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Introduction

This book provides a practical approach to model systems. This approach is based
on the modeling of many system and context aspects in small and simple models.
These small models have to be used together to support the creation process of
systems.

The book follows the structure of the course Modeling and Analysis. Each
course module is a Part with a number of Chapters:

part 1 Overview

part 2 Fundamentals of Technology

part 3 System Model

part 4 Application and Life Cycle Model

part 5 Integration and Reasoning

part 6 Analysis

At this moment the book is in its early infancy. Only one running case is used at
the moment, a web shop. Most articles are updated based on feedback from readers
and students. The most up to date version of the articles can always be found at [4].
The same information can be found here in presentation format. Chapters can be
read as autonomous units.
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Part I

Overview



Chapter 1

Modeling and Analysis Overview
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1.1 Introduction

At the beginning of the creation of a new product the problem is often ill-defined
and only some ideas exist about potential solutions. The architecting effort must
change this situation in the course of the project into a well articulated and struc-
tured understanding of both the problem and its potential solutions. Figure 1.1
shows that basic methods and an architecting method enable this architecting effort.
We will zoom on modeling and analysis as support for the architecting effort.

Modeling and analysis supports the architecting in several ways during the
project life cycle, see Figure 1.2. Early modeling and analysis efforts help to
understand the problem and solution space. When the project gets more tangible
the purpose of modeling shifts to exploration of specification and design alterna-
tives. For some problems it is rewarding to optimize the solution by means of
models. When the realization gets up and running, then model and realization can
be compared for verification purposes.

The insight that the goal of modeling changes during the project life cycle
implicates that the type of model depends on project phase. We should realize
that every model that we create has a goal. These goals evolve and hence models
evolve. The model itself will not achieve the goal. We have to actively pursue the
goal, for instance by applying techniques, to reach this goal.
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Figure 1.1: An architecting method supports the architect in his process to go from
a vague notion of the problem and a vague notion of the potential solutions to a
well articulated and structured architecture description. Modeling and Analysis
supports the architecting effort.

understanding exploration optimization verification

Type of model depends on project phase

Models have a goal

Goals evolve and models evolve

Techniques are used to reach this goal

Figure 1.2: Modeling and Analysis supports:

The purpose of modeling is to support the architecting effort. Figure 1.3 makes
this purpose more explicit: the purpose of modeling is to support the project to get
the right specification, design and to take the right decisions to achieve the project
goals. Right specification and design is assessed in terms of customer satisfaction,
risk level, meeting project constraints (cost, effort, time), and business viability
(profit margin). In order to get to this point we need information, modeling results,
with sufficient accuracy, working range, and credibility. These modeling results
are based on the inputs to modeling:

facts from investigations, such as searching supplier documentation, customer or
stakeholder interviews, market research et cetera.

measurements of components, previous systems and the context

assumptions whenever facts or measurements are missing or too expensive.
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Figure 1.3: Purpose of Modeling

All these inputs have their uncertainties, may contain unknowns or may even be
erroneous.

1.2 Overview of Modeling and Analysis Approach

The approach uses a simple model of the system and its context as shown in
Figure 1.4. The system is modeled as black box, often called system requirements.
Both functional or behavioral models can be used. However, we will focus mostly
on the so-called non-functional requirements in the black box view. The internals
of the system are also modeled: the design, the realization, and technology choices
and consequences.
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Figure 1.4: What to Model?

The purpose of modeling is to support the project in its architecting effort. The
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project purpose is always to realize a system in its context. A good system is a
system that fits in its context and that is appropriate for its purpose. Figure 1.4
shows that we will model the usage context and the life cycle context. The usage
context is often an enterprise with business processes and human users. The life
cycle context starts with the creation or project life cycle, but it continues for the
entire operational life of the system. Often a service provider is the stakeholder
taking care of the system life cycle, from infrastructure to maintenance services
and possibly even support for higher level application services.

Many models can be made for the system and its context, see Figure 1.4 for
some examples. However, to achieve the modeling goal we are often interested in
the mutual relations between black box view and design, system and context, et
cetera. We stress again, modeling is a means to support the process.

1. overall approach
intro, overall approach, exercise overall approach

2. input facts, data, uncertainties
quantification, measurements, modeling, validation, technology 

background, lifecycle and business input sources

3. system modeling
purpose, approaches, patterns, modularity, parametrization, means, 

exploration, visualization, micro-benchmarking, characterization, 

performance as example

6. analysis, using models
sensitivity, robustness, worst case, working range, scalability,  

exceptions, changes

5. integration and reasoning
relating key driver models to design models, model based threads 

of reasoning, FMEA-like approach, modeling in project life-cycle

4. application, life-cycle modeling
reiteration of modeling approach (see module 3), applied on 

customer application and business, and life cycle

day 1

day 2

day 3

Figure 1.5: Program of Modeling and Analysis Course

The structure of the course and the supporting book follows the six modules
shown in Figure 1.5.

overall approach providing an introduction and an overview of the overall approach
to modeling and analysis.

input facts, data, uncertainties where and how to get quantified input data? We
discuss measurements and the basis for dealing with uncertainties and errors.
We also provide figures of merit for computer technology.

system modeling via a number of examples we show how the system and design
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aspects of the system can be modeled. The main focus here is on perfor-
mance, because performance is the most clear example of the value of modeling
and a good illustration of the approach of modeling.

application, life-cycle modeling reiteration of modeling approach (see module
3), applied on customer application and business, and life cycle.

integration and reasoning an approach is provided to use multiple small models
to take project decisions. A model based thread of reasoning relates customer
key drivers to design decisions. We also discuss the role of modeling during
the project life-cycle.

analysis, using models the purpose of analysis is to get answers on questions
about sensitivity, robustness, scalability, in different circumstances such as
typical case, worst case exceptions, et cetera. The impact of changes can be
studied. The working range, credibility and accuracy are also discussed.
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Figure 1.6: Overview of Approach

Figure 1.6 shows a visual overview of the modeling and analysis approach.
At the top Figure 1.3 is shown. The program follows this diagram more or less
from left to right: inputs, modeling of system, modeling of contexts, integration to
support decisions and (back to) analysis. In the middle of the figure the map with
it’s stakeholders and concerns is shown. At the bottom the related models and the
highlighted thread of reasoning is visualized.

An important aspect of the approach is the continuous short-cyclic iteration.
Figure 1.7 shows that the map is traversed many times, where both top-down
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Figure 1.7: Iteration over viewpoints

thinking and bottom-up fact finding are continuously alternated. Top-down provides
context understanding, intentions and objectives. Bottom-up provides know-how,
constraints and opportunities.

1.3 Acknowledgements
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Part II

Fundamentals of Technology



Chapter 2

Introduction to System
Performance Design

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

2.1 Introduction

This article discusses a typical example of a performance problem during the creation
of an additional function in an existing system context. We will use this example
to formulate a problem statement. The problem statement is then used to identify
ingredients to address the problem.

2.2 What if ...

Let’s assume that the application asks for the display of 3 ·3 images to be displayed
“instanteneously”. The author of the requirements specification wants to sharpen
this specification and asks for the expected performance of feasible solutions. For
this purpose we assume a solution, for instance an image retrieval function with
code that looks like the code in Figure 2.1. How do we predict or estimate the
expected performance based on this code fragment?

If we want to estimate the performance we have to know what happens in the
system in the retrieve_image function. We may have a simple system, as shown in



Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images 

instanteneous
design

design

or

Figure 2.1: Image Retrieval Performance

Figure 2.2, where the retrieve_image function is part of a user interface process.
This process reads image data directly form the hard disk based store and renders
the image directly to the screen. Based on these assumptions we can estimate
the performance. This estimation will be based on the disk transfer rate and the
rendering rate.

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Figure 2.2: Straight Forward Read and Display

However, the system might be slightly more complex, as shown in Figure 2.3.
Instead of one process we now have multiple processes involved: database, user
interface process and screen server. Process communication becomes an additional
contribution to the time needed for the image retrieval. If the process communi-
cation is image based (every call to retrieve_image triggers a database access and a
transfer to the screen server) then 2 · 9 process communications takes place. Every
process communication costs time due to overhead as well as due to copying image
data from one process context to another process context. Also the database access
will contribute to the total time. Database queries cost a significant amount of time.

The actual performance might be further negatively impacted by the overhead
costs of the meta-information. Meta-information is the describing information of
the image, typically tens to hundreds of attributes. The amount of data of meta-
information, measured in bytes, is normally orders of magnitude smaller than the
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 2.3: More Process Communication

amount of pixel data. The initial estimation ignores the cost of meta-information,
because the of amount of data is insignificant. However, the chosen implemen-
tation does have a significant impact on the cost of meta-information handling.
Figure 2.4 shows an example where the attributes of the meta-information are inter-
nally mapped on COM objects. The implementation causes a complete “factory”
construction for every attribute that is retrieved. The cost of such a construction
is 80µsec. With 100 attributes per image we get a total construction overhead of
9 · 100 cdot80µs = 72ms. This cost is significant, because it is in the same order
of magnitude as image transfer and rendering operations.

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta
------

---------

--------

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 2.4: Meta Information Realization Overhead

Figure 2.5 shows I/O overhead as a last example of potential hidden costs. If
the granularity of I/O transfers is rather fine, for instance based on image lines, then
the I/O overhead becomes very significant. If we assume that images are 5122, and
if we assume tI/O = 1ms, then the total overhead becomes 9 · 512 · 1ms ≈ 4.5s!

Gerrit Muller
System Modeling and Analysis: a Practical Approach
July 3, 2023 version: 0.5

University of South-Eastern Norway-NISE

page: 11



Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Figure 2.5: I/O overhead

2.3 Problem Statement

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Figure 2.6: Non Functional Requirements Require System View

In the previous section we have shown that the performance of a new function
cannot directly be derived from the code fragment belonging to this function. The
performance depends on many design and implementation choices in the SW layers
that are used. Figure 2.6 shows the conclusions based on the previous What if
examples.

Figure 2.7 shows the factors outside our new function that have impact on the
overall performance. All the layers used directly or indirectly by the function have
impact, ranging from the hardware itself, up to middleware providing services. But
also the neighboring functions that have no direct relation with our new function
have impact on our function. Finally the environment including the user have
impact on the performance.

Figure2.8 formulates a problem statement in terms of a challenge: How to
understand the performance of a function as a function of underlying layers and
surrounding functions expressed in a manageable number of parameters? Where
the size and complexity of underlying layers and neighboring functions is large
(tens, hundreds or even thousands man-years of software).
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Figure 2.7: Function in System Context
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Figure 2.8: Challenge

2.4 Summary

We have worked through a simple example of a new application level function.
The performance of this function cannot be predicted by looking at the code of the
function itself. The underlying platform, neighboring applications and user context
all have impact on the performance of this new function. The underlying platform,
neighboring applications and user context are often large and very complex. We
propose to use models to cope with this complexity.

2.5 Acknowledgements
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Summary of Introduction to Problem

Resulting System Characteristics cannot be deduced from local code.

Underlying platform, neighboring applications and user context:

have a big impact on system characteristics

are big and complex

Models require decomposition, relations and representations to analyse.

Figure 2.9: Summary of Problem Introduction
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Chapter 3

Modeling and Analysis
Fundamentals of Technology
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3.1 Introduction

Figure 3.1 provides an overview of the content. In this article we discuss generic
know how of computing technology. We will start with a commonly used decom-
position and layering. We provide figures of merit for several generic computing
functions, such as storage and communication. Finally we discuss caching as
example of a technology that is related to storage figures of merit. We will apply
the caching in a web shop example, and discuss design considerations.

content of this presentation

generic layering and block diagrams

typical characteristics and concerns

figures of merit

example of picture caching in web shop application 

Figure 3.1: Overview Content Fundamentals of Technology



When we model technology oriented design questions we often need feasi-
bility answers that are assessed at the level of non functional system requirements.
Figure 3.2 shows a set of potential technology questions and the required answers
at system level.

working range

dependencies

realization variability

scalability

required analysis :

How do parameters result in NFR's?

relevant non functional 

requirements

parameters in design 

space

system

design

latency
time from start

to finish

throughput
amount of information per time

transferred or processed

footprint (size)
amount of data&code

stored

message format
(e.g. XML)

network medium
(e.g. ethernet, ISDN)

communication protocol
(e.g. HTTPS, TCP)

Figure 3.2: What do We Need to Analyze?

From design point of view we need, for example, information about the working
range, dependencies, variability of the actual realization, or scalability.

3.2 Computing Technology Figures of Merit

In information and communication systems we can distinguish the following generic
technology functions:

storage ranging from short term volatile storage to long term persistent storage.
Storage technologies range from solid state static memories to optical disks
or tapes.

communication between components, subsystems and systems. Technologies
range from local interconnects and busses to distributed networks.

processing of data, ranging from simple control, to presentation to compute intensive
operations such as 3D rendering or data mining. Technologies range from
general purpose CPUs to dedicated I/O or graphics processors.

presentation to human beings, the final interaction point with the human users.
Technologies range from small mobile display devices to large “cockpit”
like control rooms with many flat panel displays.

Figure 3.3 shows these four generic technologies in the typical layering of
a Service Oriented Architecture (SOA). In such an architecture the repositories,
the bottom-tier of this figure, are decoupled from the business logic that is being
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Figure 3.3: Typical Block Diagram and Typical Resources

handled in the middle layer, called web server. The client tier is the access and
interaction layer, which can be highly distributed and heterogeneous.

