System Architecting

Apply and

: Collect facts
earn credit

N
N\

Integrate facts,
create vision

Communicate

Gerrit Muller
USN-SE
Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This book addresses the role of the system architect and the role of the system
architecting process within the business:

e What is the role and the task of the (system) architect?
e How does the architect do his work?

What are the main activities of the architect?

e How does the architect fit in the organization?

What kind of person is the architect?
e How does architecting fit in the business?

Note: this book is likely to be refactored in smaller books in the future.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudi documents are available at:
http://www.gaudisite.nl/

version: 1.8 status: preliminary draft November 18, 2023

Introduction

This book bundles the articles and intermezzo’s produced by the Gaudi{ project.

At this moment the book is in its early infancy. Most articles are updated
based on feedback from readers and students. The most up to date version of the
articles can always be found at [[16]. The same information can be found here in
presentation format.

Chapters can be read as autonomous units. The sequence choosen here is more
or less top down, hopping from one viewpoint to the next. On a regular base
a sidestep ("Intermezzo") is being made, either to describe a more fundamental
notion, or to propose a more challenging point of view.

Note: this book is likely to be refactored in smaller books in the future.

System Architecture: The Silver
Bullet?

Unchangeable
Specifications

Avoid nasty

Surprises Certainty
Unchangeable
Schedules
Avoid risks

0.1 Introduction

The expectation level with respect to processes in general and the system archi-
tecture process in particular can vary from skeptical to blind faith. The skeptics
have experienced that horrible specifications and designs can be pursued under the
grand name of Architecture. The followers with blind faith are at the opposite end
of the spectrum, their believe in processes inhibits them from seeing the limitations
and constraints from the processes applied.

The central message of this Intermezzo is:
Silver Bullets do not exist.

This Intermezzo intends to set realistic expectation levels with respect to the
System Architecture Process, and describes the ingredients for successful appli-
cation.

0.2 Why System Architecture?

System Architecting is a means to create systems efficient and effective, by supplying
overview, by guarding consistency and integrity, and by balancing. In other words
the System Architect helps the development team to find its way in a rather complex,
dynamic and uncertain world.

From psychological point of view people apply their own survival mechanisms,
when they perceive a threat. One of the most common survival mechanisms is The
Quest for Certainty, see subsection [0.2.1]

Unfortunately System Architecting will never remove all uncertainties, see
subsection The application of a system architecture process can help in the
risk management, amongst others by prevention, and by minimizing impact.

Successful application of system architecture is far from trivial, section [0.3|
describes how the System Architecture Process should be applied to meet the goals
of efficiency and effectively.

0.2.1 The Quest for Certainty

This section provides a caricatural view on human behavior based on a free inter-
pretation of the Maslow Hierarchy of Needs, as discussed for instance in [7]]. This
exaggerated view matches with the security needs in the lower Maslow Hierarchy.
Note that less defensive behavior can be triggered by needs in the higher layers,
were words such as adventurous en explorative are being used.

The majority of people, including managers and engineers, have a need for
certainty. Their ideal is to have stable, unchangeable sets of specifications, schedules
et cetera. This (hopefully) isolates them from the nasty surprises of reality see
table 1l

e incompetent people

e human mistakes

e Jack of collaboration or synergy

e misunderstanding or miscommunication

e changing markets

e fast moving competition

e unforeseen physical, chemical, mechanical properties
e mother nature (illnesses, floods)

Table 1: Nasty Surprises of Reality

Unfortunately these nasty surprises are a fact of life. Our human capability to
control these phenomena is quite limited.

Risk management can help to be more robust. However risk management
certainly does not remove these phenomena and it also does not reduce the conse-
quences to zero. Risk management balances probability, effect, and cost.

People with a need for certainty are willing to accept any method or process
which promises certainty. In other words certainty appears to be their personal key
driver. It is better to rephrase this key driver as fo avoid nasty surprises, which is
closer to the internal motivation at the one hand and which gives a handle later on
to manage the expectations. Figure[I] visualizes these drivers.

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: iv
November 18, 2023 version: 1.8

Unchangeable
Specifications

Avoidnasty | Certainty
Surprises
Unchangeable

Schedules

- Avoid risks

Figure 1: Personal key driver fo avoid nasty surprises

0.2.2 Disclaimer; Setting the Expectations to a realistic level

The Gaudi Project will not deliver a Plug-and-Play System Architecture Process.
System architects which have read all the articles and followed the course will not
automatically be successful.

