead

+

) +

) +

Figure 5: Flow model and analytical model of the image reconstruction in MR
scanners. The analytical model is an algorithm to calculate the inherent computa-
tional costs.

System performance is being tackled by using complementary models, such
as visual models and analytical models. For instance, flow can be visualized by
showing the order, inputs, outputs and the type of data, and flow performance can
be described by means of a formula. In figure 5 the performance is modeled by
a visual model at the top and an analytical model below. The analytical model is

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 7

entirely parameterized, making it a generic model that describes the performance
over the full potential range. For every function in the visual model the order of
the algorithm is determined and the parameterization for the input and output data.
The analytical model should be a manageable formula to provide insight in the
performance behavior. In this example for MR reconstruction Fourier transforms
are order n ∗ log(n), while the other computations are order n.

overhead

trecon = nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

tcol-overhead

tcorrections(nx ,ny)trow-overhead +tcontrol-overhead+

) +

) +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead

filter computations

read I/O

write I/O

malloc, free
transpose

bookkeeping

number
crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Figure 6: Example of performance analysis and evaluation. Implementation
specific functions are added to the flow model and the analytical model. Below
timing measurements are added, and classified as overhead and number crunching.

The implementation of the system often reveals additional contributions to
the processing time, resulting in an improved model, as shown in Figure 6. The
pipeline model at the top of Figure 6, is extended with data transfer functions. The
measurement below the model shows that a number of significant costs are involved
in data transfer and control overhead. The original model of Figure 5 focuses on
processing cost, including some processing related overhead. In product creation2

the overhead plays a dominant role in the total system performance. Significant
overhead costs are often present in initialization, I/O, synchronization, transfers,
allocation and garbage collection (or freeing if explicitly managed).

Analytical performance models as shown in Figure 6 are powerful means to
design, analyze and discuss performance. The difficulty in developing these models

2observed and coped with this problem in the following product developments: 1980 Video
Display unit, 1981 Oncology Support, 1984 Digital Cardio Imaging, 1984 MRI user interface, 1986
MRI data acquisition, 1992 Medical Imaging workstation, 2002 Audio/Video processing.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 8

is in finding a manageable level of abstraction without losing too much predictive
value. To develop the analytical model algorithmic analysis and empirical analysis
need to be combined. It is my experience that analytical models with a manageable
level of abstraction can be made for a wide variety of systems: MRI scanners,
Digital Cardio Imaging, Medical Imaging Workstation, Wafersteppers, and Audio
and Video processing systems.

The actual characteristics of the technology being used must be measured
and understood in order to make a good (reliable, cost effective) design. The
basic understanding of the technology is created by performing micro-benchmarks:
measuring the elementary functions of the technology in isolation. Figure 7 lists
a typical set of micro-benchmarks to be performed. The list shows infrequent and
often slow operations and frequently applied operations that are often much faster.
This classification implies already a design rule: slow operations should not be
performed often3.

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Figure 7: Typical micro-benchmarks for timing aspects

The results of micro-benchmarks should be used with great care. The measure-
ments show the performance in totally unrealistic circumstances, in other words
it is the best case performance. This best case performance is a good baseline
to understand performance, but when using the numbers the real life interference
(cache disturbance for instance) should be taken into account. Sometimes additional
measurements are needed at a slightly higher level to calibrate the performance
estimates.

3This really sounds as an open door. However, I have seen many violations of this entirely trivial
rule, such as setting up a connection for every message, performing I/O byte by byte et cetera.
Sometimes such a violation is offset by other benefits, especially when a slow operation is in fact not
very slow and when the brute force approach is both affordable as well as extremely simple.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 9

The standard work about performance issues in computer architectures is the
book by Hennesey and Patterson [5]. Here modelling and measurement methods
can be found that can serve as inspiration for performance analysis of embedded
systems.

3.2 Budgets

The implementation can be guided by making budgets for the most important
resource constraints, such as memory size, response time, or positioning accuracy.
The budget serves multiple purposes:

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicitly

The simplification of the design into budgets introduces design constraints.
Simple budgets are entirely static. If such a simplification is too constraining or
costly then a dynamic budget can be made. A dynamic budget uses situational
determined data to describe the budget in that situation. The architect must ensure
the manageability of the budgets. A good budget has tens of quantities described.
The danger of having a more detailed budget is the loss of overview.