The four generic technologies are recursively present: within a web-server, for
example, communication, storage and processing are present. If we would zoom
in further on the CPU itself, then we would again see the same technologies.
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Figure 3.4: Hierarchy of Storage Technology Figures of Merit

For every generic technology we can provide figures of merit for several charac-
teristics. Figure 3.4 shows a table with different storage technologies. The table
provides typical data for latency and storage capacity. Very fast storage technologies
tend to have a small capacity. For example, L1 caches, static memory as part of
the CPU chip, run typically at processor speeds of several GHz, but their capacity
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is limited to several kilobytes. The much higher capacity main memory, solid state
dynamic RAM, is much slower, but provides Gigabytes of memory. Non solid
state memories use block access: data is transferred in chunks of many kilobytes.
The consequence is that the access time for a single byte of information gets much
longer, milliseconds for hard disks. When mechanical constructions are needed
to transport physical media, such as robot arms for optical media, then the access
time gets dominated by the physical transport times.
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Figure 3.5: Performance as Function of Data Set Size

Figure 3.5 shows the same storage figures of merit in a 2-dimensional graph.
The horizontal axis shows the capacity or the maximum data set size that we can
store. The vertical axis shows the latency if we axis a single byte of information
in the data set in a random order. Note that both axes are shown as a logarithmic
scale, both axes cover a dynamic range of many orders of magnitude! The resulting
graph shows a rather non-linear behavior with step-like transitions. We can access
data very fast up to several kilobytes; the access time increases significantly when
we exceed the L1 cache capacity. This effect repeats itself for every technology
transition.

The communication figures of merit are shown in the same way in Figure 3.6.
In this table we show latency, frequency and distance as critical characteristics.
The latency and the distance have a similar relationship as latency and capacity
for storage: longer distance capabilities result in longer latencies. The frequency
behavior, which relates directly to the transfer capacity, is different. On chip very
high frequencies can be realized. Off chip and on the printed circuit board these
high frequencies are much more difficult and costly. When we go to the long-
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Figure 3.6: Communication Technology Figures of Merit

distance networks optical technologies are being used, with very high frequencies.

3.3 Caching in Web Shop Example
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Figure 3.7: Multiple Layers of Caching

The speed differences in storage and communication often result in the use of a
cache design pattern. The cache is a local fast storage, where frequently used data
is stored to prevent repeated slow accesses to slow storage media. Figure 3.7 shows
that this caching pattern is applied at many levels within a system, for example:

network layer cache to avoid network latencies for distributed data. Many commu-
nication protocol stacks, such as http, have local caches.

file cache as part of the operating system. The file cache caches the stored data
itself as well as directory information in main memory to speed up many file
operations.
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application cache application programs have dedicated caches based on appli-
cation know how.

L1, L2, L3 memory caches A multi-level cache to bridge the speed gap between
on-chip speed and off chip dynamic memory.

virtual memory where the physical main memory is cache for the much slower
virtual memory that resides mostly on the hard disk.

Note that in the 3-tier SLA approach these caches are present in most of the tiers.

project risk

performance

response time

life cycle

cost

latency penalty once

overhead once

processing once

limit storage needs to fit

in fast local storage

low latency

low latency

less communication

design parameters

caching algorithm

storage location

cache size

chunk size

format

in (pre)processed format

larger chunks

local storage

fast storage

frequently used subset
long latency

mass storage

resource intensive

processing

overhead

communication

long latency

communication

Figure 3.8: Why Caching?

In Figure 3.8 we analyze the introduction of caches somewhat more. At the left
hand side we show that long latencies of storage and communication, communi-
cation overhead, and resource intensive processing are the main reasons to introduce
caching. In the background the project needs for performance and cost are seen as
driving factors. Potential performance problems could also be solved by over-
dimensioning, however this might conflict with the cost constraints on the project.

The design translates these performance reasons into a number of design choices:

frequently used subset enable the implementation to store this subset in the low
capacity, but faster type of memory.

fast storage relates immediately to low latency of the storage itself

local storage gives low latency for the communication with the storage (sub)system

larger chunks reduces the number of times that storage or communication latency
occurs and reduces the overhead.

cache in (pre)processed format to reduce processing latency and overhead

These design choices again translate in a number of design parameters:

• caching algorithm
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• storage location

• cache size

• chunk size

• format
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Figure 3.9: Example Web Shop

As an example of caching we look at a web shop, as shown in Figure 3.9.
Customers at client level should be able to browse the product catalogue, to order
products, to pay, and to track the progress of the order. Other stakeholders at
client level have logistics functions, financial functions, and can do product and
customer management. The web server layer provides the logic for the exhibition
of products, the sales and order intake, the order handling, the stock handling, and
the financial bookkeeping. Also at the web server layer is the logic for customer
relation management, the update of the product catalogue, the advertisements, and
the after sales support. The data base layer has repositories for product descrip-
tions, logistics and resource planning, customer relations, and financial information.

We will zoom in on the product browsing by the customers. During this
browsing customers can see pictures of the products in the catalogue. The originals
of these pictures reside in the product catalogue repository in the data base layer.
The web server determines when and how to show products for customers. The
actual pictures are shown to many customers, who are distributed widely over the
country.

The customers expect a fast response when browsing. Slow response may
result in loss of customer attention and hence may cause a reduced sales. A picture
cache at the web server level decreases the load at web server level, and at the same
time improves the response time for customer browsing. It also reduces the server
load of the data base.
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Figure 3.10: Impact of Picture Cache
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Figure 3.11: Risks of Caching

So far, the caching appears to be a no-brainer: improved response, reduces
server loads, what more do we want? However, Figure 3.11 shows the potential
risks of caching, caused mostly by increased complexity and decreased trans-
parency. These risks are:

• The robustness for application changes may decrease, because the assump-
tions are not true anymore.

• The design becomes specific for this technology, impacting the ability to
benefit from technology improvements.

• The robustness for changing context (e.g. scalability) is reduced

• The design is not robust for concurrent applications
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• Failure modes in exceptional user space may occur

All of these technical risks translate in project risks in terms of cost, effort and
performance.
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3.4 Summary

Conclusions

Technology characteristics can be discontinuous

Caches are an example to work around discontinuities

Caches introduce complexity and decrease transparancy

Techniques, Models, Heuristics of this module

Generic block diagram: Presentation, Computation, 

Communication and Storage

Figures of merit

Local reasoning (e.g. cache example)

Figure 3.12: Summary

Figure 3.12 shows a summary of this paper. We showed a generic block
diagram with Presentation, Computation, Communication and Storage as generic
computing technologies. Technology characteristics of these generic technologies
have discontiuous characteristics. At the transition from one type of technology
to another type of technology a steep transition of characteristics takes place. We
have provided figures of merit for several technologies. Caches are an example
to work around these discontinuities. However, caches introduce complexity and
decrease the transparancy of the design. We have applied local reasoning graphs
to discuss the reasons of introduction of caches and the related design parameters.
later we applied the same type of graph to discuss potential risks caused by the
increased complexity and decreased transparancy.
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Chapter 4

Modeling and Analysis:
Measuring

measured 
signal

noise resolution

value

measurement

error

time

va
lu

e

+ε1

calibrationoffset

characteristics

measurements have

stochastic variations and

systematic deviations

resulting in a range

rather than a single value

-ε2

+ε1
-ε2

measurement 
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4.1 introduction

Measurements are used to calibrate and to validate models. Measuring is a specific
knowledge area and skill set. Some educations, such as Physics, extensively teach
experimentation. Unfortunately, the curriculum of studies such as software engineering
and computer sciences has abstracted away from this aspect. In this paper we will
address the fundamentals of modeling.

Figure 4.1 shows the content of this paper. The crucial aspects of measuring
are integrated into a measuring approach, see the next section.



content

What and How to measure

Impact of experiment and context on measurement

Validation of results, a.o. by comparing with expectation

Consolidation of measurement data

Analysis of variation and analysis of credibility

Figure 4.1: Presentation Content
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4.2 Measuring Approach

how

what

1. What do we need to know?

2. Define quantity to be measured.

4A. Define the measurement circumstances fe.g. by use cases

3. Define required accuracy

5. Determine actual accuracy

4C. Define measurement set-up

4B. Determine expectation

6. Start measuring

7. Perform sanity check expectation versus actual outcome

uncertainties, measurement error

historic data or estimation

initial model

purpose

it
e

ra
te

Figure 4.2: Measuring Approach: What and How

The measurement approach starts with preparation and fact finding and ends
with measurement and sanity check. Figure 4.2 shows all steps and emphasizes the
need for iteration over these steps.

1. What do we need? What is the problem to be addressed, so what do we need
to know?

2. Define quantity to be measured Articulate as sharp as possible what quantity
needs to be measured. Often we need to create a mental model to define this
quantity.

3. Define required accuracy The required accuracy is based on the problem to be
addressed and the purpose of the measurement.

4A. Define the measurement circumstances The system context, for instance the
amount of concurrent jobs, has a big impact on the result. This is a further
elaboration of step 1 What do we need?.

4B. Determine expectation The experimentator needs to have an expectation of
the quantity to be emasured to design the experiment and to be able to assess
the outcome.

4C. Define measurement set-up The actual design of the experiment, from input
stimuli, measurement equipment to outputs.

Note that the steps 4A, 4B and 4C mutually influence each other.
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5. Determine actual accuracy When the set-up is known, then the potential measurement
errors and uncertainties can be analyzed and accumulated into a total actual
accuracy.

6. Start measuring Perform the experiment. In practice this step has to be repated
many times to “debug” the experiment.

7. Perform sanity check Does the measurement result makes sense? Is the result
close to the expectation?

In the next subsections we will elaborate this approach further and illustrate
the approach by measuring a typical embedded controller platform: ARM9 and
VxWorks.

4.2.1 What do we need?

The first question is: “What is the problem to be addressed, so what do we need to
know?” Figure 4.3 provides an example. The problem is the need for guidance for
concurrency design and task granularity. Based on experience the designers know
that these aspects tend to go wrong. The effect of poor concurrency design and
task granularity is poor performance or outrageous resource consumption.

(computing) hardware

operating system

ARM 9

200 MHz CPU

100 MHz bus

VxWorks

test program

What:

context switch time of

VxWorks running on ARM9

estimation of total lost CPU 

time due to

context switching

guidance of

concurrency design and 

task granularity

Figure 4.3: What do We Need? Example Context Switching

The designers know, also based on experience, that context switching is costly
and critical. They have a need to estimate the total amount of CPU time lost due to
context switching. One of the inputs needed for this estimation is the cost in CPU
time of a single context switch. This cost is a function of the hardware platform,
the operating system and the circumstances. The example in Figure 4.3 is based on
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the following hardware: ARM9 CPU running internally at 200 MHz and externally
at 100 MHz. The operating system is VxWorks. VxWorks is a real-time executive
frequently used in embedded systems.

4.2.2 Define quantity to be measured.

What (original):

context switch time of

VxWorks running on ARM9

tp2tp1, before tscheduler

Process 1

Process 2

Scheduler

What (more explicit):

The amount of lost CPU time,

due to context switching on

VxWorks running on ARM9

on a heavy loaded CPU

tschedulertcontext switch = tp1, loss+

tscheduler tp1, after

tp1, no switching

tp1,losstp2,loss

p2 pre-empts p1 p1 resumes

= lost CPU time

legend

time

Figure 4.4: Define Quantity by Initial Model

As need we have defined the CPU cost of context switching. Before setting up
measurements we have to explore the required quantity some more so that we can
define the quantity more explicit. In the previous subsection we already mentioned
shortly that the context switching time depends on the circumstances. The a priori
knowledge of the designer is that context switching is especially significant in busy
systems. Lots of activities are running concurrently, with different periods and
priorities.

Figure 4.4 defines the quantity to be measured as the total cost of context
switching. This total cost is not only the overhead cost of the context switch itself
and the related administration, but also the negative impact on the cache perfor-
mance. In this case the a priori knowledge of the designer is that a context switch
causes additional cache loads (and hence also cache pollution). This cache effect
is the term tp1,loss in Figure 4.4. Note that these effects are not present in a lightly
loaded system that may completely run from cache.
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Figure 4.5: Define Required Accuracy

4.2.3 Define required accuracy

The required accuracy of the measurement is determined by the need we originally
formulated. In this example the need is the ability to estimate the total lost CPU
time due to context switching. The key word here is estimate. Estimations don’t
require the highest accuracy, we are more interested in the order of magnitude. If
we can estimate the CPU time with an accuracy of tens of percents, then we have
useful facts for further analysis of for instance task granularity.

CPU
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  counter)

- Requires Timer Access
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OS-

Timer
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Lot of instrumentation

Figure 4.6: How to Measure CPU Time?

The relevance of the required accuracy is shown by looking at available measurement
instruments. Figure 4.6 shows a few alternatives for measuring time on this type
of platforms. The most easy variants use the instrumentation provided by the
operating system. Unfortunately, the accuracy of the operating system timing is
often very limited. Large operating systems, such as Windows and Linux, often

Gerrit Muller
System Modeling and Analysis: a Practical Approach
July 3, 2023 version: 1.2

University of South-Eastern Norway-SE

page: 30



provide 50 to 100 Hz timers. The timing resolution is then 10 to 20 milliseconds.
More dedicated OS-timer services may provide a resolution of several microseconds.
Hardware assisted measurements make use of hardware timers or logic analyzers.
This hardware support increases the resolution to tens of nanoseconds.

4.2.4 Define the measurement circumstances

experimental set-up

tp2tp1, before tscheduler tscheduler tp1, aftertp1,losstp2,loss

p2 pre-empts p1
p1 resumes

= lost CPU time

P1 P2

real world

many concurrent processes, with

# instructions >> I-cache

# data >> D-cache

pre-
empts

causes

ca
ch

e 
flu

sh

no other

CPU activities

Mimick relevant real world characteristics

Figure 4.7: Define the Measurement Set-up

We have defined that we need to know the context switching time under heavy
load conditions. In the final application heavy load means that we have lots of
cache activity from both instruction and data activities. When a context switch
occurs the most likely effect is that the process to be run is not in the cache. We
lose time to get the process back in cache.

Figure 4.7 shows that we are going to mimick this cache behavior by flushing
the cache in the small test processes. The overall set-up is that we create two small
processes that alternate running: Process P2 pre-empts process P1 over and over.

