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Abstract

The fundamental concepts and approach system partitioning are explained. We
look at physical decomposition and functional decomposition in relation to supply
chain, lifecycle support, project management, and system specification and

design.
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Parts, Dynamics, Characteristics
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parts of organization
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Engineering

engineering knowledge =3 =P parts data base eI E
system specification == =3P production procedures production
engineering
system design =3 =P qualification procedures e
source data =9 =P system documentation quality
assurance
lifecycle
support
3 > P> 3 > 3
know- doc
DB
past project mechanical source resource product
experience documents electrical code planning, data
design management e.g. SAP management
database
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Example Physical Decomposition
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Partitioning is Applied Recursively

system
subsystem .. atomic sub subsystem
1 system k n
subsub subsub subsub subsub subsub atomic
o subsub
system A system B system N system P system Q system Z
atomic . atomic|/atomic . atomic||atomic . atomic|/atomic . atomic||atomic . atomic
part part part part part part part part part part
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Software plus Hardware Decomposition

applications view PIP adjust \_?;\frv
_ viewport menu browse
services
toolboxes |, dio || video TXT etc. networking ilfe-
system
driver drivers scheduler OS
tner || MM || vpEG || DSP || cPU || RAM || etc
buffer
hardware _ _
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Guidelines for Partitioning

the part is cohesive

functionality and technology belongs together

the coupling with other parts is minimal
minimize interfaces

the part is selfsustained for production and qualification

can be in conflict with cost or space requirements

clear ownership of part
e.g. one department or supplier
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How much self-sustained?

control SW application HMI SW contro.l _control
SW electronics Interface

. EMC main gualification adjustment

cooling o .

shielding function support support

power power power production mechanical
stabilization conversion distribution support package

How self sustained should a part be?
trade-off:
cost/speed/space logistics/lifecycle/production

optimization

—z

flexibility

clarity
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Decoupling via Interfaces
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The Ideal Modularity

System is composed
by using standard interfaces

limited catalogue of variants (e.g. cost performance points)
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System Creation
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Simplistic Functional SubSea Example

sensor
measure dat control
sensor ata _
signals pressure, ——>» pressure, —> settings
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pressure hydro
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Functional Decomposition

How does the system work and operate?
Functions describe what rather than how.
Functions are verbs.
Input-Process-Output paradigm.
Multiple kinds of flows:
physical (e.g. hydrocarbons)
information (e.g. measurements)
control
At lower level one part ~= one function
pump pumps, compressor compresses, controller controls

At higher level functions are complex interplay of physical parts

e.g. regulating constant flow, pressure and temperature
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Quantification

Size

Weight

Cost

Reliability

Throughput

Response time

Accuracy

2.4m *0./m * 1.3m

1450 Kg

30000 NoK

MTBF 4000 hr

3000 I/hr

0.1s

+/- 0.1%

many characteristics
of a system, function or part
can be guantified

Note that quantities
have a unit
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Question Generator

How about the <characteristic>

of the <component>

when performing <function>?

A .
b e L What is the accuracy of
= ) the fuse
c preparing = . .
= when printin
T copying = p g
solving '
paper jam | paper path E fuse PIM finisher ~ scanner
l ; | | | -
throughput
memory footprint —Ccom po ne nt_>
ACCUIaCy ofecccccccccccccccccas

processing load

example from a high volume printer
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Example Technical Budget
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Example of A3 overview

A3 architecture overview of the Metal Printer (all numbers have been removed for competitive sensitivity)

throughput in minutes | per wafer : tem and supersystem
back-end factor . author Gerrit Muller scope  systen persy:
e 7%,,.,,.,,.,.3/& 1. inspection version 0.1 status preliminary draft
logi &
i networking Seed 2. seed sputter 1 date last update  August 3, 2010
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mask __. T Pl 8 Document meta-information
H H F |4 seedetch 1
[ wafer ] ) pattern
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ront en : = spin coated
( ) V‘\:;Iﬁr printer | ICs polymer | = ] | |5. coat/develop dielectrics 3.4 accuracy overlay c:::jarcr:iirr:‘a;(\gn
ICs e [5 EE] 6. exposure or cMP for polymer vias | 1.2 design enabling | _| }
power, chemicals chemicals REX [ wafer ] e.g. CD, separation —¢><-secti0n control uptime partial graph
consumables, waste ] climate many nodes
infrastructure ‘7. E-test ‘ early delivery and connections
Vs : —‘ reliability high MTBF are not shown
back-end factory: systems and process model process steps  throughput __ \volume production
cost per layer _—‘ throughput ‘ system cost
clean " "
) tional lect
master clean wafer -mmmee ; — : L et coss operatonal | | electicpower
prefill clean prealign robot - 3L g 'l' 2 = envi_ronmental f\",feair
metal wafer -Ilr impact | waste disposal water, air, ...
grinter prealign u
C ‘v& clean customer key drivers
D master S .
o "o - prefil min. line width aum wafer size 200, 300 mm
- — overlay b um power x kW
master wafer wafer o print throughput c WPH clean room class
FOUP FOUP FOUP L MTBF dhr floor vibration class
) T T T
0 100b 200b
metal printing cell metal printing time-line key performance parameters
metal printing cell: systems and performance model Customer key-drivers and Key Performance Parameters
N zune. | .@ covers and ’ 1. Close doors _ :
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@ _ Fluidic (9 Electronics fsfé’:{:;; granite ‘ @ contamination ’4‘ Process tchamber ‘ tfinalize = tmc)ve wraEs tc)pen doors
Lo sensors
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control . . . -
pmes@ note: original diagram was annotated with actual performance figures
power @ "remote" for confidentiality reasons these numbers have been removed
supply electronics rack
. . . ; integrating metal printer . .
metal printer back side metal printer front side Sibsisiams unaianel i formula print cycle time
metal printer subsystems
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