The Gaudi project will deliver a large set of consistent background material for
system architects. This material ranges from process and architecture principles,
providing insight and understanding, to more specific how-to’s which provide more
directly applicable guidelines.

The competent system architect will use the material by customizing it to the
specific problem to be addressed. At the same time the system architect will have
to interact with the environment to share this customized way of working.

Whenever the material is applied literal, this is a strong indication that the
organization and the system architect do not work explicit enough on the way of
working.

0.3 How: Critical Success Factors

Ingredients for an effective application of a system architecture process are shown
in table

No method or process will function without these critical success factors. A
process can not be used as substitute for know how or common sense.

0.3.1 Know-How

The core of the system architecture work is know-how, ranging from pure technology
know-how to application and business know-how. Active control on a broad basis
is a prerequisite for a system architect.

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: v
November 18, 2023 version: 1.8

e Know-How

e Common Sense
e Pragmatics

e Critical attitude
e Social skills

e Drive

e Vision

Table 2: Critical Success Factors for an effective application of a System Archi-
tecture Process

0.3.2 Common Sense

Most problems encountered during Product Creation require common sense to
solve them. Mechanistic approaches severely limit the solution space, resulting
in complex solutions. System architects are capable of "lateral” thinking, allowing
solutions in previously unexpected directions.

0.3.3 Pragmatics

The holistic approach can easily derail in a sea of seemingly conflicting require-
ments and viewpoints. The system architect needs a significant amount of pragmatism
to be selective and focused, while being holistic in the back of his mind.

0.3.4 Critical attitude

Clear diagrams, tables with facts and smooth presentations give the impression of
high quality and increase the confidence. However these same diagrams, tables and
presentations conceal the forgotten, misinterpreted, or underestimated facts. The
system architect must always be alert, for instance by asking questions as shown in
table 3

0.3.5 Drive

A good system architect has a passion for his architecture, it has an emotional
value.
An architect which is working entirely according to the book, obediently going
through the motions, will produce a clinical architecture without drive or ownership.
Good architectures have an identity of themselves, which originate in the drive
of the architect. Such an architecture is an evolving entity, which is appreciated by
the stakeholders.

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: vi
November 18, 2023 version: 1.8

Do we address the right problem or requirement?

Is the customer/user on-board?

Is this design adequate?

Consists the input data from facts, wishes or ideas?

Do we need so many people for the implementation?

Does this process or organization fit the problem?

Table 3: Critical Attitude: Examples of questions to be asked by the System
Architect

0.3.6 Vision

The system architect needs to have a vision to be able to provide direction. A vision
enables an evolution of existing architectures to desired architectures. Having
vision is not trivial, it requires a good understanding of needs (the problem) and
means (the solution) plus the trends (opportunities and threats) in both needs and
means.

0.4 Summary

The one sentence summary of this intermezzo is: Silver bullets do not exist. Table[4]
gives a bullet-wise summary.

e Most people want to avoid nasty surprises

Most people are looking for certainty

Silver Bullets do not exist

System Architecture is not a golden bullet

Critical Success Factors: Know-How, Common Sense, Pragmatics, Critical
attitude, Drive and Vision

Table 4: Summary

0.5 Acknowledgements

Hans Gieles suggested improvements to increase the cohesion and the red line in
this Intermezzo.

Henk Obbink and Angelo Hulshout and many others pointed out that "The
Golden Bullet” should have been ”The Silver Bullet”, which has been changed

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: vii
November 18, 2023 version: 1.8

finally. Adriaan van den Brand pointed out the forgotten change of golden into
silver.

Eugene Ivanov pointed out that evolution aspects were missing. The result is
the addition of vision as critical success factor.

Steve R. Nanning indicated unclarity in the abstract and criticized the too
negative phrasing of the Quest for Certainty. Stephen Boggess added a question to
the list in Section “Critical Attitude”. Ning Lu added more surprises and critical
success factors.

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: viii
November 18, 2023 version: 1.8

Part 1

Processes

Chapter 1

Process Decomposition of a
Business

customer

Policy and
Planning Process

\cr+s;’

‘ People, Process, and Technology Management Process

1.1 Introduction

This chapter positions the system architecting process in a wider business scope.
The objective of this chapter is to provide system architects insight in the business
processes and especially in the processes where system architects actively contribute.
The focus is on companies that create physical products. Other types of businesses,

such as solution providers, services, courseware, also need systems architecting.
The process structure will deviate somewhat from the structure presented here. See
Intermezzo “Products, Projects, and Services” for a discussion on the processes in
these other businesses.