4.2.5 Determine expectation

Determining the expected outcome of the measurement is rather challenging. We
need to create a simple model of the context switch running on this platform.
Figures 4.8 and 4.9 provide a simple hardware model. Figure 4.10 provides a
simple software model. The hardware and software models are combined in Figure 4.11.
After substitution with assumed numbers we get a number for the expected outcome,
see Figure4.12.
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Figure 4.8: Case: ARM9 Hardware Block Diagram

Figure 4.8 shows the hardware block diagram of the ARM9. A typical chip
based on the ARM9 architecture has anno 2006 a clock-speed of 200 MHz. The
memory is off-chip standard DRAM. The CPU chip has on-chip cache memories
for instruction and data, because of the long latencies of the off-chip memory
access. The memory bus is often slower than the CPU speed, anno 2006 typically
100 MHz.
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Figure 4.9: Key Hardware Performance Aspect

Figure 4.9 shows more detailed timing of the memory accesses. After 22
CPU cycles the memory responds with the first word of a memory read request.
Normally an entire cache line is read, consisting of 8 32-bit words. Every word
takes 2 CPU cycles = 1 bus cycle. So after 22+ 8 ∗ 2 = 38 cycles the cache-line is
loaded in the CPU.

Figure 4.10 shows the fundamental scheduling concepts in operating systems.
For context switching the most relevant process states are ready, running and
waiting. A context switch results in state changes of two processes and hence
in scheduling and administration overhead for these two processes.

Figure 4.11 elaborates the software part of context switching in five contributing
activities:

• save state P1
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Figure 4.10: OS Process Scheduling Concepts

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:
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Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch

Figure 4.11: Determine Expectation

• determine next runnable task

• update scheduler administration

• load state P2

• run P2

The cost of these 5 operations depend mostly on 2 hardware depending parameters:
the numbers of instruction needed for each activity and the amount of memory
accesses per activity. From the hardware models, Figure 4.9, we know that as
simplest approximation gives us an instruction time of 5ns (= 1 cycle at 200 MHz)
and memory accesses of 190ns. Combining all this data together allows us to
estimate the context switch time.

In Figure 4.12 we have substituted estimated number of instructions and memory
accesses for the 5 operations. The assumption is that very simple operations require
10 instructions, while the somewhat more complicated scheduling operation requires
scanning some data structure, assumed to take 50 cycles here. The estimation is
now reduced to a simple set of multipications and additions: (10 + 50 + 20 +
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Figure 4.12: Determine Expectation Quantified

10 + 10)instructions · 5ns + (1 + 2 + 1 + 1 + 1)memoryaccesses · 190ns
= 500ns(instructions) + 1140ns(memoryaccesses) = 1640ns To add some
margin for unknown activities we round this value to 2µs.

4.2.6 Define measurement set-up

Task 2Task 1

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch
Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Figure 4.13: Code to Measure Context Switch

Figure 4.13 shows pseudo code to create two alternating processes. In this code
time stamps are generated just before and after the context switch. In the process
itself a cache flush is forced to mimick the loaded situation.

Figure 4.14 shows the CPU use as function of time for the two processes and
the scheduler.
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Figure 4.14: Measuring Context Switch Time

4.2.7 Expectation revisited

Once we have defined the measurement set-up we can again reason more about
the expected outcome. Figure 4.15 is again the CPU activity as function of time.
However, at the vertical axis the CPI (Clock cycles Per Instruction) is shown. The
CPI is an indicator showing the effectiveness of the cache. If the CPI is close to 1,
then the cache is rather effective. In this case little or no main memory acceses are
needed, so the CPU does not have to wait for the memory. When the CPU has to
wait for memory, then the CPI gets higher. This increase is caused by the waiting
cycles necessary for the main memory accesses.

Figure 4.15 clearly shows that every change from the execution flow increases
(worsens) the CPI. So the CPU is slowed down when entering the scheduler. The
CPI decreases while the scheduler is executing, because code and data gets more
and more from cache instead of main memory. When Process 2 is activitated the
CPI again worsens and then starts to improve again. This pattern repeats itself for
every discontinuity of the program flow. In other words we see this effect twice
for one context switch. One interruption of P1 by P2 causes two context swicthes
and hence four dips of the cache performance.

4.2.8 Determine actual accuracy

Measurement results are in principle a range instead of a single value. The signal to
be measured contains some noise and may have some offset. Also the measurement
instrument may add some noise and offset. Note that this is not limited to the
analog world. For instance concurrent background activities may cause noise as
well as offsets, when using bigger operating systems such as Windows or Linux.
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Figure 4.15: Understanding: Impact of Context Switch

The (limited) resolution of the instrument also causes a measurement error. Known
systematic effects, such as a constant delay due to background processes, can be
removed by calibration. Such a calibration itself causes a new, hopefully smaller,
contribution to the measurement error.

Note that contributions to the measurement error can be stochatic, such as
noise, or systematic, such as offsets. Error accumulation works differently for
stochatic or systematic contributions: stochatic errors can be accumulated quadratic
εtotal =

√
ε21 + ε22, while systematic errors are accumulated linear εtotal = ε1+ε2.

Figure 4.17 shows the effect of error propagation. Special attention should
be paid to substraction of measurement results, because the values are substracted
while the errors are added. If we do a single measurement, as shown earlier in
Figure 4.13, then we get both a start and end value with a measurement error.
Substracting these values adds the errors. In Figure 4.17 the provided values result
in tduration = 4 + / − 4µs. In other words when substracted values are close to
zero then the error can become very large in relative terms.

The whole notion of measurement values and error ranges is more general than
the measurement sec. Especially models also work with ranges, rather than single
values. Input values to the models have uncertainties, errors et cetera that propagate
through the model. The way of propagation depends also on the nature of the error:
stochastic or systematic. This insight is captured in Figure 4.18.
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Figure 4.16: Accuracy: Measurement Error

tduration =  tend -  tstart

tend

tstart = 10 +/- 2 µs

= 14 +/- 2 µs

tduration =  4 +/-   ? µs

systematic errors: add linear

stochastic errors: add quadratic

Figure 4.17: Accuracy 2: Be Aware of Error Propagation

4.2.9 Start measuring

At OS level a micro-benchmark was performed to determine the context switch
time of a real-time executive on this hardware platform. The measurement results
are shown in Figure 4.19. The measurements were done under different condi-
tions. The most optimal time is obtained by simply triggering continuous context
switches, without any other activity taking place. The effect is that the context
switch runs entirely from cache, resulting in a 2µs context switch time. Unfortu-
nately, this is a highly misleading number, because in most real-world applications
many activities are running on a CPU. The interrupting context switch pollutes
the cache, which slows down the context switch itself, but it also slows down the
interrupted activity. This effect can be simulated by forcing a cache flush in the
context switch. The performance of the context switch with cache flush degrades
to 10µs. For comparison the measurement is also repeated with a disabled cache,
which decreases the context switch even more to 50µs. These measurements show
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Figure 4.18: Intermezzo Modeling Accuracy

ARM9  200 MHz 

as function of cache use

From cache 2 µs

After cache flush 10 µs

Cache disabled 50 µs

cache setting tcontext switch

tcontext switch

Figure 4.19: Actual ARM Figures

the importance of the cache for the CPU load. In cache unfriendly situations (a
cache flushed context switch) the CPU performance is still a factor 5 better than in
the situation with a disabled cache. One reason of this improvement is the locality
of instructions. For 8 consecutive instructions ”only” 38 cycles are needed to load
these 8 words. In case of a disabled cache 8 ∗ (22+2 ∗ 1) = 192 cycles are needed
to load the same 8 words.

We did estimate 2µs for the context switch time, however already taking into
account negative cache effects. The expectation is a factor 5 more optimistics than
the measurement. In practice expectations from scratch often deviate a factor from
reality, depending on the degree of optimism or conservatism of the estimator. The
challenging question is: Do we trust the measurement? If we can provide a credible
explanation of the difference, then the credibility of the measurement increases.

In Figure 4.20 some potential missing contributions in the original estimate are
presented. The original estimate assumes single cycle instruction fetches, which
is not true if the instruction code is not in the instruction cache. The Memory

Gerrit Muller
System Modeling and Analysis: a Practical Approach
July 3, 2023 version: 1.2

University of South-Eastern Norway-SE

page: 38



input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

m
e

m
o

ry

a
c
c
e

s
s
e

s

in
s
tr

u
c
ti
o

n
s

110

120

110

110

250

6100

+

500 ns

1140 ns
+

1640 ns

tcontext switch = 2 µsexpected 

tcontext switch = 10 µsmeasured 

How to explain?

potentially missing in expectation:

memory accesses due to instructions

~10 instruction memory accesses ~= 2 µs

memory management (MMU context)

complex process model (parents, 

permissions)

bookkeeping, e.g performance data

layering (function calls, stack handling)

the combination of above issues 

However, measurement seems to make sense

Figure 4.20: Expectation versus Measurement

Management Unit (MMU) might be part of the process context, causing more state
information to be saved and restored. Often may small management activities take
place in the kernel. For example, the process model might be more complex than
assumed, with process hierarchy and permissions. May be hierarchy or permis-
sions are accessed for some reasons, may be some additional state information is
saved and restored. Bookkeeping information, for example performance counters,
can be maintained. If these activities are decomposed in layers and components,
then additional function calls and related stack handling for parameter transfers
takes place. Note that all these activities can be present as combination. This
combination not only cummulates, but might also multiply.
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Figure 4.21: Context Switch Overhead
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Figure 4.21 integrates the amount of context switching time over time. This
figure shows the impact of context switches on system performance for different
context switch rates. Both parameters tcontextswitch and ncontextswitch can easily
be measured and are quite indicative for system performance and overhead induced
by design choices. The table shows that for the realistic number of tcontextswitch =
10µs the number of context switches can be ignored with 500 context switches per
second, it becomes significant for a rate of 5000 per second, while 50000 context
switches per second consumes half of the available CPU power. A design based
on the too optimistic tcontextswitch = 2µs would assess 50000 context switches as
significant, but not yet problematic.

4.2.10 Perform sanity check

In the previous subsection the actual measurement result of a single context switch
including cache flush was 10µs. Our expected result was in the order of magnitude
of 2µs. The difference is significant, but the order of magnitude is comparable.
In geenral this means that we do not completely understand our system nor our
measurement. The value is usable, but we should be alert on the fact that our
measurement still introduces some additional systematic time. Or the operating
system might do more than we are aware of.

One approach that can be taken is to do a completely different measurement
and estimation. For instance by measuring the idle time, the remaining CPU time
that is avaliable after we have done the real work plus the overhead activities. If we
also can measure the time needed for the real work, then we have a different way
to estimate th overhead, but now averaged over a longer period.

4.2.11 Summary of measuring Context Switch time on ARM9

We have shown in this example that the goal of measurement of the ARM9 VxWorks
combination was to provide guidance for concurrency design and task granularity.
For that purpose we need an estimation of context switching overhead.

We provided examples of measurement, where we needed context switch overhead
of about 10% accuracy. For this measurement the instrumentation used toggling of
a HW pin in combination with small SW test program. We also provided simple
models of HW and SW layers to be able to determine an expectation. Finally we
found as measurement results for context switching on ARM9 a value of 10µs.
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4.3 Summary

Figure 4.22 summarizes the measurement approach and insights.

Conclusions

Measurements are an important source of factual data.

A measurement requires a well-designed experiment.

Measurement error, validation of the result determine the credibility.

Lots of consolidated data must be reduced to essential 

understanding.

Techniques, Models, Heuristics of this module

experimentation

error analysis

estimating expectations

Figure 4.22: Summary Measuring Approach
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Part III

System Model



Chapter 5

Modeling and Analysis: System
Model

quantified mid office server example
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na = 1000
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Figure 5.1: Overview of the content of this paper

Figure 5.1 shows an overview of this paper. We will discuss what to model of
the system of interest, see also Figure 5.2. We will provide a stepwise approach
to system modeling, based on the relations between Non Functional Requirements
(NFR), system design properties and critical technologies. Several examples will
be shown using the web shop case.

In our modeling we will focus on the NFR’s, such as performance, reliability,
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creation
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XML for customization

and configuration   
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Figure 5.2: What to Model in System Context?

availability, scalability, or maintainability. We assume that the functional require-
ments and system decomposition are being created in the system architecting and
design activity. In practice many NFR’s emerge, due to lack of time and attention.
We recommend to reduce the risks by modeling and analysis of relevant NFR’s
where some higher risk is perceived. Figure 5.2 shows that the external visible
system characteristics depend on the design of system properties, such as resource
utilization, load, latency, throughput, quality, accuracy, or sensitivity for changes
or varying inputs. Note that these properties also often emerge, due to lack of time
or attention. Not only the design of these properties determine the external visible
system characteristics, but also the chosen technologies has a big impact. Therefor
we also have to look at critical technologies, for example caching, load balancing,
firewalls, virtual networks, or XML for customization and configuration.

5.2 Stepwise approach to system modeling

We recommend an approach where first the system is explored: what is relevant,
what is critical? Then the most critical issues are modeled. Figure 5.3 shows a
stepwise approach to model a system.

1. Determine relevant Non Functional Requirements (NFR’s) where the relevance
is often determined by the context: the usage context or the life cycle context.

2. Determine relevant system design properties by looking either at the NFR’s
or at the design itself: what are the biggest design concerns?

3. Determine critical technologies criticality can have many reasons, such as working
close to the working range limit, new components, complex functions with
unknown characteristics, sensitivity for changes or environmental condi-
tions, et cetera.

4. relate NFR’s to properties to critical technologies by making a graph of relations.
Such a graph often has many-to-many relations.
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1. determine relevant Non Functional Requirements 

(NFR's)

2. determine relevant system design properties

3. determine critical technologies

4. relate NFR's to properties to critical technologies

5. rank the relations in relevancy and criticality

6. model relations with a high score

Figure 5.3: Approach to System Modeling

5. Rank the relations in relevancy and criticality to find potential modeling candi-
dates.

6. Model relations with a high ranking score a time-boxed activity to build up
system understanding.

Note that this system modeling approach fits in the broader approach of modeling
and analysis. The broader approach is discussed in Modeling and Analysis: Reasoning.

