System Integration How-To

correlate
stage measure | | [position
source

adjust lens

measure
alignment
signal

Gerrit Muller
USN-SE
Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

This paper has been integrated in the book “Systems Architecting: A Business
Perspective", |http://www.gaudisite.nl/SABP.html, published by
CRC Press in 2011.

Abstract

In this document we will discuss the full integration flow. We will discuss the goal
of integration, the relation between integration and testing, what is integration and
how to integrate, an approach to integration, scheduling and dealing with disruptive
events, roles and responsibilities, configuration management aspects, and typical
order of integration problems occurring in real life.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudi documents are available at:
http://www.gaudisite.nl/

version: 0.2 status: concept March 27, 2021

http://www.gaudisite.nl/SABP.html

1 Introduction

Quality problems and delays are one of the symptoms of the troublesome relation
between software and system The integration of software and hardware is in many
organizations taking place when both hardware and software are nearly finished.
Organizational boundaries propagate into the schedule causing too late integration
of crucial technologies. Systems architects have to ensure that software-hardware
integration starts very early.

System Integration is one of the activities of the Product Creation Process. The
Product Creation Process starts with a set of product needs and ideas, and results
in a system that:

e fits in customer’s needs and context
e can be ordered, manufactured, installed, maintained, serviced, disposed
o fits the business needs

During Product Creation many activities are performed, such as: feasibility
studies, requirements capturing, design, engineering, contracting suppliers, verifi-
cation, testing, et cetera. Decomposition is an universal method used in organi-
zation, documentation and design. Decomposition enables the distribution of work
in a concurrent fashion. The complement of decomposition is integration. Every
activity that has been decomposed in smaller steps will have to be integrated again
to obtain the single desired outcome.

Integration is an ongoing flow of activities during the entire product creation.
The nature of integration activities, however, shifts over time. Early in the project
technologies or components are integrated, while at the end of the project the entire
system is built and verified. In formal process description{] the description of
product integration is mostly limited to the very last phase of the total integration
flow, with a focus on the administrative and process aspects. We use the term
integration in the broader meaning of all activities where decomposed parts are
brought together.

In practice projects hit many problems that are caused by decomposition steps.
Whenever an activity is decomposed the decomposed activities normally run well,
however crosscutting functionality and qualities suffer from the decomposition.
Lack of ownership, lack of attention, and lack of communication across organi-
zational boundaries are root causes for these problems. The counter measure for
these problems is to have continuous attention for the integration.

'for example NASA Procedural Requirements (NPR)

Gerrit Muller USN-SE
System Integration How.—To page: 1
March 27, 2021 version: 0.2

1.1 Goal of Integration

The goal of integration is find unforeseen problems as early as possible, in order to
solve these problems in time. Integration plays a major role in risk reduction. The
word unforeseen indicates the main challenge of integration: How to find problems
when you don’t know that they exist at all?

Problems can be unforeseen because the knowledge of the creation team is
limited. May be nobody on earth did have the knowledge to foresee such a problem,
simply because the creation process enters new areas of knowledge. Problems can
also be unforeseen due to invalid assumptions. For instance, many assumptions are
being made early in the design to cope with many uncertainties. The limited intel-
lectual capabilities of us, humans, limit also the degree in which we can oversee all
consequences of uncertainties and of assumptions we make. A common source
of unforeseen problems is interference between functions or components. For
example, two software functions running on the same processor may perform well
individually, but running concurrently may be way too slow, due to cache pollution
or memory trashing.

1.2 Product Integration as part of Product Creation Process

e —
policy requirements integrate | test
—
policy
requirements and
specification
design
integrate test

-1 0. i, 28
strategy feasibility definition system englneenng mtegratlon fleld product operatlonal
design & test monitoring life cycle

Figure 1: Typical Product Creation Process and the concurrency of engineering
activities.

The Product Creation Process (PCP) is often prescribed as a sequence of phases
with increasing level of realization and decreasing level of risk. This is a useful
high level mental model, however one should realize that most activities have much
more overlap in the current dynamic world. The pure waterfall model, where
requirements, design, integration and test are sequential phases, is not practical

Gerrit Muller USN-SE
System Integration How.—To page: 2
March 27, 2021 version: 0.2

anymore. Much more practical is an approach with a shifting emphasis as shown
in Figure[I] A comparable approach is Rational Unified Process (RUP), see [2] and
for integration [3]]. Note especially the long ramp-up of the integration, the focus
of this chapter.