1.2 Process Decomposition

The business process can be decomposed in 4 main processes as shown in Figure[I.1]
We have on purpose ignored the supporting and connecting processes. This simpli-
fication will allow us to get a number of more fundamental insights in the main
processes.

customer

Business
Drivers

Customer
Roadmap
—Information—>

——Product—»
——Support—»

—S5——

«——Order

|

l—

8 x
Policy and o _r§ presales sales logistics production service
g £ material —»| . 5%
Planning Process | & & Customer-Oriented Process
22 e £
‘ | a © ‘ 2 = il
= el ° 2 8 %]
gg 2 ex B3 %%
S £ 5 oS8 a e 232
S 45 (%) — o O]
5B b S E S 3
£8 3 3 o 2 5 28
= 2 Z w < g 8 o
l l l |a_)lo &

Product Creation Process

Budgets

People
Technology:
Process

Technology, Process,
and People roadmaps

People
—Technology—»|
Process

Needs and
Feedback

le—

People, Process, and Technology Management Process

Figure 1.1: Simplified decomposition of the business in 4 main processes

The function of the 4 main processes is:

Customer Oriented Process performs in repetitive mode all direct interaction with
the customer. This process is the cash flow generating part of the enterprise.
All other processes only spend money.

Product Creation Process feeds the Customer Oriented Process with new products.
This process ensures the continuity of the enterprise by creating products that
keep the company competitive. In this way the Product Creation Process
enables the Customer Oriented Process to generate cash flow in the near
future as well.

People, Process, and Technology Management Process manages the competencies
of the employees and the company as a whole. The competencies of the
employees and the company are the main assets of a company.

Policy and Planning Process is the management process. The Policy and Planning
Process defines the strategy, the long term direction of the company, and it
balances the shorter term tensions between the three other main processes.
The Policy and Planning Process uses roadmaps and budgets to define the

Gerrit Muller USN-SE
System Architecting page: 3
November 18, 2023 version: 1.1

direction for the other processes. Roadmaps give direction to the Product
Creation Process and the People, Process and Technology Management Process.
For the medium term these roadmaps are transformed in budgets and plans,
which are committal for all stakeholders.

customer

Information

Support

presales sal

‘\Aanagemen ‘ material 'Cashfibwﬁéﬁéfatlon S5n

maps
Documentation

1

v A 2 ¥

| Tomorrow's Céshflow |

] Assets

Figure 1.2: Decomposition of the business in 4 main processes, characterized by
their financial meaning

The 4 processes as described here are different in nature. The Customer oriented
process executes over and over a well defined set of activities. The system architect
does not participate in active role in this process. However since the Customer
Oriented Process is the main customer of the Product Creation Process, it is crucial
that the system architect understands, or better has experienced, the Customer
Oriented Process.

The system architect is in continuous interaction with many stakeholders, mostly
about technical aspects. From this perspective the architect will generate inputs
for the People and Technology Management Process. This might even result in
participation in this process for instance by coaching, participation in the appraisal
process, or participation in technology studies.

The number of instances of each process is related to different entities:

Customer Oriented Process: Depends on geography, customer base, and supply
chain.

Product Creation Process: One per entity to be developed, where such an entity
can be a product family, a product, or a subsystem.

People and Technology Management Process: One per “competence”, where a
competence is a cohesive set of technologies and methods.

Gerrit Muller USN-SE
System Architecting page: 4

November 18, 2023 version: 1.1

Policy and Planning Process: One per business. This is the pro-active integrating
process.

The evolutionary developments of product variants and new releases are seen as
individual instances of the Product Creation Process. For example the development
of a single new feature for an existing product is performed by following the entire
Product Creation Process. Of course some steps in the process will be (nearly)
empty, which does not cause any harm.

1.3 Process versus Organization

This process decomposition is not an organization, see Intermezzo “What is a
Process”. A single person can (and often will) fulfill several roles in different
processes.

System architects specifically spend most of their time in Product Creation
Process (circa. 75%), a considerable amount of time in the Policy and Planning
Process (circa 20%), and a small fraction of their time in the People, Process and
Technology Management Process.

Most engineers will spend a small amount of time in the People, Process, and
Technology Management Process, working on technologies and capabilities, while
the majority of their time is spend in the Product Creation Process.