1B model the performance starting with old systems

1A measure old systems

1C determine requirements for new system

2 make a design for the new system

3 make a budget for the new system:

4 measure prototypes and new system

flow model and analytical model

micro-benchmarks, aggregated functions, applications

response time or throughput

explore design space, estimate and simulate

step example

models provide the structure

measurements and estimates provide initial numbers

specification provides bottom line

micro-benchmarks, aggregated functions, applications

profiles, traces

5 Iterate steps 1B to 4

Figure 8: Budget-based design flow

Figure 8 shows a budget-based design flow. The starting point of a budget is
a model of the system, from the conceptual view. An existing system is used to

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 10

get a first guidance to fill the budget. In general the budget of a new system is
equal to the budget of the old system, with a number of explicit improvements.
The improvements must be substantiated with design estimates and simulations
of the new design. Of course the new budget must fulfill the specification of the
new system, sufficient improvements must be designed to achieve the required
improvement.

Early measurements in the integration are required to obtain feedback once the
budget has been made. This feedback will result in design changes and could even
result in specification changes.

3.3 Safety, Reliability and Security

The qualities safety, reliability and security share a number of concepts, for example:

• containment

• graceful degradation

• interlock, for instance dead man switch

• detection and tracing of failures,

• logging of operational data for post mortem analysis, e.g. flight recorder

• redundancy

All three qualities are covered by an extensive set of methods. Highly recom-
mended is the work of Neumann [10]. A lot of literature is based on work in the
aerospace industry. A good starting point to the literature is the home page of the
International Council on Systems Engineering [6].

A common guideline in applying any of these concepts is that the more critical
a function is, the higher the understandability should be, or in other words the
simpler the applied concepts should be. Many elementary safety functions are
implemented in hardware, avoiding large stacks of complex software.

Specialized engineering disciplines exist for Safety, Reliability and Security.
These disciplines have developed their own methods. One class of methods relevant
for system architects is the class of analysis methods that start with a (systematic)
brainstorm, see figure 9. The Medical HACCP Alliance [13] provides extensive
documentation for Hazard Analysis And Critical Control Point (HACCP) method
for medical devices. A more systematic analysis provides input to improve the
design.

Walk-through is another effective assessment method. A few use cases are
taken and together with the engineers the implementation behavior is followed
for these cases. The architect will especially assess the understandability and
simplicity of the implementation. An implementation that is difficult to follow

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 11

potential hazardssafety
hazard analysis

reliability
FMEA

failure modes

security vulnerability risks

probability

severity

effects

consequences

measures

measures

measures

analysis and
assessment

(systematic)
brainstorm

improve
design

Figure 9: Analysis methods for safety, reliability and security

with respect to safety, security or reliability is suspect and at least requires more
analysis.

3.4 Start up and Shutdown

The start up and the shutdown of the system are related to many components and
functions of the system. One of the common patterns is the run level concept. The
start up and shutdown are performed in phases, with increasing functionality and
increasing integration, see for instance [8].

The current trend with more sophisticated power management, software downloading
and roaming access networks increases the importance of clear design concepts to
support these types of functionality.

3.5 Value and Cost

Many design decisions are made on an evaluation of the value of a design option
versus the cost of this option. The production cost4 of a system can be managed by
making a decomposition of the cost and using the decomposition to create a cost
budget.

Determination of the value of a design option is much more difficult. The value
depends on the viewpoint. Some features are valuable for a particular stakeholder,
for instance diagnostics for a service engineer and debugging for the developer. In
general multiple viewpoints need to be somehow accumulated to create an integral
value. QFD [12] uses multiple mappings with weight factors to “add” values
together and create an integral value.

4Within Philips the term Material and Labor Cost (MLC) is frequently used. The MLC determines
the fixed cost of a product. The investment costs are variable costs. Different accounting practices
are used to cope with the investment costs in the integral cost of the product.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 12

3.6 Granularity Determination

The granularity of operations is an important design choice. Fine granularity offers
flexibility and fast response, at the cost of more overhead per operation. Coarse
granularity creates less overhead, at the cost of less flexibility and longer latencies.
The determination of the granularity is an optimization problem that can be solved
by applying optimization techniques from the operational research, see for an intro-
duction [1].

Examples of operations where the unit size of operation has to be chosen
are: buffering, synchronization, processing and input/output. In the case of video
processing examples of operation sizes are: pixel, line and frame. In real video
processing systems at this moment the unit size is typical a quarter of a video
frame. The latency of the video chain is critical for two reasons: the time difference
between audio and video must be small (lip-synchronization) and zapping must be
fast. Smaller unit sizes create too much overhead, larger unit sizes create too much
latency.