1.3 Integration in Relation to Testing

beta
test

system
test

0. il 2. 3. 4 St 6.
feasibility\definition \ system engineering) e field product operational
design integration & test monitoring life cycle

Figure 2: Zooming in on Integration and Tests

alpha
test

gamma

integrate test

Integration and testing is often used as identical activities. However, the two
activities are related and completely different at the same time.

Figure 2] zooms in on the integration and test activities. Integration is the
activity where we try to find the unknowns and where we resolve the uncertainties.
Testing is an activity where we operate a (part of a) system in a predefined manner
and verify the behavior of the system. A test passes if the result fits the specified
behavior and performance and otherwise it fails. Before integration starts testing is
applied at component level. During integration many tests may be applied as part
of the integration. These tests during integration are applied to find these unknowns
and to resolve the uncertainties. When the milestone is passed that the system is
perceived to be ready, then the systems engineers will run an entire system level
test suite. Normally, this run still reveals unknowns and problems. The system test
verifies both the external specification, as well as the internal design. When suffi-
cient stability of the system test is achieved a different working attitude is taken:
from problem solving to verification and finishing. The alpha test starts with a
hard milestone and is also finished at a well-defined moment in time. The alpha
test is the formal test performed by the product creation team itself, where the
specification is verified. The beta test is also a well-defined time-limited formal
test, performed by the "consuming" internal stakeholders: marketing, application,
production, logistics and service. The beta test also verifies the specification, but
the testers have not been involved in product creation. These testers are not blinded
by their a priori know-how. Finally the external stakeholders, such as actual users,
test the product. Normally, problems are still found and solved during these tests,
violating the assumption that the system is stable and unchanged during testing.
In fact, these alpha, beta, and gamma testers hit problems that should have been
found during integration. We will focus the rest of this chapter on integration,

Gerrit Muller USN-SE
System Integration How.—To page: 3
March 27, 2021 version: 0.2

with the main purpose to reduce risks in the testing phase by identifying (potential)
problems as early as possible.

2 What, How, When and Who of Integration

By necessity the integration of a system starts bottom-up with testing individual
components in a provisional component context. The purpose of the bottom-up
steps is to find problems in a sufficiently small scope; the scope must be small
enough to allow diagnosis in case of failure. If we bring thousands of compo-
nents together into a system, then this system will fail for certain. But it is nearly
impossible to find the sources of this failure, due to the multitude of unknowns,
uncertainties, and ill-functioning parts.

alpha

integrate
intee test

component
~ subsystem

system function

product‘

context

Figure 3: Integration takes place in a bottom-up fashion, with large overlaps
between the integration levels.

The focus of the integration activity is shifting during the integration phase.
Figure[3|shows the bottom-up levels of integration over time. Essential for integration
is that the higher levels of integration start already, when the lower levels of integration
are not yet finished. The different levels of integration are therefore overlapping.
Early during integration the focus is on functionality and behavior of components
and subsystems. Then the focus is shifting to system level functionality: do the
subsystems together operate in the right way? The last step in integration is to
focus on the system qualities, such as performance and reliability.

The integrator tries to integrate subsystems or functions as early as possible
with the purpose of finding unforeseen problems as early as possible. This means
that integration already takes place, while most of the new components, subsystems,
and functions are still being developed. Normally partial systems or modified
existing systems are used in the early phases of integration as substitute of the not
yet available parts. Figure [shows this transition from using partial and existing
subsystems to systems based on new developed parts.

Gerrit Muller USN-SE
System Integration How.—To page: 4
March 27, 2021 version: 0.2

adopt exsting _——

base SW

existing new
new application
SW dev system test and refine application

. " application integration
2 partial integrate and refine
existing base system application
systems for
SW testing SW for new HW
subsystem
test SW for new HW
2 existing SW dev system subsystem
new subsystem
base new HW subsystem I -/ teate integration
SyStemS existing base system \ test HW subsystem subsystem
integrated
system
adopt existing base SW
integrate H integrate
new base new base system test new base system system system
systems

time—»

Figure 4: During integration a transition takes place from using previous systems
and partial systems to the new system configuration.