5.3 Example system modeling of web shop

system

NFR's:

performance browsing

initial cost

running costs

reliability/availability

scalability order rate

maintainability

effort product changes

effort staff changes

security

(emerging?) properties:

resource utilization
server load, capacity

memory load, capacity

response latency

redundancy

order throughput

product data quality

product definition flow

staff definition flow

security design
compartimentalization

authentication

encryption

critical technologies

caching

load balancing

pipelining

virtual memory

memory management

data base transactions

XML for customization

and configuration

firewalls

virtual networks   

...

1 2 3

Figure 5.4: Web Shop: NFR’s, Properties and Critical Technologies

Figure 5.4 shows the results of step 1, 2, and 3 of the approach.

1. Determine relevant Non Functional Requirements (NFR’s) For the web shop
the following requirements are crucial: performance browsing, initial cost,
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running costs, reliability/availability, scalability order rate, maintainability
(effort to enter product changes and effort to enter staff changes) and security.

2. Determine relevant system design properties based on experience and NFR’s
the following properties were identified as relevant: resource utilization (server
load, server capacity, memory load, and memory capacity), response latency,
redundancy, order throughput, product data quality, product definition flow,
staff definition flow, security design (which can be refined further in compar-
timentalization, authentication, and encryption). Note that we mention here
design issues such as product definition flow and staff definition flow, which
have an direct equivalent in the usage context captured in some of the customer’s
processes.

3. Determine critical technologies Based on experience and risk assessment the
following technologies pop up as potentially being critical: caching, load
balancing, pipelining, virtual memory, memory management, data base trans-
actions, XML for customization and configuration, firewalls, and virtual
networks.

system

NFR's:

performance browsing

initial cost
running costs

reliability/availability

scalability order rate

maintainability

effort product changes

effort staff changes

security

(emerging?) properties:

resource utilization
server load, capacity

memory load, capacity

response latency

redundancy

order throughput

product data quality

product definition flow

staff definition flow

security design
compartimentalization

authentication

encryption

critical technologies

caching

load balancing

pipelining

virtual memory

memory management

data base transactions

XML for customization

and configuration

firewalls

virtual networks   

...

1 2 3

4

4

Figure 5.5: 4. Determine Relations

Figure 5.5 shows for a small subset of the identified requirements, properties
and technologies the relations. The performance of browsing is related to the
resource management design and the concurrency design to meet the response
latency. The resource management design relates to several resource specific technologies
from caching to memory management. The cost requirements also relate to the
resource utilization and to the cost of redundancy measures. The dimensioning of
the system depends also on the design of the order throughput. Crucial technology
for the order throughput is the data base transaction mechanism and the related
performance.
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Figure 5.6: 5. Rank Relations

Ranking, Figure 5.6 will be discussed in the Modeling and Analysis: Reasoning
paper. For this example we will mostly focus on the relations shown in Figure 5.5.
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Figure 5.7: Purpose of Picture Cache Model in Web Shop Context

Figure 5.7 shows the picture cache as a specific example of the use of caching
technology. The purpose of picture cache is to realize the required performance of
product browsing at the client layer. At the web server layer and at the data base
layer the picture cache should realize a limited server load of the product exhibition
function.

The most simple model we can make for the server load as function of the
number of requests is shown in Figure 5.8. This is a so called zero order model,
where only the direct parameters are included in the model. It is based on the very
simple assumption that the load is proportional with the number of requests.

When we introduce a cache based design, then the server load depends on the
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zero order web server load model

Load = na* ta

na =  total requests

ta = cost per request

Figure 5.8: Zero Order Load Model

first order web server load model

Load = na,h*th + na,m*tm 

na,m= accesses with cache miss

na,h = accesses with cache hit

th = cost of cache hit

tm = cost of cache miss

na,h = na * h

na = total accesses

h = hit rate

na,m = na * (1-h)

Load(h) = na * h* th + na* (1-h) * tm  = na * tm - na* h * (tm - th) 

Figure 5.9: First Order Load Model

effectiveness of the cache. Requests that can be served from the cache will have a
much smaller server load than requests that have to be fetched from the data base.
Figure 5.9 shows a simple first order formula, where the contributions of requests
from cache are separated of the requests that need data base access. We introduce
an additional parameter h, the hit-rate of the cache. This helps us to create a simple
formula where the server load is expressed as a function of the hit-rate.

The simple mathematical formula starts to make sense when we instantiate
the formula with actual values. An example of such an instantiation is given in
Figure 5.10. In this example we use values for request handling of th = 20µs
and tm = 2ms. For the number of requests we have used na = 1000, based on
the assumption that we are serving the product exhibition function with millions
of customers browsing our extensive catalogue. The figure shows the server load
as function of the hit-rate. If the available server capacity is known, then we can
deduce the minimal required hit-rate to stay within the server capacity. The allowed
range of hit-rate values is called the working range.

In Figure 5.11 we zoom in on the hit-rate model. First of all we should realize
that we have used assumed values for th, tm and na. These assumptions were
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quantified mid office server example
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Figure 5.10: Quantification: From Formulas to Insight

based on experience, since we know as experienced designers that transactions cost
approximately 1 ms, and that the cache roughly improves the request with a factor
100. However, the credibility of the model increases significantly by measuring
these quantities. Common design practice is to design a system well within the
working range, for example with a hit-rate of 95% or higher. If the system operates
at these high hit-rates, then we can use the zero-order formula for the system load
again. Using the same numbers for performance we should then use ta ≈ 0.95 ∗
th + 0.05 ∗ tm ≈ 0.12ms. Another assumption we have made is that the hit-rate
is constant and independent of the circumstances. In practice this is not true. We
will, for instance, have varying request rates, perhaps with some high peak values.
If the peak values coincide with lower hit rates, then we might expect some nasty
performance problems. The hit-rate might also be impacted by future life cycle
changes. For example new and different browser functionality might decrease the
hit-rate dramatically.

Another system property that was characterized as relevant was the response
time design. Response time depends on the degree of concurrency, the synchro-
nization design and the time required for individual operations. Figure 5.12 shows
a timing model for the response time, visualizing the above mentioned aspects for
the retrieval of a picture in case of a cache miss.

Yet another system design property is the use of resources, such as memory.
Figure 5.13 shows the flow of pictures throughout the system, as a first step to
address the question how much memory is needed for picture transfers.

In Figure 5.14 we zoom in on the web server to have a look at the memory used
for picture transfers. This figure shows a number of alternative design options,
ranging from a minimal set of copies in the memory to the more realistic situation
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quantified mid office server example
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Figure 5.11: Hit Rate Considerations

where every thread contains multiple copies of every picture, while at the same
time multiple threads serve concurrent customers.

These alternative design options are transformed in a simple mathematical
model in Figure 5.15. This formula is parametrized for the different specification
and design parameters:

n = number of data base access threads a design parameter dimensioning the amount
of concurrency towards the data base layer.

m = number of picture cache threads a design parameter dimensioning the amount
of concurrency of the picture cache itself.

k = number of web server threads a design parameter dimensioning the amount
of concurrency of client access to the web server.

s = picture size in bytes an application and design dependent parameter, the average
size in bytes of the pictures.

c = in memory cache capacity in number of pictures a design parameter deter-
mining the size of a picture cache in number of pictures per picture cache
thread.

This formula is instantiated in a quantified table in Figure 5.16, for different
values of the design parameters. Note that depending on the chosen design param-
eters the picture cache maps on completely different storage technologies, with the
related different performance characteristics.
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Figure 5.12: Response Time
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Figure 5.14: Process view of picture flow in web server
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3 * n * s +
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where

n = # data base access threads

m = # picture cache threads

k = # web server threads

s = picture size in bytes

c = in memory cache capacity in # pictures

Figure 5.15: Formula memory Use Web Server
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5.4 Discussion

In the previous section we have modeled a few parts of the system. Figure 5.17
shows that we have covered so far a small part of the system space We can describe
the system space by several dimensions: functions, data and aspects. Our coverage
so far has been limited to the browse and exhibit products function, looking at the
pictures as data, looking at the aspects of server memory use, response time and
server load.

function browse/exhibit products sales, order intake, payments

track, order handling

stock handling

financial bookkeeping

customer relation management

update catalogue

advertize

after sales support

data picture structured (product attributes, logistics, ...)

program code

aspect server memory use

response time

server load

network use

reliability

any resource, any NFR

aspect

result
=

d = all data f = all functions
aspect(d, f)

ignoring other dimensions such as applications, users, circumstances

Figure 5.17: Only a small part of the system has been modeled so far

This figure shows many more functions, types of data and aspects present in
systems. To answer one of the NFR like questions we have to combine the aspect
results of functions and all data types. In practice the context also impacts the
NFR’s, we have still ignored applications, users, and circumstances.

static

mostly assumptions and coarse estimates

some insight in:

what are key design issues

what are relevant use case areas

Figure 5.18: The modeling so far has resulted in understand some of the systems
aspects

Figure 5.18 adds to this by reminding us that we so far have only made static

Gerrit Muller
System Modeling and Analysis: a Practical Approach
July 3, 2023 version: 0.4

University of South-Eastern Norway-NISE

page: 54



models, mostly based on assumptions and coarse estimates. Nevertheless we have
obtained some insight in key design issues and relevant use cases.

life cycle context

systemusage context

enterprise &

users

NFR's:

performance

reliability

availability

scalability

maintainability

...

(emerging?) properties:

resource utilization

load

latency, throughput

quality, accuracy

sensitivity

(changes, inputs)

...

creation

life cycle business

critical technologies

caching

load balancing

firewalls

virtual networks

XML for customization

and configuration   

...

Figure 5.19: Refinement of the system models takes place after context modeling

We are far from finished with system modeling. However, with the results
obtained so far it is important to take the next step of the broader iteration: modeling
of the contexts, see Figure 5.19. Many of the models we have made of the system
trigger questions about the system use and the life cycle. What is the expected
amount of browsing, by how many customers, for what size of catalogue? What is
the preferred picture quality? How relevant is the maintenance effort related to the
product catalogue? et cetera.

5.5 Summary

Conclusions

Non Functional Requirements are the starting point for system modeling

Focus on highest ranking relations between NFR's and critical technologies

Make simple mathematical models

Evaluate quantified instantiations

Techniques, Models, Heuristics of this module

Non functional requirements

System properties

Critical technologies

Graph of relations

Figure 5.20: Summary of system modeling
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Figure 5.20 shows a summary of this paper. We have shown that Non Functional
Requirements are the starting point for system modeling. Our approach focuses on
the highest ranking relations between NFR’s and critical technologies. For these
relations we make simple mathematical models that are evaluated by quantified
instantiations of these models.
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Chapter 6

Modeling and Analysis:
Budgeting
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6.1 Introduction

Budgets are well known from the financial world as a means to balance expen-
ditures and income. The same mechanism can be used in the technical world to
balance for instance resource use and system performance.

A budget is

a quantified instantation of a conceptual model

A budget can

prescribe or describe the contributions

by parts of the solution

to the system quality under consideration

Figure 6.1: Definition of a budget in the technical world

Budgets are more than an arbitrary collection of numbers. The relationship



between the numbers is guided by an underlying model. Figure 6.1 shows what
a budget is. Technical budgets can be used to provide guidance by prescribing
allowed contributions per function or subsystem. Another use of budgets is as a
means for understanding, where the budget describes these contributions.

We will provide and illustrate a budget method with the following attributes:

• a goal

• a decomposition in smaller steps

• possible orders of taking these steps

• visualization(s) or representation(s)

• guidelines

6.2 Budget-Based Design method

In this section we illustrate a budget-based design method applied at waferstepper,
health care, and document handling systems, where it has been applied on different
resources: overlay, memory, and power.

6.2.1 Goal of the method

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicitly

Figure 6.2: Goals of budget based design

The goal of the budget-based design method is to guide the implementation of
a technical system in the use of the most important resource constraints, such as
memory size, response time, or positioning accuracy. The budget serves multiple
purposes, as shown in Figure 6.2.
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Figure 6.3: Visualization of Budget-Based Design Flow. This example shows a
response time budget.

6.2.2 Decomposition into smaller steps

Figure 6.3 visualizes the budget-based design flow. This visualization makes it
clear that although the budget plays a central role in this design flow, cooperation
with other methods is essential. In this figure other cooperating methods are perfor-
mance modeling, micro-benchmarking, measurement of aggregated functions, measure-
ments at system level, design estimates, simulations, and requirements specifi-
cation.

Measurements of all kinds are needed to provide substance to the budget.
Micro-benchmarks are measurements of elementary component characteristics.
The measured values of the micro-benchmarks can be used for a bottom-up budget.
Measurements at functional level provide information at a higher aggregated level;
many components have to cooperate actively to perform a function. The outcome
of these function measurements can be used to verify a bottom-up budget or can
be used as input for the system level budget. Measurements in the early phases of
the system integration are required to obtain feedback once the budget has been
made. This feedback will result in design changes and could even result in speci-
fication changes. The use of budgets can help to set up an integration plan. The
measurement of budget contributions should be done as early as possible, because
the measurements often trigger design changes.

6.2.3 Possible order of steps

Figure 6.4 shows a budget-based design flow (the order of the method). The
starting point of a budget is a model of the system, from the conceptual view.
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1B model the performance starting with old systems

1A measure old systems

1C determine requirements for new system

2 make a design for the new system 

3 make a budget for the new system:

4 measure prototypes and new system

flow model and analytical model

micro-benchmarks, aggregated functions, applications

response time or throughput

explore design space, estimate and simulate

step example

models provide the structure

measurements and estimates provide initial numbers

specification provides bottom line

micro-benchmarks, aggregated functions, applications

profiles, traces

5 Iterate steps 1B to 4

Figure 6.4: Budget-based design steps

An existing system is used to get a first guidance to fill the budget. In general the
budget of a new system is equal to the budget of the old system, with a number
of explicit improvements. The improvements must be substantiated with design
estimates and simulations of the new design. Of course the new budget must fulfill
the specification of the new system; sufficient improvements must be designed to
achieve the required improvement.