4 Project Management Support

The architect supports the project leader. Typical contributions of the architect are
an initial work breakdown and an integration plan. Many more project management
submethods exist, see for instance [4], but most of them are less relevant for the
system architect.

A work breakdown is in fact again another decomposition, with a more organi-
zational point of view [4]. The work in the different work packages should be
cohesive internally, and should have low coupling with other work packages.

Figure 10 shows an example of a work breakdown. The entire project is broken
down in a hierarchical fashion: project, segment, work package. In this example
color coding is applied to show the technology involved and to show development
work or purchasing work. Both types of work require domain know how, but
different skills to do the job.

Schedules, work breakdown and many technical decompositions are heavily
influenced by the integration plan. Integration is the effort of combining the compo-
nents into a (sub)system, and to get the integrated (sub) system to work in the
intended way. During the integration many specification and design inconsis-
tencies, oversights, misunderstandings and mistakes are detected, analyzed and
solved. Integration typically costs a lot of time and effort. The risk in a project is
that the integration takes too much time and effort. Sufficient and regular attention
for the integration viewpoint makes the risk better manageable.

Figure 11 shows an example of an integration plan. The systems that are used
for the actual integration, the integration vehicles, are the limiting resource for
integration. The integration plan is centered around 3 tiers of integration vehicles:

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 13

work packagesproject organization

TIP:NBE

R1

xDAS
reconstruction

hardware

viewing

database

scanning

xFEC

run time

acq

prepa-

ration

conver-

sion

algo-

rithms

UIgfx
algo-

rithms
VDU console

import

export
archive

bulk

data
clinical

database

engine

computing

system

host OS
foundation

classes

start up

shutdown

exception

handling

integra-

tion
SPS

SD

S
TPS

alfa

test

beta

test

conf

man

make SW

make HW

buy SW

buy HW

system

segment

project

legend

Figure 10: An example of a work breakdown from MRI scanner development. The
project is organized in segments. The work in every segment is decomposed in
work packages.

• partial systems to facilitate SW testing

• existing HW systems

• new HW systems

The partial systems for SW testing consist mostly of standard computer infras-
tructure. This computer infrastructure is very flexible and accessible from software
point of view, but far from realistic from hardware viewpoint. The existing and new
HW systems are much less accessible and more rigid, but close to the final product
reality. The new HW system will be available late and hides many risks and uncer-
tainties. The overall strategy is to move from good accessible systems with few
uncertainties to less accessible systems with more uncertainties. A new application
is first tested on a partial system for software testing. Then this application is tested
on systems with existing hardware, with little hardware uncertainties. Finally this
application is tested on the new base system. In general integration plans try to
avoid stacking too many uncertainties by looking for ways to test new modules in
a stable known environment, before confronting new modules with each other.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 14

existing base system

new HW subsystem

SW dev system

test HW subsystem

test SW for new HW
subsystem

new application

existing base system

integrate
subsystem

SW dev system test and refine application

integrate and refine
application

adopt existing base SW

new base system test new base system
integrate HW

system

integrate

system

SW for new HW
subsystem

adopt existing
base SW

existing new

2 partial

systems for

SW testing

2 existing

base

systems

new base

systems

time

integrated

system

application integration

new subsystem

integration

Figure 11: Example of an integration plan, with three tiers of integration vehicles.
In this example two partial systems for software testing, two existing base systems
and one new base system

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 15

5 Overview of the Submethods in the CR views

Figure 12 shows an overview of the submethods that are discussed in this chapter.
These submethods are positioned in the Conceptual View and the Realization View.
This positioning is not a black and white proposition, many submethods address
aspects from multiple views. However, the positioning based on the essence of the
submethod helps to select the proper submethod.

Conceptual Realization

construction decomposition

functional decomposition

designing with multiple decompositions

execution architecture

internal interfaces

performance

start up

shutdown

integration plan

work breakdown

safety

reliability

security

budget

benchmarking

performance analysis

value and cost

safety analysis

reliability analysis

security analysis

granularity determination

Figure 12: Overview of the submethods discussed in this chapter, positioned in the
CR views

References

[1] J. E. Beasley. OR-notes. http://mscmga.ms.ic.ac.uk/jeb/or/
basicor.html.

[2] Per Bjurï¿1
2us and Axel Jantsch. MASCOT: A specification and cosimu-

lation method integrating data and control flow. http://jamaica.ee.
pitt.edu/Archives/ProceedingArchives/Date/Date2000/
papers/2000/date00/pdffiles/03a_2.pdf, 2000.

[3] H Gomaa. Software Design Methods for Real-time Systems. Addison-Wesley,
1993.