1.4 Value Chain and Feedback

customer
./
I3 I\ —T// |
Policy and Customer-Oriented

+-$$»

18
@
=)
v

Planning Process Process

Product Needs
and feedback

~ad

N Qc'(,

Product

eo'b

Ray -

.7
U «—Budget, plan—

Technolo, Process,
and People roadmaps
Budge

J ‘//

‘People, Process, and Technology Management Process

Figure 1.3: The value chain and the feedback flow in opposite direction

Gerrit Muller USN-SE
System Architecting page: 5
November 18, 2023 version: 1.1

The value chain in these processes starts at the assets in the People, Process,
and Technology Management Process. The assets are transformed into potential
money by the Product Creation Process. The Customer Oriented Process finally
turns it into real money. Figure shows the value chain.

The feedback flows in the opposite direction, from customer via the Customer
Oriented Process and the Product Creation Process to the People Technology and
Process Management Process. Customer will communicate mostly with sales and
service people. Needs and complaints are filtered by the reporting system before
the information reaches Product Creation Teams. Only a small part of the customer
feedback reaches the People, Process, and Technology management.

This simple model explains why the knowledge about the customer gets less
deeper in the organization. The consequence is that internal technology and process
provides show to little concern for urgent customer or business challenges; the
sense of urgency seems to be lacking. We can take preventive measures, such as
sending process and technology managers to customer sites, once we are aware of
the gap caused by this natural information flow.

1.5 Decomposition of the Customer Oriented Process

~Information—
—Product—»

—Support—»

[—$——

—Order

Acquisition & Support
7% &
% Order I
- Material m .

Customer-Oriented Process

Figure 1.4: Decomposition of the Customer Oriented Process

The Customer Oriented Process is often the largest process in terms of money.
From business point of view it is an oversimplification to model this as one monolithic
process. Figure shows a further decomposition of this process.

The Order Acquisition Process and the Service Support Process are operating
quite close to the customer. The Order Realization Process is already somewhat
distant from the customer.

The owners of all these three processes are stakeholders of the Product Creation
Process. Note that these owners have different interests and different character-
istics.

Gerrit Muller USN-SE
System Architecting . page: 6
November 18, 2023 version: 1.1

1.6 Extended Process Decomposition; Generic Develop-

ments
customer
v v v v
Policy and ot) "
Planning Process Customer-Oriented Process
T;;E 5 Vv v v h 2
38 5 ‘ Product Creation Process

Generic Developments
Creation Process

8

‘ People, Process, and Technology Management Process

Figure 1.5: The Process Decomposition extended with a generic developments
creation process

Companies which develop product families try to capitalize on the common-
ality between the members of the product family. This is often implemented by the
development of common subsystems or functions. In the diagramI.3]this is called
Generic Developments Creation Process. A wide variety of names is used for
this phenomena, such as re-use, standard design, platform et cetera.

1.7 Acknowledgements

Discussions with and critical comments from Rard de Leeuw, Jiirgen Miiller, Henk
Obbink, Ben Pronk and Jan Statius Muller helped to shape, to improve the structure
and to sharpen the contents of the article "Positioning the System Architecture
Process". This intermezzo is based on the first sections of this article. I am grateful
for their contribution.

Discussion with Ab Pasman helped to remove some architect bias from the
process decomposition, by providing a further decomposition of the Customer
Oriented Process.

Jaap van der Heijden helped to improve the layout of the diagrams and with
the document structure.

Gerrit Muller USN-SE
System Architecting . page: 7
November 18, 2023 version: 1.0

Chapter 2

What is a Process?

. formalism
dure —supported — ool
by

template

2.1 Introduction

We rely in this part heavily on the notion of a process. This intermezzo is defining
“process” for the context of this book. We define “process”, since this word is
heavily overloaded in our daily world. We also discuss the relationship of processes
with organizations and the drive for process improvement.

2.2 What is a process

We use process as an abstracted way of working. A process can be characterized
the attributes shown in Figure[2.1
In [10] the following definition is given:

A process is an activity which takes place over time and which has a precise
aim regarding the result to be achieved. The concept of a process is hierarchical
which means that a process may consist of a partially ordered set of subprocesses.

This definition parallels the characterization above. It adds explicitly the potential
hierarchical decomposition of the process itself.