6.2.4 Visualization

In the following three examples different actually used visualizations are shown.
These three examples show that a multi-domain method does not have to provide a
single solution, often several useful options exist. The method description should
provide some guidance in choosing a visualization.

6.2.5 Guidelines

A decomposition is the foundation of a budget. No universal recipe exists for
the decomposition direction. The construction decomposition and the functional
decomposition are frequently used for this purpose. Budgets are often used as part
of the design specification. From project management viewpoint a decomposition
is preferred that maps easily on the organization.

The architect must ensure the manageability of the budgets. A good budget has
tens of quantities described. The danger of having a more detailed budget is loss
of overview.

The simplification of the design into budgets introduces design constraints.
Simple budgets are entirely static. If such a simplification is too constraining or too
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costly then a dynamic budget can be made. A dynamic budget uses situationally
determined data to describe the budget in that situation. For instance, the amount
of memory used in the system may vary widely depending on the function or the
mode of the system. The budget in such a case can be made mode-dependent.

6.2.6 Example of overlay budget for wafersteppers
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Figure 6.5: Example of a quantified understanding of overlay in a waferstepper

Figure 6.5 shows a graphical example of an “overlay” budget for a wafer-
stepper. This figure is taken from the System Design Specification of the ASML
TwinScan system, although for confidentiality reasons some minor modifications
have been applied.

The goal of the overlay budget is:

• to provide requirements for subsystems and components.

• to enable measurements of the actual contributions to the overlay during the
design and integration process, on functional models or prototypes.

• to get early feedback of the overlay design by measurements.

The steps taken in the creation, use and validation of the budget follow the
description of Figure 6.4. This budget is based on a model of the overlay function-
ality in the waferstepper (step 1B). The system engineers made an explicit model
of the overlay. This explicit model captures the way in which the contributions
accumulate: quadratic summation for purely stochastic, linear addition for systematic
effects and some weighted addition for mixed effects. The waferstepper budget is
created by measuring the contributions in an existing system (step 1A). At the same
time a top-down budget is made, because the new generation of machines needs
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a much better overlay specification than the old generation (step 1C). In discus-
sions with the subsystem engineers, design alternatives are discussed to achieve
the required improvements (step 2 and 3). The system engineers also strive for
measurable contributions. The measurability of contributions influences the subsystem
specifications. If needed the budget or the design is changed on the basis of this
feedback (step 4).

Two visualizations were used for the overlay budget: tables and graphs, as
shown in Figure 6.5.

The overlay budget plays a crucial role in the development of wafersteppers.
The interaction between the system and the customer environment is taken into
account in the budget. However, many open issues remain at this interface level,
because the customer environment is outside the scope of control and a lot of
customer information is highly confidential. The translation of this system level
budget into mono-disciplinary design decisions is still a completely human activity
with lots of interaction between system engineers and mono-disciplinary engineers.

6.2.7 Example of memory budget for Medical Imaging Workstation

The goal of the memory budget for the medical imaging workstation is to obtain
predictable and acceptable system performance within the resource constraints
dictated by the cost requirements. The steps taken to create the budget follow
the order as described in Figure 6.4. The visualization was table based.

shared code

User Interface process

database server

print server

optical storage server
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UNIX commands
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application SW total

UNIX Solaris 2.x
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6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Figure 6.6: Example of a memory budget

The rationale behind the budget can be used to derive guidelines for the creation
of memory budgets. Figure 6.6 shows an example of an actual memory budget for a
medical imaging workstation from Philips Medical Systems. This budget decom-
poses the memory into three different types of memory use: code (”read only”
memory with the program), object data (all small data allocations for control and
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bookkeeping purposes) and bulk data (large data sets, such as images, which is
explicitly managed to fit the allocated amount and to prevent memory fragmen-
tation). The difference in behavior of these three memory types is an important
reason to separate into different budget entries. The operating system and the
system infrastructure, at the other hand, provide means to measure these three types
at any moment, which helps for the initial definition, for the integration, and for
the verification.

The second decomposition direction is the process. The number of processes
is manageable, since processes are related to specific development teams. Also in
this case the operating system and system infrastructure support measurement at
process level.

The memory budget played a crucial role in the development of this workstation.
The translation of this system level budget into mono-disciplinary design decisions
was, as in the case of overlay in wafersteppers, a purely human activity. The
software discipline likes to abstract away from physical constraints, such as memory
consumption and time. A lot of room for improvement exists at this interface
between system level design and mono-disciplinary design.

6.2.8 Example of power budget visualizations in document handling

Visualizations of a budget can help to share the design issues with a large multi-
disciplinary team. The tables and graphs, as shown in the previous subsections,
and as used in actual practice, contain all the information about the resource use.
However the hot spots are not emphasized. The visualization does not help to see
the contributions in perspective. Some mental activity by the reader of the table or
figure is needed to identify the design issues.

Figure 6.7 shows a visualization where at the top the physical layout is shown
and at the bottom the same layout is used, however the size of all units is scaled
with the allocated power contribution. The bottom visualization shows the power
foot print of the document handler units.

Figure 6.8 shows an alternative power visualization. In this visualization the
energy transformation is shown: incoming electrical power is in different ways
transformed into heat. The width of the arrows is proportional to the amount of
energy. This visualization shows two aspects at the same time: required electrical
power and required heat disposition capacity, two sides of the same coin.

6.2.9 Evolution of budget over time

Figure 6.9 shows a classification for budget types. It will be clear that already with
four different attributes the amount of different types of budgets is large. Every
type of budget might have its own peculiarities that have to be covered by the
method. For instance, worst case budgets need some kind of over-kill prevention.
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Figure 6.7: Power Budget Visualization for Document Handler
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Figure 6.8: Alternative Power Visualization

Add to these different types the potential different purposes of the budget (design
space exploration, design guidance, design verification, or quality assurance) and
the amount of method variations explodes even more.

We recommend to start with a budget as simple as possible:

• coarse guesstimate values

• typical case

• static, steady state system conditions

• derived from existing systems

This is also shown in Figure 6.10. This figure adds the later evolutionary incre-
ments, such as increased accuracy, more attention for boundary conditions and
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static

 is the budget based on
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global
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dynamic
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Figure 6.9: What kind of budget is required?

dynamic behavior.

fact finding through details

aggregate to end-to-end performance

search for  appropriate abstraction level(s)

from coarse guesstimate

to reliable prediction

from typical case

to boundaries of requirement space

from static understanding

 to dynamic understanding

from steady state

to initialization, state change and shut down

from old system

to prototype

to actual implementation

time

start later only if needed

Figure 6.10: Evolution of Budget over Time

However, some fact finding has to take place before making the budget, where
lots of details can not be avoided. Facts can be detailed technical data (memory
access speed, context switch time) or at customer requirement level (response time
for specific functions). The challenge is to mold these facts into information at
the appropriate abstraction level. Too much detail causes lack of overview and
understanding, too little detail may render the budget unusable.
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6.2.10 Potential applications of budget method

For instance the following list shows potential applications, but this list can be
extended much more. At the same time the question arises whether budget-based
design is really the right submethod for these applications.

• resource use (CPU, memory, disk, bus, network)

• timing (response time, latency, start up, shutdown)

• productivity (throughput, reliability)

• image quality (contrast, signal to noise ratio, deformation, overlay, depth-of-
focus)

• cost, space, time, effort (for instance expressed in lines of code)

6.3 Summary

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution 

to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and 

measurements

Budgets are based on models and estimations

Budget visualization is critical for communication

Budgeting requires an incremental process

Many types of budgets can be made; start simple!

Figure 6.11: Summary of budget based design
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Part IV

Application and Life Cycle Model



Chapter 7

Modeling and Analysis: Life
Cycle Models
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7.1 Introduction

Life cycle modeling is mostly modeling expected changes during the life cycle
and the impact of these changes. We will provide an approach to make life cycle
models. This approach is illustrated by means of a web shop example.
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Figure 7.1: Product Related Life Cycles

Several life cycles are relevant. Figure 7.1 shows the related life cycles of



product, option and upgrade creation, production and sales, the systems themselves,
and the disposition.

system

order

using

local

changes, e.g.
accounts

procedures

m
a

in
te

n
a

n
c
e

u
p

g
ra

d
e

using

or
de

rin
g

co
m

po
ne

nt
s

m
an

uf
ac

tu
rin

g

sh
ip
pi
ng

in
st
al
la
tio

n

sh
ip
pi
ng

in
st
al
la
tio

n

re
fu

rb
is
hi
ng

sh
ip
pi
ng

secondary

use d
is

p
o

s
e

m
a

in
te

n
a

n
c
ea
d

d
 o

p
ti
o

n

sa
le
s

Figure 7.2: System Life Cycle

Figure 7.2 zooms in on the life cycle of individual system instances. Compo-
nents are ordered and assembled into systems. The real use of the system starts
after the system has been shipped and installed. During the use of the system
many things happen to the system. The users themselves make small changes,
such as adding or updating user accounts or procedures. Options can be added to
the system and the system is maintained by service. Some systems are refurbished
when they get older to be used again at some different location. Finally the system
has to be disposed.

This paper belongs to the modeling and analysis series. It uses the same case
example and overall approach.

7.2 Life Cycle Modeling Approach

Identify potential life cycle changes and sources

Determine required effort

Characterize time aspect of changes

amount

type

Determine impact of change on

system and context

performance

reliability

Analyse risks business

how often

how fast

see 

reasoning

Figure 7.3: Approach to Life Cycle Modeling
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Figure 7.3 shows a step-wise approach to make life-cycle models. The following
steps are performed:

Identify potential life cycle changes and sources

Characterize time aspect of changes How often do these changes occur, how
fast must be responded to these changes?

Determine required effort , the amount and the type of effort.

Determine impact of change on system and context for instance by using qualities,
such as performance, reliability, security, cost, et cetera.

Analyse risks for the business. For instance, what is the cost of being several
hours or days too late?

The impact and risks analysis is not elaborated in this paper, see reasoning and
analysis papers.

business volume

product mix

product portfolio

product attributes (e.g. price)

customers

personnel

suppliers

application, business processes

et cetera

www.homes4sale.com

www.apple.com/itunes/

www.amazon.com

www.ebay.com

www.shell.com

www.stevens.edu

www.nokia.com

stock market

insurance company

local Dutch cheese shop

Figure 7.4: What May Change During the Life Cycle?

During the life cycle, many elements may change, for example business volume,
product mix, product portfolio, see Figure 7.4 for more examples. The amount of
changes depends strongly on the type of business. For example a real estate portal
is selling unique products with a lot attribute data per product. A music web shop,
such as iTunes, at the other hand is selling the same product many many times.
Figure 7.4 shows more variations of web sites.

The source of a data change influences the impact of such a change. A funda-
mental difference is data input from automated sources, such as data bases of
content providers, versus data input by humans. Human inputs are very error
prone. About 3 out of 100 human actions are erroneous. Luckily humans are
also very flexible, so many errors are repaired immediately. Nevertheless, many
errors in the human inputs slip through and enter the system. The amount of errors
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~3% error rate

change request
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legend

Figure 7.5: Simple Model of Data Sources of Changes

in automated inputs depends on the data quality of the source and on the degree
of interoperability (“level of mutual understanding”) between the providing and
receiving systems.

Figure 7.5 shows possible sources of changes from the usage context and life
cycle context. Note that several human stakeholders can also generate problem
reports or change requests, resulting ultimately in changes in of the design and
realization of the system. Typically the response on problem reports must be
fast (days or weeks), while the change request response is normally much slower
(months or year). These response times are also a function of the business. For
example in the world of the entertainment industry, where television shows use
cell phone for interactive inputs, may suddenly require change request response
times of days or weeks, rather than months.

Figure 7.6 zooms in one step further on changes that impact the web server
of the web shop example. The changes in content are prepared outside of the
production system. Most content changes will be provided by different content
providers. For example publishers will provide most new books and related attributes
for book shops. Human interaction will be limited to selection and the addition of
sales information. Nevertheless we should be aware that even the automated input
has its quality limits and originates somewhere from humans. Two other sources
of changes are configuration related:

the shop configuration , for example roles, accountabilities and responsibilities
of the staff

the system configuration , for example what servers are used, how are functions
and resources allocated.
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Figure 7.6: Data Sources of Web Server

We have observed that configuration changes are a frequent source of reliability
and availability problems. In terms of the popular press this called a computer or
software problem. The last source of change in this figure is the behavior of the
customers. A sudden hype or fashion may cause a very specific load on the system.
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WH Smith
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product portfolio characteristics

selection depends on business

life cycle changes determined by 

business characteristics

Figure 7.7: Example Product Portfolio Change Books

The modeling becomes much more concrete if we are able to quantify the
number of changes. Figure 7.7 shows as an example the quantification of the
number of books that is published per year. This data, from wikipedia, shows
that UK and USA both publish more than 100k new books per year, together these
two countries publish more than 1000 new books per day! The same data source
provides data for many different countries. This illustrates the geographic impact
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on the quantification. India is still a small producer of books, but with more inhab-
itants than the UK and USA together, it can be expected that this will increase
significantly. Note that this short discussion about India is a discussion of a second
order effect: the change in the rate of change.

Wikipedia also provides data on the sales frequency of books. The interesting
notion of the long tail is explained. In the case of book sales the total volume
of very popular books is smaller than the long tail of many books with small
individual sales. The characteristics of a book shop of popular books is entirely
different from a book shop selling a wide variety of less popular books.

Asia Pacific total

China

India

Q1 '04

48M

15M

87k

Q2 '04

54M

19M

189k

growth in

Q2 '04

12.8%

26.1%

116.8%

http://www.apira.org/download/world_broadband_statistics_q2_2004.pdf

What is the expected growth of # customers?

What is the impact on system and infrastructure?

What is the impact on CRM (Customer Relation Management)?