The unavailability of subsystems or the lack of stability of new subsystems
forces the integrator to use alternatives. Figure [5] shows a classification of alter-
natives. Simple stubs in a virtual environment up to real physical subsystems in a
physical environment can be used. In practice multiple alternatives are combined.
As function of time the integration shifts from the use of stubs and a virtual environment
to as close as possible to the final physical reality.

The challenge for the project team is to determine what intermediate integration
configurations are beneficial. Every additional configuration adds costs: creation
costs as well as costs to keep it up-to-date and running. An even more difficult
conflict is that the same critical resources, dynamic positioning experts for instance,
are needed for the different configurations. Do we focus completely on the final
product, or do we invest in intermediate steps? Last but not least is the config-
uration management problem that is created with all integration configurations.
When hundreds or thousands of engineers are working on a product then most of
them are in fact busy with changing implementations. Strict change procedures for
integration configurations may reduce the management problem, but this conflicts
often with the troubleshooting needs during integration.

Crucial questions in determining what intermediate configurations to create
are:

e How critical or sensitive is the subsystem or function to be integrated?

e What are the aspects that are sufficiently close to final operation so that the
feedback from the configuration makes sense?

e How much needs to be invested in this intermediate step? Special attention

Gerrit Muller USN-SE
System Integration How.—To page: 5
March 27, 2021 version: 0.2

- spectrum —

physical physical complex

reality simulated virtual simple
/7 vinual environment
\/ simulated
! stubs
[physical —| | subsystems
environment \»j A A
\
; I
} (modified) Z / Y
[existing [—
|
\ SIS to-be-integrated
[(prototype) | | subsystem
\ new <>
subsystems

Figure 5: Alternatives to integrate a subsystem early in the project.

is required for critical resources.

e Can we formulate the goal of this integration system in such a way that it
guides the configuration management problem?

Based on these considerations we propose a stepwise integration approach
as shown in Figure [l The first step is to determine a limited set of the most
critical system performance parameters, such as image quality, productivity or
power consumption. These system performance parameters are the outcome of
a complicated interaction of system functions and subsystems; we call the set of
functions and subsystems that result in a system parameter a chain. We start to
define partial system configurations as integration vehicles once we have identified
critical chains. The critical chains serve as guidance for the integration process.

We strongly recommend focusing on showing the critical system performance
parameters as early as possible. In the beginning the focus is on “typical” perfor-
mance. Once the system gets somewhat more stable and predictable, then we get
room to also study “worst-case” and “boundary” performance.

It is important to monitor the system performance regularly, since many engineers
are still changing many parts of the total system. The early integration tests are
manual tests, because the system circumstances are still very premature and because
integrators have to be responsive to many unexpected problems. In due time the
chain and the surrounding system gets more stable, allowing automation of tests.
We can migrate the early manual integration steps into automated regression test.
The results of regularly performed regression tests must be monitored and analyzed
by system engineers. This analysis does not focus on pass or fail, but rather looks
for trends, unexplained discontinuities, or variations.

Gerrit Muller USN-SE
System Integration How.—To page: 6
March 27, 2021 version: 0.2

1 |Determine most critical system performance parameters.

2 |ldentify subsystems and functions involved in these parameters.

3 Work towards integration configurations along these chains of
subsystems and functions.

4 Show system performance parameter as early as possible;
start with showing "typical" system performance.

5 | Show "worst-case" and "boundary" system performance.

6 Rework manual integration tests in steps into automated regression
tests.

7 | Monitor regression results with human-driven analysis.

8 Integrate the chains: show system performance of different parameters
simultaneously on the same system.

Figure 6: Stepwise integration approach

Later during integration we have to integrate the chains themselves and to show
the simultaneous performance of the critical performance parameters.

The approach described above requires quite some logistics support. The project
leader will therefore make integration schedules in close cooperation with the
system engineers. Integration schedules have two conflicting attributes:

Predictability and stability to ensure timely availability of resources

Flexibility and agility to cope with the inherent uncertainties and unknowns.

The starting point to create a schedule is to determine a specific and detailed
integration order of components and functions. The integration order is designed
such that the desired critical system performance parameter can be measured as
early as possible.