The notion of a process can be seen as one step in an abstraction hierarchy,
as shown in[2.2] The most abstract notion in this hierarchy is the “principle”. A
principle is a generic insight that can be used for many different purposes. An
example of a principle is decomposition: Whenever we have something big, e.g.

Purpose What is to be achieved and why

Structure How will the goal be achieved

Rationale What is the reasoning behind this process

Roles What roles are present, what responsibilities are
associated, what incentives are present, what are the criteria
for these roles

Ordering What phasing or sequence is applied

Figure 2.1: Process Attributes

. is formalism
principle—drives— process—elaborated > procedure —supported — tool

y W template
- abstract: > <«+———specific and executable——»

Figure 2.2: A process within an abstraction hierarchy

a problem or project, then we can decompose it in smaller pieces. These smaller
pieces are easier to solve or create than the original big one.

A process is rather abstract. It describes the essentials of the purpose, structure,
rationale, roles and timing, leaving plenty of implementation freedom. The power
of a process is its abstraction, which enables its application in a wide range of
applications, by tailoring its implementation to the specific application.

A process can be tailored and elaborated in one or more procedures that describe
cookbook-like what needs to be done when and by whom. The why in a procedure
has often disappeared, to be replaced by practical information for the execution.

The implementation of a procedure can be supported by tools, notations, templates
and other means.

In practice managers and employees ask for tools (means) and procedures
(what and how). However, without understanding of the thinking behind the procedure
(why), as given in the process, these tools and procedures can be meaningless. The
process captures the rationale behind procedures, tools, notations, templates, and
other means.

Gerrit Muller USN-SE
System Architecting page: 9

November 18, 2023 version: 1.0

2.3 The relation between Processes and Organizations

Traditional management is focused on “organizations”. Where organization are
characterized by the attributes shown in Figure [2.3]

What functions are needed?
Who is responsible for this function?
What is the hierarchical relation between the functions?

What meeting structure is required?

Figure 2.3: Organization Attributes

This management views is insufficient in today’s fast moving complex world.
The weak spots of the organizational view are shown in Figure [2.4]

Many activities cut arbitrarily through the 1-dimensional
hierarchy, causing

lack of ownership, unclear responsibilities
high impedance transitions at organizational boundaries

Functions are a combination of tasks, where, in most cases,
no human exists with the required skills

Meeting structures are insufficient and inefficient to get
things done

Figure 2.4: Weaknesses of the organizational view

Processes are more modern instruments for management. Many processes are
required to ensure the effective functioning of an organization. These processes are
interrelated and overlapping. Processes are non-orthogonal and don’t fit in a strict
hierarchical structure.

Most complex product developments don’t fit in the classical hierarchical organi-
zation model, but require a much more dynamic organization model, such as the
currently popular more chaotic network organization. Processes are the means
which help to ensure the output of dynamic organization models such as a network
organization.

Processes can be seen as the blueprint for the behavior of the people within the
organization. People will fulfill multiple roles in multiple processes. The process
description is intended to give them an hold on what is expected from them.

All important activities will be covered by a process, requiring the definition of

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 10
November 18, 2023 version: 1.0

ownership, relation with other processes et cetera. The allocation of roles to people
is much more dynamic than in conventional hierarchies. More dynamic allocation
enables a better match between personal capabilities and required skills. In practice
dynamic allocation leads to more distribution of responsibilities, making it more
feasible to match capabilities and skills.

The 80/20 rule is also valid for processes: 80% of the behavior is covered
by the processes, while 20% requires independent creative behavior. An organi-
zation without processes drowns in chaos, while an organization which blindly
implements them will be killed by its own inertia, its inability to adapt to the fast
changing world.

For reasons of continuity and stability an hierarchical organization will remain.
The slowest evolving dimension is mostly used as a basis for this hierarchy. This
hierarchy functions as anchor point for people in the continuously changing process
world, but should play only a minor role in the entire operation.

The Centurion turn around operation within Philips, orchestrated by CEO Jan
Timmer in the early nineties, urged the Philips managers and employees to change
from an introvert organization point of view to an external result oriented process
point of view.

2.4 Process Improvement

Urged by competitive pressure organizations look for ways to improve their efficiency.
Many opportunities for improvement have a strong process component.

The 7S model by McKinsey gives a practical way to improve an organization
in a balanced way. The message behind this model is that at least 7 views must be
balanced when changing an organization. See Figure[2.5]for the 7 views.