What is the impact on customer, sales support staff?

internet: broadband penetration

Figure 7.8: Example Customer Change

Figure 7.8 provides numbers related to the potential change in the customer
base. This figure shows the number of broadband connections in China and India.
If people connected to broadband are most probable customers of a web shop,
then these numbers provide an indication of a potential shift in the customer base.
Note that the amount of broadband connections in China increases with 25% per
quarter, while this increase is more than 100% in India. The current situation is that
very few Indian people are potential web shop customers, but this number doubles
every quarter! Note that the sales volume of the web shop is not only determined
by the customer potential. Also market share growth and extension of the product
portfolio will increase sales volume and customer base. A web shop in India might
start very small and low cost, but it might have to scale up very rapidly!

The growth in the number of customers will trigger other changes:

What is the impact on system and infrastructure? The dimensions of the system
have to be adapted to the changed load. In scaling thresholds occur where
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a more fundamental change is triggered. For example from a single multi-
purpose server to several dedicated servers.

What is the impact on CRM (Customer Relation Management)? This might be
a trivial function for a few thousand customers, but with tens or hundreds of
thousands of customers more support might be necessary.

What is the impact on customer, sales support staff? More customers often has
as a consequence that more staff is required: more customer support and
more sales managers. An increase in staffing may also trigger changes in the
system itself.

data 

base 

server

web 

server

client client

network

network

screen screen

product 

descriptions

logistics 

ERP

customer 

relations
financial

content 

definition

new content

and updatespublication

How much time/effort is needed for content updates?

How much staff is needed?

What is the impact of errors in content updates?

How many errors can be expected?

What is the impact of content updates on server loads?

Figure 7.9: Web Shop Content Update

Once changes are identified we can analyze the propagation of these changes,
as shown for the customer base. Changes trigger new changes. Figure 7.9 formu-
lates a number of questions to look at this ripple through effect:

How much time/effort is needed for content updates? see below for elaboration.

How much staff is needed? And how many staff and role changes are to be expected?

What is the impact of errors in content updates? So what is the impact on system
quality and reliability? What is the process to prevent and cope with errors?

How many errors can be expected? Make the problem more tangible.

What is the impact of content updates on server loads? Do we have to scale the
server configuration, due to changes in the content updates?
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Figure 7.10: Web Shop Content Change Effort

We need a simple model of the update process to estimate the amount of effort
to change the content. Figure 7.10 provides such a simple model:

• every change is a sequence of 4 steps:

• review input

• select information to be used

• design layout and apply cosmetics or “styling”

• check in of the change, an administrative step

Automated checks will take place concurrently with these steps, ensuring
syntactically correct input.

• every change is verified by inspection: the implementation and the result are
inspected.

• the complete set of changes is committed.

This simple process model can be used to make an effort model. If we substitute
numbers in the formula derived in Figure 7.10, then we can explore the impact of
the number of changes on effort and staff size.

The business context, the application, the product and it’s components have all
their own specific life-cycles. In Figure 7.11 several different life-cycles are shown.
The application and business context in the customer world are shown at the top
of the figure, and at the bottom the technology life-cycles are shown. Note that
the time-axis is exponential; the life-cycles range from one month to more than ten
years! Note also the tension between commodity software and hardware life-cycles
and software release life-cycles: How to cope with fast changing commodities?
And how to cope with long living products, such as MR scanners, that use commodity
technologies?
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Figure 7.11: Life-cycle Differences for health care equipment

Note that the web shop content life cycle may be shorter than one month in
the health care equipment example. Content life cycles may be one day or even
shorter.
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Figure 7.12: Web Shop Security and Changes

One way of modeling and analyzing the consequences of changes is by following
the qualities. As an example, Figure 7.12 zooms in on the security aspect of the
web ship example. The following questions can be analyzed:

What is the security model? In the diagram it is shown that different security
domains are used:
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• public internet where the clients are connected

• the production domain with enhanced access control through gateways.
The external world has limited access to interact with the production
environment of the web shop.

• a very secure intranet environment, where web shop content prepa-
ration and web shop management takes place.

What is the impact on server loads? The layers of security and the security based
allocation of functions and data may impact the load of the servers.

What is the impact on staffing? The processes to ensure security will have impact
on the way-of-working of the staff and the amount of work.

What is the impact of changes in staff? The staff itself has a significant impact
on overall security. Changes of the staff itself will trigger second order
effects, such as screening and authorization work and blocking moved staff.

What is the impact of changes on security? Any change somewhere in the system
might have a side effect on overall security. Security concerns will create a
continuous overhead for systems and staff.

new faults = average fault density * #changes

#errors = 

f( severity,

hit probability,

detection probability)
faults

Jansen iso

Janssen

severity

low

hit

probability

high

operator iso

sales repr
high high

detection

probability

low

medium

Figure 7.13: Web Shop Reliability and Changes

Figure 7.13 shows an example of reliability modeling. this needs to be elabo-
rated GM.
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Chapter 8

Simplistic Financial
Computations for System
Architects.
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8.1 Introduction

Many system architects shy away from the financial considerations of the product
creation. In this document a very much simplified set of models is offered to help
the architect in exploring the financial aspects as well. This will help the architect
to make a ”sharper” design, by understanding earlier the financial aspects.

The architect should always be aware of the many simplifications in the models
presented here. Interaction with real financial experts, such as controllers, will
help to understand shortcomings of these models and the finesses of the highly
virtualized financial world.

In Section 8.2 a very basic cost and margin model is described. Section 8.3
refines the model at the cost side and the income side. In Section 8.4 the time
dimension is added to the model. Section 8.5 provides a number of criteria for
making finacial decisions.



8.2 Cost and Margin

The simplest financial model looks only at the selling price (what does the customer
pay), the cost price (how much does the manufacturing of the product actually
cost). The difference of the selling price and the cost price is the margin. Figure 8.1
shows these simple relations. The figure also adds some annotations, to make the
notions more useful:

• the cost price can be further decomposed in material, labor and other costs

• the margin (”profit per product”) must cover all other company expenses,
such as research and development costs, before a real profit is generated

• most products are sold as one of the elements of a value chain. In this figure
a retailer is added to show that the street price, as paid by the consumer, is
different from the price paid by the retailer[1].

The annotation of the other costs, into transportation, insurance, and royalties per
product, show that the model can be refined more and more. The model without
such a refinement happens to be rather useful already.
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Figure 8.1: The relation between sales price, cost price and margin per product

The translation of margin into profit can be done by plotting income and expenses
in one figure, as shown in Figure 8.2, as function of the sales volume. The slope
of the expenses line is proportional with the costs per product. The slope of the
income line is proportional with the sales price. The vertical offset of the expenses
line are the fixed organizational costs, such as research, development, and overhead
costs. The figure shows immediately that the sales volume must exceed the break
even point to make a profit. The profit is the vertical distance between expenses
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and income for a given sales volume. The figure is very useful to obtain insight in
the robustness of the profit: variations in the sales volume are horizontal shifts in
the figure. If the sales volume is far away from the break even point than the profit
is not so sensitive for the the volume.
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Figure 8.2: Profit as function of sales volume

8.3 Refining investments and income

The investments as mentioned before may be much more than the research and
development costs only, depending strongly on the business domain. Figure 8.3
shows a decomposition of the investments. The R&D investments are often calcu-
lated in a simple way, by using a standard rate for development personnel that
includes overhead costs such as housing, infrastructure, management and so on.
The investment in R&D is then easily calculated as the product of the amount of
effort in hours times the rate (=standardized cost per hour). The danger of this
type of simplification is that overhead costs become invisible and are not managed
explicitly anymore.

Not all development costs need to be financed as investments. For outsourced
developments an explicit decision has to be made about the financing model:

Gerrit Muller
System Modeling and Analysis: a Practical Approach
July 3, 2023 version: 1.3

USN-SE

page: 81



research and development

NRE: outsourcing, royalties

marketing, sales

training sales&service

financing

including:

staff, training, tools, housing

materials, prototypes

overhead

certification

strategic choice:

NRE or per product

business dependent:
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sales cost >> R&D cost
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that covers most costs above:

R&D investment = Effort * rate

Figure 8.3: Investments, more than R&D

• the supplier takes a risk by making the investments, but also benefits from
larger sales volumes

• the company pays the investment, the so called Non Recurring Engineering
(NRE) costs. In this case the supplier takes less risks, but will also benefit
less from larger sales volumes.

If the supplier does the investment than the development costs of the component
are part of the purchasing price and become part of the material price. For the NRE
case the component development costs are a straightforward investment.

Other investments to be made are needed to prepare the company to scale all
customer oriented processes to the expected sales volume, ranging from manufac-
turing and customer support to sales staff. In some business segments the marketing
costs of introducing new products is very significant. For example, the pharmaceu-
tical industry spends 4 times as much money on marketing than on R&D. The
financial costs of making investments, such as interest on the capital being used,
must also be taken into account.

We have started by simplifying the income side to the sales price of the products.
The model can be refined by taking other sources of income into account, as shown
in Figure 8.4. The options and accessories are sold as separate entities, generating
a significant revenue for many products. For many products the base products are
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Figure 8.4: Income, more than product sales only

sold with a loss. This loss is later compensated by the profit on options and acces-
sories.

Many companies strive for a business model where a recurring stream of revenues
is created, for instance by providing services (access to updates or content), or by
selling consumables (ink for prink jet printers, lamps for beamers, et cetera).

One step further is to tap the income of other players of the value chain.
Example is the license income for MPEG4 usage by service and content providers.
The chip or box supplier may generate additional income by partnering with the
downstream value chain players.

8.4 Adding the time dimension

All financial parameters are a function of time: income, expenses, cash-flow, profit,
et cetera. The financial future can be estimated over time, for example in table form
as shown in Figure 8.5. This table shows the investments, sales volume, variable
costs, income, and profit (loss) per quarter. At the bottom the accumulated profit is
shown.

The cost price and sales price per unit are assumed to be constant in this
example, respectively 20k$ and 50k$. The formulas for variable costs, income
and profit are very simple:

variable costs = sales volume ∗ cost price

income = sales volume ∗ sales price
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quarter profit = income - (investments + variable costs)

Figure 8.5: The Time Dimension

profit = income− (investments+ variable costs)
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Figure 8.6: The “Hockey” Stick

Figure 8.6 shows the cumulative profit from Figure 8.5 as a graph. This graph
is often called a ”hockey” stick: it starts with going down, making a loss, but when
the sales increase it goes up, and the company starts to make a profit. Relevant
questions for such a graph are:

• when is profit expected?

• how much loss can be permitted in the beginning?

• what will the sustainable profit be in later phases?
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Figure 8.7: What if ...?

These questions can also be refined by performing a simple sensitivity analysis.
Figure 8.7 shows an example of such an analysis. Two variations of the original
plan are shown:

• a development delay of 3 months

• an intermediate more expensive product in the beginning, followed by a more
cost optimized product later

The delay of 3 months in development causes a much later profitability. The
investment level continues for a longer time, while the income is delayed. Unfortu-
nately development delays occur quite often, so this delayed profitability is rather
common. Reality is sometimes worse, due to loss of market share and sales price
erosion. This example brings two messages:

• a go decision is based on the combination of the profit expectation and the
risk assessment

• development delays are financially very bad

The scenario starting with a more expensive product is based on an initial
product cost price of 30k$. The 20k$ cost price level is reached after 1 year.
The benefit of an early product availability is that market share is build up. In
this example the final market share in the first example is assumed to be 30 units,
while in the latter scenario 35 units is used. The benefits of this scenario are mostly
risk related. The loss in the beginning is somewhat less and the time to profit is
somewhat better, but the most important gain is be in the market early and to reduce
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the risk in that way. An important side effect of being early in the market is that
early market feedback is obtained that will be used in the follow on products.
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Figure 8.8: Stacking Multiple Developments

In reality, a company does not develop a single product or system. After
developing an initial product, it will develop successors and may be expand into a
product family. Figure reffig:SFCmultipleDevelopments shows how the cumulative
profits are stacked, creating an integral hockey stick for the succession of products.
In this graph the sales of the first product is reduced, while the sales of the second
product is starting. This gradual ramp-up and down is repated for the next products.
The sales volume for the later products is increasing gradually.

8.5 Financial yardsticks

How to assess the outcome of the presented simple financial models? What are
good scenarios from financial point of view? The expectation to be profitable is not
sufficient to start a new product development. One of the problems in answering
these questions is that the financial criteria appear to be rather dynamic themselves.
A management fashion influences the emphasis in these criteria. Figure 8.9 shows
a number of metrics that have been fashionable in the last decade.

The list is not complete, but it shows the many financial considerations that
play a role in decision making.

Return On Investments is a metric from the point of view of the shareholder or
the investor. The decision these stakeholders make is: what investment is the
most attractive.
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"only numbers 1, 2 and 3 will be profitable"

in high tech segments 10% or more

fast growing companies combine profits with negative cash-flow,

risk of bankruptcy

Figure 8.9: Fashionable financial yardsticks

Return On Net Assets (RONA) is basically the same as ROI, but it looks at all
the capital involved, not only the investments. It is a more integral metric
than ROI.

turnover / fte is a metric that measures the efficiency of the human capital. Optimization
of this metric results in a maximum added value per employee. It helps
companies to focus on the core activities, by outsourcing the non-core activ-
ities.

market ranking (share, growth) has been used heavily by the former CEO of
General Electric, Jack Welch. Only business units in rank 1, 2 or 3 were
allowed. Too small business units were expanded aggressively if sufficient
potential was available. Otherwise the business units were closed or sold.
The growth figure is related to the shareholder value: only growing companies
create more shareholder value.

R&D investment / sales is a metric at company macro level. For high-tech companies
10% is commonly used. Low investments carry the risk of insufficient product
innovation. Higher investments may not be affordable.

cashflow is a metric of the actual liquid assets that are available. The profit of a
company is defined by the growth of all assets of a company. In fast growing
companies a lot of working capital can be unavailable in stocks or other non
salable assets. Fast growing, profit making, companies can go bankrupt by a
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negative cash-flow. The crisis of Philips in 1992 was caused by this effect:
years of profit combined with a negative cash-flow.
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Chapter 9

The application view
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9.1 Introduction

The application view is used to understand how the customer is achieving his objec-
tives. The methods and models used in the application view should discuss the
customer’s world. Figure 9.1 shows an overview of the methods discussed here.