Figure[7]shows an example of a specific order of functions required to determine
the image quality system performance parameter of a wafer stepper. Such a diagram
starts often at the right hand side: what is the desired output parameter to be
achieved? Next the question “What is needed to achieve this output?"” is asked
recursively. This very partial diagram is still highly simplified. In reality many of
these functions have multiple dependencies.

Worse is that often circular dependencies exist, for instance in order to align
source and destination we need to be in focus, while in order to find the focal
plane we need to be aligned. These dependencies are known during design time
and already solved at that moment. For example, a frequently used design pattern
is a stepwise refined: coarse and fine alignment, and coarse and fine focusing.

Gerrit Muller USN-SE
System Integration How.—To page: 7
March 27, 2021 version: 0.2

Consiare adjust light
— stage —{ | measure position éourcg
source X,y source X,y source
correlate measure X,y position X,y } adjust lens process
-1 stage " destination destination —)
destination align source expose —— qualify
—_— control x,y measure destination
calibrate destination alignment
—_ X,y 1 —l- signal focus
measurement —l-

Figure 7: Example of small part of the order of functions required for the image
quality system performance parameter of a wafer stepper.

The creation of a detailed integration schedule provides worthwhile inputs for the
design itself. Making the integration schedule specific forces the design team to
analyze the design from integration perspective and often results in the discovery
of many (unresolved) implicit assumptions.

The existence of this integration schedule must be taken with a grain of salt.
It has a large value for the design and for understanding the integration. Unfor-
tunately, the integration process itself turns out to be poorly predictable: it is an
ongoing set of crises and disruptive events, such as late deliveries, breaking down
components, non-functioning configurations, missing expertise, wrong tolerances,
interfering artifacts, et cetera. Crucial to the integration process are capabilities to
improvise and to troubleshoot.

The integration schedule is a rather volatile, and dynamic entity. It does not
make sense to formalize the integration heavily, neither to keep it updated in all
details. Formalization and extensive updating takes a lot of effort with little or no
benefits. The recommended approach is to use the original integration schedule
as kind of reference and to use short cyclic planning steps to guide the integration
process. Typical meeting frequency during integration is once per day. Every
meeting results and problems, required activities and resources, and short-term
schedule are discussed.

During integration many project team members are involved with different
roles and responsibilities:

e Project leader

System architect/engineer/integrator

e System tester

e Logistics and administrative support personnel

e Engineers
Gerrit Muller USN-SE
System Integration How-To page: 8

March 27, 2021 version: 0.2

e Machine owner

project leader systems architect/ system tester
engineer/integrator

organization system requirements test

resources design inputs troubleshooting

schedule test specification report

budget schedule rationale

troubleshooting
participate in test

logistics and engineers machine owner
administrative support

configuration design maintain test model
orders component test support test
administration troubleshooting

participate in test

Figure 8: Roles and responsibilities during the integration process.

Figure [§] shows these roles in relation to their responsibilities. Note that the
actual names of these roles depend on the organization, we will use these generic
labels in this chapter.

The project leader is the organizer who takes care of managing resources,
schedule and budget. Based on inputs from the system engineer the project leader
will claim and chase the required resources. The project leader facilitates the
integration process. This contribution is critical for the project timing.

The system architect, systems engineer and system integrator role is in fact a
spectrum of roles that can be performed by one or more persons, depending on
their capabilities. A good system architect is sometimes a bad system integrator
and vice Vers This role is driven by content, relating critical system performance
parameters to design and to test. In this role the rationale of the integration schedule
is determined and the initial integration schedule is a joint effort of project leader
and systems engineer. The integral perspective of this role results in a natural
contribution to the troubleshooting.

The system tester is the practical person actually performing most of the tests.
During the integration phase lots of time of the system tester is spent in troubleshooting,
often of trivial problems. More difficult problems are escalated to engineers or
system integrator. The system tester documents test results in reports.

The machine owner is responsible for maintaining a working up-to-date test
model. In practice this is a quite challenging job, because many engineers are
busy with making updates and performing local tests, while system integrator and

2Critical characteristics for architects are the balance theoretical versus hands-on, conceptual
versus implementation, creative and diverging versus result driven and converging. During
integration the emphasis must be on hands-on, implementation, and result driven an converging.