[4] Robert J. Graham and Randall L. Englund. Creating an Environment for
Successful Projects; The Quest to Manage Project Management. Jossey-Bass
Publishers, San Fransisco, CA, 1997.

[5] John L. Hennessy, David A. Patterson, and David Goldberg. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann, 1996.

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 16

http://mscmga.ms.ic.ac.uk/jeb/or/basicor.html
http://mscmga.ms.ic.ac.uk/jeb/or/basicor.html
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date2000/papers/2000/date00/pdffiles/03a_2.pdf
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date2000/papers/2000/date00/pdffiles/03a_2.pdf
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date2000/papers/2000/date00/pdffiles/03a_2.pdf

[6] INCOSE. International council on systems engineering. http://www.
incose.org/toc.html, 1999. INCOSE publishes many interesting
articles about systems engineering.

[7] Hans Jonkers. Interface-centric architecture descriptions. In WICSA 2001,
Amsterdam, 2001.

[8] James Mohr. The linux tutorial; run-levels. http://www.
linux-tutorial.info/cgi-bin/display.pl?65&99980&
0&3, 1997.

[9] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[10] Peter G. Neumann. Homepage peter g. neumann a.o. about safety, security
and reliability. http://www.csl.sri.com/users/neumann/.

[11] David L. Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, pages 128–138, March 1979.
This article can also be found in ”Software Fundamentals, Collected Papers
by David Parnas”, Addison-Wesley.

[12] QFD Institute. QFD institute. http://www.qfdi.org/, 2000.

[13] The Medical HACCP Alliance. Hazard analysis and critical control point.
http://medicalhaccp.ag.vt.edu/, 1998.

[14] Rob van Ommering. Building product populations with software compo-
nents. In ICSE 2002, 2002.

History
Version: 1.5, date: April 8, 2003 changed by: Gerrit Muller

• repaired broken reference
Version: 1.4, date: April 7, 2003 changed by: Gerrit Muller

• added subsection “Relations between Decompositions”
• clarified text of execution architecture
• clarified the value of KOALA
• replaced flow models by models that visualize flow
• added legend to process decomposition figure
• small textual improvements
• changed status to finished

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 17

http://www.incose.org/toc.html
http://www.incose.org/toc.html
http://www.linux-tutorial.info/cgi-bin/display.pl?65&99980&0&3
http://www.linux-tutorial.info/cgi-bin/display.pl?65&99980&0&3
http://www.linux-tutorial.info/cgi-bin/display.pl?65&99980&0&3
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.csl.sri.com/users/neumann/
http://www.qfdi.org/
http://medicalhaccp.ag.vt.edu/

Version: 1.3, date: February 27, 2003 changed by: Gerrit Muller
• changed the figure with the question generator
• added short description to DARTS reference
• explained the construction of the analytical performance models
• added a discussion about the difficulties and value of analytical performance models

Version: 1.2, date: November 20, 2003 changed by: Gerrit Muller
• added description of relation design characteristics and qualities
• removed configuration management remark from execution architecture subsection
• changed status into ”concept”
• added overhead terms to analytical formula of reconstruction performance analysis
• added old and new to figure describing budget methods
• renamed Section ”Qualities” in ”Qaulity Design Submethods”
• renamed Subsection ”Granularity” in ”Granularity Determination”
• added Section ”Overview”

Version: 1.1, date: October 30, 2003 changed by: Gerrit Muller
• added Subsection Granularity

Version: 1.0, date: October 14, 2003 changed by: Gerrit Muller
• removed Figure execution architecture
• status changed into ’draft’
• replaced budget figure
• improved figure work breakdown

Version: 0.1, date: September 22, 2003 changed by: Gerrit Muller
• moved ”Execution architecture” into Section ”Decomposition”
• added ”Budgets”
• added improved performance model
• added ”Micro benchmarks” to the Subsection ”Performance”
• added Analysis methods to Subsection ”Safety, Reliability and Security”

Version: 0, date: July 28, 2003 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
Submethods in the CR Views
September 1, 2020 version: 1.5

University of South-Eastern Norway-NISE

page: 18

	Introduction
	Decomposition
	Construction Decomposition
	Functional Decomposition
	Designing with Multiple Decompositions
	Execution Architecture
	Relations between Decompositions
	Interfaces

	Quality Design Submethods
	Performance Modeling
	Budgets
	Safety, Reliability and Security
	Start up and Shutdown
	Value and Cost
	Granularity Determination

	Project Management Support
	Overview of the Submethods in the CR views