The customer is a gross generalization, which can be made more specific by
identifying the customer stakeholders and their concerns, see section 9.2.

The customer is operating in a wider world, which he only partially controls. A
context diagram shows the context of the customer, see section 9.3. Note that part
of this context may interface actively with the product, while most of this context
simply exists as neighboring entities. The fact that no interface exists is no reason
not to take these entities into account, for instance to prevent unwanted duplication
of functionality.

The customer domain can be modelled in static and dynamic models. Entity
relationship models (section 9.4) show a static view on the domain, which can be
complemented by dynamic models (section 9.5).
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Figure 9.1: Overview of methods and models that can be used in the application
view

9.2 Customer stakeholders and concerns

In the daily use of the system many human and organizational entities are involved,
all of them with their own interests. Of course many of these stakeholders will also
appear in the static entity relationship models. However human and organizations
are very complex entities, with psychological, social and cultural characteristics,
all of them influencing the way the customer is working. These stakeholders have
multiple concerns, which determine their needs and behavior. Figure 9.2 shows
stakeholders and concerns for an MRI scanner.

The IEEE 1471 standard about architectural descriptions uses stakeholders and
concerns as the starting point for an architectural description.

Identification and articulation of the stakeholders and concerns is a first step in
understanding the application domain. The next step can be to gain insight in the
informal relationships. In many cases the formal relationships, such as organization
charts and process descriptions are solely used for this view, which is a horrible
mistake. Many organizations function thanks to the unwritten information flows
of the social system. Insight in the informal side is required to prevent a solution
which does only work in theory.
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Figure 9.2: Stakeholders and concerns of an MRI scanner

9.3 Context diagram

The system is operating in the customer domain in the context of the customer. In
the customer context many systems have some relationship with the system, quite
often without having a direct interface.
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Figure 9.3: Systems in the context of a motorway management system

Figure 9.3 shows a simple context diagram of a motorway management system.
Tunnels and toll stations often have their own local management systems, although
they are part of the same motorway. The motorway is connecting destinations, such
as urban areas. Urban areas have many traffic systems, such as traffic management
(traffic lights) and parking systems. For every system in the context questions can
be asked, such as:

• is there a need to interface directly (e.g. show parking information to people
still on the highway)

• is duplication of functionality required (measuring traffic density and sending
it to a central traffic control center)
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9.4 Entity relationship model

The OO (Object Oriented software) world is quite used to entity relationship diagrams.
These diagrams model the outside world in such a way that the system can interact
with the outside world. These models belong in the ”CAFCR” thinking in the
conceptual view. The entity relationship models advocated here model the customers
world in terms of entities in this world and relations between them. Additionally
also the activities performed on the entities can be modelled. The main purpose of
this modelling is to gain insight in how the customer is achieving his objectives.

One of the major problems of understanding the customers world is its infinite
size and complexity. The art of making an useful entity relationship model is to
very carefully select what to include in the model and therefore also what not to
include. Models in the application view, especially this entity relationship model,
are by definition far from complete.
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Figure 9.4: Diagram with entities and relationship for a simple TV appliance

Figure 9.4 shows an example of an entity relationship model for a simple TV.
Part of the model shows the well recognizable flow of video content (the bottom
part of the diagram), while the top part shows a few essential facts about the
contents. The layout and semantics of the blocks are not strict, these form-factors
are secondary to expressing the essence of the application.

9.5 Dynamic models

Many models, such as entity relationship models, make the static relationships
explicit, but don’t address the dynamics of the system. Many different models can
be used to model the dynamics, or in other words to model the behavior in time.
Examples are of dynamic models are shown in figure 9.5
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Figure 9.5: Examples of dynamic models

Productivity and Cost of ownership models are internally based on dynamic
models, although the result is often a more simplified parameterized model, see
figure 9.6.

Figure 9.7 shows an example of a time-line model for an URF examination
room. The involved rooms play an important role in this model, therefore an
example geographical layout is shown to explain the essence of the time-line model.

The patient must have been fasting for an intestine investigation. In the beginning
of the examination the patient gets a barium meal, which slowly moves through the
intestines. About every quarter of an hour a few X-ray images-images are made of
the intestines filled with barium. This type of examination is interleaving multiple
patients to efficiently use the expensive equipment and clinical personnel operating
it.
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Figure 9.7: Dynamics of an URF examination room
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Part V

Integration and Reasoning



Chapter 10

Modeling and Analysis:
Reasoning

Quantify in terms of Key Performance Indicators, Key 

Performance Measures, Critical Resources
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t3. Make main Threads-of-Reasoning SMART

10.1 Introduction

content

From chaos to order: inputs, assumptions, models and decisions

Reasoning approach: stepwise top-down and bottom-up

Life cycles of models in relation to project life cycle

Figure 10.1: Overview of the content of this paper

Figure 10.1 shows an overview of the content of this paper. We will discuss
how to get from a chaotic amount of information (inputs, assumptions, models and
decisions) to a more ordered situation. We will introduce a reasoning approach



that is stepwise concurrently working top-down and bottom-up. We finish with a
discussion of life cycles of models in relation to the project life cycle.

Analysis of context and system characteristics during the creation project is
based on discussions, experience and inputs from many stakeholders. Some charac-
teristics cannot be predicted in an obvious way. Important, valuable or critical
characteristics can be modeled. The size of today’s systems and the complexity of
the context results in a modular modeling approach: the grand universal model is
impossible to build, instead we create many small, simple, but related models.

Early in projects lots of fragmented information is available, ranging from
hard facts from investigations or stakeholders, to measurement data. This phase
appears to be rather chaotic. We discuss the perceived chaos and the need for
overview in section 10.2. Section 10.3 provides a stepwise approach to relate all
these fragments and to decide on models to be made or integrated.

This approach extends the notion of threads-of-reasoning, as described in [5],
to modeling and analysis.
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errors
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results
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specification

verification

decisions

Figure 10.2: Purpose of Modeling

The final purpose of modeling is to facilitate the decision making process of
projects. Decisions may range from project management type decisions about
time or effort, to decisions about system specification or design. Crucial factors
in this decision making process, shown underneath the decision making box in
Figure 10.2, are risk, customer satisfaction, and also the rather tangible factors as
time, effort, cost and profit margin.

Figure 10.2 also shows that the results of modeling and analysis are used as
input for the decision making process. Modeling and analysis transforms a set
of facts from investigations, measurement data and assumptions into information
about system performance and behavior in the context. The input data are unfortu-
nately not ideal, uncertainties, unknowns and errors are present. As a consequence
models have a limited accuracy and credibility. Models also have a limited working
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range due to the chosen (and necessary) abstractions.
The reasoning approach should help to find answers for the following questions:

• How to use multiple models to facilitate decisions?

• How to get from many fragments to integral insight?

• How many models do we need?

• At what quality and complexity levels?

A nice example of relating technical architecture considerations to business
architecture considerations is the description of the Google Cluster Architecture
by Barroso et al [2].

10.2 From Chaos to Order
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Figure 10.3: Graph of Decisions and Models

The description, as described in the introduction, suggests a rather orderly
world and process from data to decision. However, most of today’s projects are
complex due to problem and project size. This more chaotic view on modeling is
shown in Figure 10.3. The basis for this diagram is the standard diagram of the
usage context, the life cycle context and the system itself. This space is populated
with information to create a landscape. Four types of information are shown:

Decision is a consciously taken decision by one of the stakeholders. For example,
the company strives for 40% margin, the system must have a throughput of
10 requests per second, or the infrastructure will run without any operator.
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Input is information from some investigation, for example from suppliers, or
obtained by measurements.

Assumption are made by project members or other stakeholders, whenever hard
information is missing. Quite often assumptions are made unconsciously.
For example, the programmer assumes that CPU load and memory consumption
of a function is small and may be ignored. No programmer has the time to
measure all functions in all possible circumstances. We make assumptions
continuously, based on experience and craftsmanship.

Model is created to transform information into usable results for the decision
making process. For example, a throughput model or a memory consumption
model.
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Figure 10.4: Relations: Decisions, Models, Inputs and Assumptions

These four types of information are related, as shown in Figure 10.4. Decisions
are facilitated by inputs, models and assumptions. Most decisions are based on
previous decisions. During the discussion preceding a decision missing infor-
mation is detected. This triggers the search for this information or forces new
assumptions. Models are fed by other models, decisions and assumptions. Inputs
feeds models, but is also used to calibrate models. While we create models, many
open issues are discovered, triggering new inputs and assumptions.

The combination of all this information and their relations creates a huge graph,
which represented in this way, is chaotic, see Figure 10.3.

A somewhat less abstract graph is shown in Figure 10.5 for the web shop
example. In this figure the relations have been left out, because the diagram is
already overcrowded as is.
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Figure 10.5: Example Graph for Web Shop

The challenge we are going to address is to bring order in this chaos. However,
we as modelers must understand that the ordering is a representation of an inher-
ently complex and intertwined reality.

10.3 Approach to Reason with Multiple Models

An overview of the stepwise approach is shown in Figure 10.6. After a quick scan
of the system, the usage context and the life cycle context, the approach propagates
two concurrent tracks: top-down and bottom-up. The results of these 2 concurrent
tracks are consolidated, capturing both decisions as well as the overview. The
side effect of the concurrent activities is that the involved human participants have
increased insight in problem space and solution space.

The entire set of steps is reiterated many times. Every iteration the focus is
shifting more to relevant (significant, critical) issues, reducing project risks, and
increasing project feasibility. The purpose of this rapid iteration is to obtain short
feedback cycles on modeling efforts, analysis results and the specification and
project decisions based on the results.

One of the frequently occurring pitfalls of modeling is that too much is modeled.
A lot of time and effort is wasted with little or no return on investment. This waste
can be avoided by getting feedback from the actual project needs, and aborting
modeling efforts that are not fruitful.

The first step is the exploration of the landscape: the system itself, the usage
context and the life cycle context. Specification and design decisions ought to
be justified by the value provided to the usage context or the life cycle context.
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Figure 10.6: Reasoning Approach

Modeling is supportive to the processes of specification, verification and decision
making. Step 1, shown in Figure 10.7 is a scan through the system and the contexts,
high lighting potential problems and risks, and identifying valuable, important
needs, concerns and requirements and identifying critical sensitive or difficult design
and implementation issues.

After step 1 two concurrent tracks are used: top-down (t) and bottom-up (b).
In the top-down track we work from customer and life cycle objectives towards
models to reduce project risks and to increase project feasibility. The bottom-up
track scans through many details to get insight in significance of details or when
details may be neglected. The bottom-up track ensures that models don’t drift too
far from reality.

The first top-down step is t2: creation of thread(s)-of-reasoning, shown in
Figure 10.8. Threads-of-reasoning provide a means to relate business needs and
concerns to specification to detailed realization decisions. This method is described
in [5]. The most relevant individual chapters can be downloaded separately at:
http://www.gaudisite.nl/ThreadsOfReasoningPaper.pdf and http:
//www.gaudisite.nl/MIthreadsOfReasoningPaper.pdf.

A thread-of-reasoning is constructed by creating a graph of related concerns
and needs via business process decisions towards system requirements and then
connected to design concepts and realization decisions. Such a graph is often quite
extensive and messy. Relationships can either be supportive or reenforcing, or
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Figure 10.7: 1. Explore

based on tension. The actual thread-of-reasoning reduces this graph to essential
relationships of both kinds. The essence of most projects can be expressed in one
or a few of these threads.

For instance in the case of a web shop, the main tensions might be between
the need to be flexible in terms of sales volume and the need for affordable cost
of the supporting IT services. If the web shop starts in a completely new market,
then the order rate prediction might be highly uncertain. Nevertheless, the web
shop owner needs to be able to serve millions of customers if the market devel-
opment is positive. At the same time the web shop owner can not afford a grossly
over-dimensioned server-park. These two concerns ripple through the landscape,
touching on many aspects, such as amount of required web shop personnel, amount
of maintenance work, price of the IT hardware itself, resource consumption of web
services et cetera.

The result of step t2 is a qualitative graph of relations. In step t3, shown in
Figure 10.9, this graph is annotated with quantitative information and relations.
For example the uncertainty of the sales volume can be quantified by making a
best case and a worst case scenario for the sales growth over time. At system level
the expected relation between system load and server cost can be quantified.

Figure 10.10 explains a frequently used acronym: SMART [3]. This acronym
is used amongst others as checklist for the formulation of requirements. There
appears to be consensus about the meaning of the first two letters. The letter S
stands for Specific: is the definition of the subject well-defined and sharp. The
letter M is used for Measurable: is the subject measurable. Measurability often
requires quantification. Measurability is needed for verification.
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Figure 10.8: t2. Thread-of-Reasoning

The main questions in step t3 are related to Specific and Measurable. The
letters A, R and T, may provide useful insight also, see Figure 10.10 for their varied
meanings.

The next top-down step is to determine the “hottest” issues. The hottest issues
are those issues that require most attention from the architect and the project team.
There are several reasons that an issue can be important:

highest (perceived) risk as result, for instance, of a project risk inventory. The
subtle addition of the word perceived indicates that an issue is hot when it
is perceived as having a high risk. Later modeling may show that the actual
risk is lower.

most important/valuable from usage or life cycle perspective. Core processes,
key functions and key performance parameters require attention by definition.

most discussed within the project team or by outside stakeholders. Lots of discus-
sions are often a sign of uncertainty, perceived risk, or ill communicated
decisions. Attention is required to transform fruitless discussions into well
defined decisions and actions. In some cases models provide the means for
communication, filtering out organizational noise and providing focus on
real hot issues.

historic evidence of experienced project members. The past often provides us
with a wealth of information and potential insights. If we know from past
experience that we systematically underestimate the number of transaction
with one order of magnitude, for example, then we can analyze the cause of
past failures and create more valid estimates this time.