Gerrit Muller USN-SE
System Integration How.—To page: 9
March 27, 2021 version: 0.2

system tester need undisturbed access to a stable test model. We have observed
that explicit ownership of one test model by one machine owner increases the test
model stability significantly. Organizations without such role lose a lot of time due
to test model configuration problems.

Engineers deliver locally tested and working components, functions or subsystems.
However, the responsibility of the engineers continues into the integration effort.
Engineers participate in integration tests and help in troubleshooting.

The project team is supported by all kinds of support personnel. For integration
the logistics and administrative support is crucial. They perform configuration
management of test models as well as the products to be manufactured. Note
that integration problems may induce changes in the formalized product documen-
tation and the logistics of the final manufacturing, which can have significant
financial consequences due to the concurrency of development and preparation
of production. The logistics support people also have to manage and organize
unexpected but critical orders for parts of test models.

3 Configuration Management

Configuration management and integration are intimately related as discussed in
the previous sections. We should realize that configuration management plays a
role in many processes. Figure [9] shows a simplified process decomposition of
those processes that are related to configuration management.

supplier company customer
Customer- «—orders— sales logistics production «~—order— Operation
Oriented Customer-Oriented Process —product—» ProCess
Process | 800ds— — P ’ .
g g goods flow b life
! 2 é cycle
a =]]
= — © s
St 3
Product = :§ l
Creation ; Purchasing

Process <—specs—{ Product Creation Process Fﬁtender— Process

Figure 9: Simplified Process diagram that shows processes that are relevant from
configuration management perspective.

Basically, the internal Customer Oriented and Product Creation processes are
linked to the related supplier and customer processes. There are two main flows
where configuration management plays a role:

e Creation flow, from customer requirements to component specifications to
technical product documentation to be used in the other flow.

Gerrit Muller USN-SE
System Integration How.—To page: 10
March 27, 2021 version: 0.2

e Goods flow, a repeating set of processes where orders are fulfilled by a
logistics and production chain.

In principle the creation flow is a one-time project activity. This flow may
be repeated to create successor products, but this is a new instantiation of this
flow. The goods flow is a continuous flow with life cycle considerations. The final
product as used operationally by customers also has its own life cycle.

supplier company customer
content of N duct
pipeline pleteEle
components . products —
goods flow life
cycle
TPD TPD
test models li
L . ' ' tender
specifications test models
legend data phys_lcal
entity

Figure 10: The simplified process diagram annotated with entities that are under
configuration management.

Many entities have changing configurations and therefore need configuration
management. Figure [I0] shows the same process decomposition as Figure [9] but
now annotated by entities under configuration management. Two classes of config-
uration management entities exist: information and physical items. The infor-
mation entities are normally managed by procedures and computer based tools.
However for physical entities the challenge is to maintain consistency between the
actual physical item and the data in the configuration management administration.
Especially during the hectic period of integration the administration sometimes
differs from the physical reality, causing many nasty problems. Sometimes more
effort in processes helps, however, sometimes more effort in processes results in
more latency and more work-around behavior; unfortunately, there is no silver
bullet for configuration management processes.

The main configuration management entities during integration are the test
models. Changes in test models may have to propagate to other entities, such as
specifications, technical product documentation, and, due to concurrency, also to
components and products in the goods flow processes.

One particular area of attention is the synchronization of components, subsystems
and test models. All these entities exist and change concurrently. A certain pull to

Gerrit Muller USN-SE
System Integration How.—To page: 11
March 27, 2021 version: 0.2

use latest versions is caused by the fact that most problems are solved in the latest
version. However, integrators and testers need a certain stability of a test model.
This makes integrators and testers hesitant to take over changes. One should realize
that only a limited amount of test models exist, while all these engineers create
thousands of changes. On top of this problem comes a logistics problem: from
change idea to availability of changed component or function may take days or
weeks. Sometimes one single provisionally changed component is available early.

One way of coping with the diversity of test model configurations is to clearly
formulate the integration goals of the different test models. Note that these integration
goals may change over time, according to Figure[3]

4 Typical Order of Integration Problems Occurring in Real
Life

Experience in many integration phases resulted in the observation of a typical order
when integration problems occur. This typical order is shown in Figure[TT]

1. The (sub)system does not build.

2. The (sub)system does not function.

&, Interface errors.