The issues present in the thread-of-reasoning can be assessed from these different
perspectives. We propose to use a scale from 1 to 5, with the meaning 1 = cold and
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Figure 10.9: t3. SMART’en Thread-of-Reasoning

5 = hot. For example, for risks a small risk = 1, a large risk = 5. The table at
the bottom of Figure 10.11 shows a number of issues and the assessment of these
issues for the four perspectives. For visual support the values are color coded with
the heat scale: 5 = red, 4 = orange, 3 = yellow. Issues where scores are present of
5 or 4 deserve attention anyway.

The issues are ranked after assessing individual issues against these four perspec-
tives. The hot (5) and very warm (4) issues get more weight than the colder issues.
The order rate is apparently the hottest issue, with a lot of value attached to it
(not being able to serve quickly increasing sales would be disastrous), with a lot
of discussion caused by the uncertainty, and a high risk due to the unavailable

• Specific

• Measurable

• Assignable (Achievable, Attainable,

Action oriented, Acceptable, Agreed-upon, Accountable)

• Realistic (Relevant, Result-Oriented)

• Time-related (Timely, Time-bound, Tangible, Traceable)

quantified
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variation of meaning

Figure 10.10: Intermezzo: the acronym SMART
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t4. Identify "hottest" issues
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Figure 10.11: t4: Identify Hottest

facts. The response time scores second, based on value (customer dissatisfaction
endangering sales if the system is slow responding) and past experience (many new
applications perform far below expectation in the first year of operation). Based on
historic evidence (number of transactions is always severely underestimated) and
the medium level of all other perspectives, turns the number of transactions into
the third issue. Finally the availability requires attention, because of the very high
customer value. Craftsmanship of the project team indicates that availability ought
not to be a problem.

The uncertainty in the order intake can be modeled by taking best and worst
case scenarios. In Figure 10.12 it is shown that the best case (from business point of
view) is an exponential increase of sales to a saturation level of about ten million
products. The worst case is an exponential growth to a saturation level of only
10 thousand products. In the same graph server capacities are modeled. For the
server capacities it is assumed that the business starts with a rather small server.
When needed an additional small server is added. In the best case scenario the next
increment is a much more powerful server, to prepare for the rapid increase in sales.
Following increments are again powerful servers. Note that these IT infrastructure
scenarios require increments of powerful servers with a lead-time in the order of
one month. These simple models allow for further modeling of income, cost and
margin.

The bottom-up track in itself has three concurrent activities:

b2a. "Play" with models to create insight in relevant details. Simple models a re
created and the input and the structure of the model is varied to get insight
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t5. Model hottest, non-obvious, issues
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Figure 10.12: t5: Model Hottest Issues

in issues that have significant impact higher system levels. Note that these
models may address issues in any of the contexts: usage, life cycle or the
system itself. In Figure 10.13 some simple models are shown relating trans-
actions to number of CPU’s or cores.

b2b. Investigate facts from any relevant source: market research, supplier documen-
tation, internet, et cetera. Figure 10.13 shows as an example the TPC-
C benchmark results found on internet and transforms these numbers in
t1transaction, as used in step b2a. Note that the load of other work-flows
in TPC-C is ignored in this simple estimation.

b2c. Identify assumptions made by any stakeholder, including the architect self.
The example in Figure 10.13 shows some assumptions made in steps b2a
and b2b:

• the server load is dominated by transactions

• the transaction load scales linear

• the TPC-C benchmark is representative for our application. We ignored
the other TPC-C workload, what is the effect of other TPC-C workload
on the transaction load?

Note that most assumptions are implicit and hidden. Most stakeholders are
unaware of the assumptions they made implicitly.

Only few detailed issues are modeled somewhat more extensively. Criteria to
continue modeling is the significance of these details at system and context level,
and the transparency of the subject. Only non-obvious subjects, where it is not
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vary inputs

vary model structure

to understand model 
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and specification feasibility
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t1 transaction = 1 ms (on 1 CPU)
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http://www.tpc.org/tpcc/results/
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IBM System p5 595
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Total # of Processors:  32  
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6 
/ 60 / 64

t1 transaction~= 1 ms 

min to sec
# cores

server load dominated by 

transactions

transaction load scales linear

TPC-C is representative

what is the effect of

other TPC-C workload? 

Figure 10.13: b2abc: Bottom-up

directly evident what the effect of change is, should be modeled. Figure 10.14
shows a somewhat more detailed model of memory used for picture transfers and
buffering in the servers.

The concurrent tracks for top-down and bottom-up mutually influence each
other. The top-down track may learn that significant issues are hidden somewhere
in the details. As a consequence the question in top-down is: “Do we address
the relevant decomposition”? The bottom-up track gets input about the relevancy
of exploring specific details. In the bottom-up track the question is: “What details
have significant impact”? Figure 10.15 shows as mutually related questions the top-
down uncertainty about the sales volume and the bottom-up impact of transactions
on server load.

During the top-down modeling we may have discovered the potential size of
the product catalogue and the number of changes on this product catalogue. Where
does this product catalogue size impact the design? Bottom-up we have found
that 3 parameters of the memory usage model have significant impact on system
performance: concurrency (in terms of the number of concurrent server threads),
cache size (in number of cached pictures) and picture size (average number of bytes
per cached picture). Combined we see that catalogue size will relate somehow to
cache size. In other words we can refine the memory usage model with more focus
by taking the catalogue size into account.

Many problems and questions that are addressed by modeling appear to be
local, but are in practice related to other issues in the usage context, life cycle
context or the system itself. The threads-of-reasoning are used to make the most
important relations explicit. When we make small models in a step-by-step fashion
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b3. Model significant, non-obvious, issues
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3 * k * s 
where

n = # back office access threads

m = # picture cache threads

k = # web server threads

s = picture size in bytes

c = in memory cache capacity

in # pictures

memory use

product browsing only

pictures only

single server

What  is the performance impact of memory use on other processing?

mid office

server

back

office

access

back

office

access

picture

cache

server

picture

cache

server

web

server
web

server

one copy

per process

multiple copies

per process

mid office

server

web

server

back

office

access

picture

cache

server

mid office

server

picture

cache

server

back

office

access

web

server

picture

cache

server

back

office

access

web

server

multiple copies

per process and thread

n

m

k

for example, memory use in server(s) for 

picture transfers and buffering

Figure 10.14: b3: Model Significant Issues
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risk

top-down: what is hidden in details?

top-down: do we address the relevant decomposition?

bottom-up: do we address relevant details?

bottom-up: what details have significant impact?

Figure 10.15: Learning Concurrent Bottom-up and Top-down

as described above, we have to take care that the models or their results are recon-
nected again. The reconnection is achieved by going through the same process
many times:

• using results from the previous iteration to improve the thread-of-reasoning

• using the insights from the previous iteration to dig deeper into significant
issues

During the iterations questions are asked to stakeholders to obtain input, data is
provided to stakeholders for validation, and stakeholders may bring in new infor-
mation spontaneously. Modeling is not at all an isolated activity, it is one of the
communication means with stakeholders! Also a lot of experiments and measure-
ments are done during those iterations at component level or at system level, in the
real world or in the modeled world. The iteration with the stakeholder interaction
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Figure 10.16: Example top-down and bottom-up

6. Capture overview, results and decisions
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Figure 10.17: 6. Capture overview, results and decisions

and the interaction with systems and components is shown in Figure 10.18
The iterations and the steps within the iteration should be time-boxed. very

early in the project one iteration can be done in one hour to establish a shared
baseline in the architecting team. The time-boxes will increase to hours and ultimately
to a few days at the end of the project. The maximum of a few days is to prevent
modeling activities that are not problem oriented. Modeling is already an indirect
activity, when lots of time is spent without feedback, then the risk is large that this
time and effort is wasted.

The focus of the modeling activities is shifting over time. Early during the
project life cycle, the focus will be on the usage context and the feasibility of the
system. When the solution crystallizes, then the life cycle issues become more
visible and tangible. After conception and feasibility more attention is paid to
the life cycle context. During the design and realization of the system most of the
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Figure 10.18: 7. Iterate and Validate
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Figure 10.19: The focus is shifting during the project

focus will be on the system itself. At the end of design and realization the life cycle
context will increase again, due to the eminent deployment of the actual system.
Finally during validation the emphasis will shift from the system to the validation
of the system in the context(s).

10.4 Balancing Chaos and Order

Architects and designers are unconsciously juggling with lots of inputs, assump-
tions, and decisions in their head. They iterate over the steps in this reasoning
approach with very short cycle times. This enables them to understand relations
and identify issues quickly. Unfortunately, this information and insight is very
intangible and not easily shared with other stakeholders. Figure 10.20 positions the
process in the head of the architect relative to the iteration cycle time (horizontal
axis) and the communication scope in number of people involved (vertical axis).
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Figure 10.20: Models Support Communication

Models facilitate communication between multiple people, because knowledge
and insights have been made more tangible. Note that a model itself is not yet
insight. Insight is obtained by interaction between persons and interaction between
person and model. To create relevant models taking into account significant details
a team of people has to iterate as described in the reasoning approach.

Figure 10.21 quantifies the chaos discussed above. It shows that in a single
project millions of implicit decisions are taken based on millions of assumptions.
For example, a programmer coding a loop like:

for image in images:
process(image)

has decided to use a for-loop, based on the assumption that the overhead is small.
Implicit decisions and assumptions are mostly about obvious aspects, where experience
and craftsmanship provide a shortcut that is not made explicit. This implicit process
is very important, because we would create a tremendous overhead if we have to
make all obvious aspects explicit. Tens of thousands decisions and thousands of
assumptions and inputs are made explicit, for instance in detailed design specifi-
cations. For such a project hundreds of try-out models are made, tens of of these
models get documented as simple and small models. About 10 key decisions, such
as key performance parameters, are used to control the project. Few substantial
models are used or made.
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Figure 10.21: Frequency of Assumptions, Decisions and Modeling

10.5 Life Cycle of Models

Models have their own life cycle. The purpose of models is shifting during the
project. This shift of purpose is shown at the top of Figure 10.22.

understanding problem and potential solutions and getting insight is the early
purpose of creating and using models.

exploration of problem and solution space to find an acceptable solution.

optimization and fine tuning of the chosen solution to fit as good as possible in
the usage context and life cycle context.

verification of the realization, where the model is used as test reference. Differ-
ences between realization and model must be explainable.

Project team members have to start somewhere early in the project to get started
in understanding the system and its context. Making small models, called try-out
models in Figure 10.22, such a start is made. Many try-out models provide some
insight and are not useful afterwards. For example, the performance of the system
is independent of the amount of memory used, as long as less than 80% of the
available memory is used. The 80% working range is a useful input, the model
itself can be abandoned. Some try-out models keep useful somewhat longer for
its creator, but often these try-out models lose their value or, if they prove to be
very valuable, they get slightly more formalized. This next level of formalization
is called small and simple models in this figure.

Simple and small models have some more long term value. The model and
the modeling results are documented as part of the project archive. However,
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Figure 10.22: Life Cycle of Models

many of those models are valuable once. The documentation is in that case only
archived, but not maintained. This makes results traceable, without creating a
large maintenance burden. Some of the small and simple models are re-used by
next projects. When models tend to grow and provide consistent value, then they
become substantial models.

Substantial models tend to capture a lot of core domain know how. These
models evolve from project to project. Eventually these models might become
a product in their own right. For example a load balancing simulation for web
services simulation tool might be used by many web services based systems.

Most modeling is used for understanding and exploration. Only a fraction of
the models is also used for optimization purposes or for verification.

Note that a model used for exploration is in itself not directly useful for optimization.
For optimization we have to add input generation and result evaluation. Also the
performance of the model itself may become much more important, in order to run
and evaluate the model for many different potential configurations. Going from
exploration to optimization can be a significant investment. Such an investment is
only in a few cases justifiable.

For verification models may have to be adapted as well. Simple verification of
implementation versus model as sanity check can be done without many changes.
However, if we want to use models as part of the integration process, then we
have to invest in interfaces and integration of models with actual implementations.
Also for comparison of results between models and implementation we need to
automate evaluation and archiving. We have to consider the return on investment
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before actually investing in verification modeling and support.
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Figure 10.23: Examples of Life Cycle of Models

Figure 10.23 shows a number of examples of the evolution of models throughout
their life cycle. A small model is made to estimate the load of the servers and the
related cost. A separate small model is used for the mix of functions running
on the servers. The load model evolves to take peak loads into account. The
peak load depends on the usage characteristics. For global systems the distri-
bution of customers over time zones is highly relevant, because peaks in this distri-
bution cause peak loads. The global distribution of customers proves to be rather
generic and evolves into a re-usable asset, a global customer demographics model.
The load model may evolve further into an integral load model, where loads and
solutions can be studied and compared to find an appropriate solution. A full
fledged simulation model to study load and server dimensioning could be a re-
usable asset, a seb server performance model. The very simple function mix model
may evolve into a load and stress test suite. A more generic variant of such a test
suite is a web shop benchmark.

10.6 Summary

Figure 10.24 provides a summary of this paper.
The reasoning approach emphasize the complementary value of working top-

down and bottom-up. To reduce the chaos we have to reduce the amount of infor-
mation we are working on. Key words for selection are hottest, non-obvious,
significant, and relevant. We recommend the use of multiple small models that
are used in combination, rather than making large and much more complicated
models addressing multiple issues at once. Models itself have a life cycle. Some
models evolve from very simple to more substantial, while other models stop to
involve much more early.
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Conclusions

Top-down and bottom-up provide complementary insights

Key words for selection: hottest, non-obvious, significant, relevant

Multiple small models are used in combination

Some models evolve from very simple to more substantial

Techniques, Models, Heuristics of this module

Threads-of-reasoning

SMART

Key Performance Indicators, Key Performance Measures, Critical Resources

Ranking matrices

Figure 10.24: summary of this paper

We have used several techniques:

• Threads-of-reasoning

• SMART

• Key Performance Indicators, Key Performance Measures, Critical Resources

• Ranking matrices
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