4. The (sub)system is too slow.

5 Problems with the main performance parameter, such as image quality.
6. The (sub)system is not reliable.

Figure 11: Typical Order of Integration Problems

Typically none of these problems should occur, but despite mature processes
all of them occur in practice. The failure to build the system at all is often caused
by the use of implicit know-how. For example, a relatively addressed data file that
resides on the engineers workbench, but that is not present in the independent test
environment. As a side remark we observe the tension between using networked
test models. Network connections shorten software change cycles and help in
troubleshooting, however, at the same time the type of problems we discussed here
may stay invisible.

The next phase in integration appears to be that individual components or
functions work, but cease to function when they are combined. Again the source of
the problem is often a violated implicit assumption. This might relate to the third
problem, interface errors. The problem might be in the interface itself, for instance
different interpretations of the interface specification may result in failures of the

Gerrit Muller USN-SE
System Integration How.—To page: 12
March 27, 2021 version: 0.2

combination. Another type of problem in this category is again caused by implicit
assumptions. For example, the implementation of the calling subsystem is based
on assumed functionality of the called subsystem. It will be clear that different than
assumed behavior of the called subsystem may cause problems for the caller. These
types of problems are often not visible at interface specification level, because none
of the subsystem designers realized that the behavior is relevant at interface level.

Once the system gets operational functionally, then the non-functional system
properties become observable. The first problem that is hit in this phase by integrators
is often system performance in terms of speed or throughput. Individual functions
and components in isolation perform well, but when all functionality is running
concurrently sharing the computing resources then the actual performance can be
measured. The mismatch of expected and actual performance is not only caused
by concurrency and sharing, but also by the increased load of more realistic test
data. On top of these problems non-linear effects appear when the system resources
are more heavily loaded, worsening overall performance even more. After some
redesigns the performance problems tend to be solved, although continuous monitoring
is recommended. Performance tends to degrade further during integration, due to
added functionality and solutions for other integration problems.

When the system is both functional and well performing, then the core function-
ality, the main purpose of the product, is tested extensively. In this phase the appli-
cation experts are closely involved in integration. These application experts use
the system differently and look differently at the results. Problems in the critical
system functionality are discovered in this phase. Although these problems were
already present in the earlier phases, they stayed invisible due to the dominance
of the other integration problems and due to the different perspectives of technical
testers and application experts.

During the last integration phase the system gets used more and more inten-
sively. The result is that less robust parts of the design are exercised more causing
system crashes. A common complaint in this phase is that the system is unreliable
and unstable. Part of this problem is caused by the continuous influx of design
changes triggered by the earlier design phases, every change also triggers new
problems.

S Acknowledgements

Dinesh Verma stimulated me to write this paper. Roland Mathijssen provided
feedback and citations.

Gerrit Muller USN-SE
System Integration How.—To page: 13
March 27, 2021 version: 0.2

References

[1] Gerrit Muller. The system architecture homepage.
gaudisite.nl/index.html, 1999,

http://www.

[2] Wikipedia. Rational unified process (rup). http://en.wikipedia.

org/wiki/Rational_Unified_Process) 2006.

[3] Wikipedia. Rup test discipline. http://en.wikipedia.org/wiki/

Rational_Unified Process#Test_Discipline, 2006.

History
Version: 0.2, date: August 6, 2010 changed by: Gerrit Muller
e textual updates

e changed status to concept
Version: 0.1, date: July 18, 2006 changed by: Gerrit Muller

e Added explanation of abbreviations

o added references

o added component testing before integration

e added footnote about critical characteristics of system architect during integration
Version: 0, date: July 4, 2006 changed by: Gerrit Muller

e Created, no changelog yet

Gerrit Muller
System Integration How-To
March 27, 2021 version: 0.2

USN-SE
page: 14

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process#Test_Discipline
http://en.wikipedia.org/wiki/Rational_Unified_Process#Test_Discipline

	Introduction
	Goal of Integration
	Product Integration as part of Product Creation Process
	Integration in Relation to Testing

	What, How, When and Who of Integration
	Configuration Management
	Typical Order of Integration Problems Occurring in Real Life
	Acknowledgements