The most common pitfall in improvement programs is the over-emphasis on the
process component, or worse the isolation of the process improvement. Organiza-
tions assessing their maturity level, for instance by Maturity Models [22]], quite
often get too much process focus. The Process Improvement Ofﬁcmﬂ is focused
on process issues only. Hence where the process view is introduced as an extrovert
result oriented approach, it suddenly turns into an introvert improvement program,
where business goals and drivers are unknown.

This is a quite sad situation: The opportunities for improvement are ample with
a strong process component, however due to the wrong focus a negative effect is
obtained (such as rigid procedures).

Recommendation: Process improvements should originate from the directly
involved people, for instance project leaders, engineers, architects et cetera. Invite
participation by this group in such a way that they feel the ownership.

!The existence of this function in itself is quite dangerous, it invites the unbalanced isolated
"improvement" behavior

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 11
November 18, 2023 version: 2.2

systems
procedures

responsibilities
accountabilities

structure

X

employees

shared
value

. culture
skills leadership style

competencies

Figure 2.5: McKinsey 7S model

2.5 Acknowledgements

Discussions with and critical comments from Rard de Leeuw, Jiirgen Miiller, Henk
Obbink, Ben Pronk and Jan Statius Muller helped to shape, to improve the structure
and to sharpen the contents of the article "Positioning the System Architecture
Process". This intermezzo is based on the first sections of this article. I am grateful
for their contribution.

Gerrit Muller

System Architecting

November 18, 2023

version: 2.2

USN-SE
page: 12

Chapter 3

The Product Creation Process

3.1 Introduction

The Product Creation Process described how an organization gets from a product
idea to a tested system and all product documentation that is required for the
Customer Oriented Process. System Architects spend most of their time in the
Product Creation Process. This chapter describes the Product Creation Process,
including organizational aspects and the roles of people within the process.

3.2 The Context of the Product Creation Process

Figure[I.1|shows the context of the Product Creation Process in the decomposition
of the business in 4 main processes. From Product Creation Process point of view
the Policy and Planning Process determines the charter for the Product Creation
Process. The Technology and People Management Process supplies people, process
and technology enabling the Product Creation. The Customer Oriented Process is
the customer: it receives and uses the results of Product Creation.

The Product Creation Process has a much wider context than the conventional
“Research and Development” or “Development and Engineering” departments.
The Product Creation Process includes everything that is needed to create a new
product, for instance it includes:

e Development of the production process

e Design of the logistics flow and structure
o Development of required services

e Market announcement

e Market introduction

In other words the Product Creation Process is a synchronized effort of nearly
all business disciplines within a company.

The term Product Creation is not only used for the development of entirely new
products, but applies also to the development of variations of existing products
or the development of upgrades or add-on products. The implementation of the
Product Creation Process can vary, depending on the product being developed; a
small add-on product will use a different organization than the development of a
large new complex product.

3.3 Phases of the Product Creation Process

0. 1. 2. 3. 4. 5.
feasibility definition system engineering) integration field
design & test monitoring
sales
logistics
production
service

development & engineering: marketing, project management, design

Figure 3.1: A phased approach of the Product Creation Process, showing the partic-
ipation of all disciplines during the entire process

The Product Creation Process can be structures by using a phased approach.
Figure|3.1|shows the phases as used in this book. The figure shows the participation
of all business disciplines during this process.

These phases are used across all business functions which have to participate
in the Product Creation Process. It is a means to manage the relations between
these functions and to synchronize them. Note that sales, production, logistics and
service people are involved in the Product Creation Process. Their participation is
required to understand the needs of the Customer Oriented Process. A good under-
standing of these needs is required to develop the new procedures and processes for
the customer oriented process, such as ordering, manufacturing, and installation.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 14
November 18, 2023 version: 2.2

Figure [3.2] zooms in on the expected progress for the design deliverables. We
use the term work flows for the horizontal classes of activities: needs analysis,
product specification, design, verification and validation, and engineering. Note
that needs analysis, product specification, and design progress concurrently. Also
note that the first review typically takes place long before any of the work flows is
complete. The main question for the first review is: does it make sense to invest in
the later phases?

0. il. 2. 3. 4. 5.
feasibility definition system engineering) integration field
design & test monitoring

needs [. .

specification [. .

design E [:. ﬂ .

verification [. ﬂ .
™

engineering ﬂ .
T DT most information information is stable
Legend: |] . |:.50% ﬂ available in . enough to use
in draft s
concept heavier change control
’ full under development ‘ preparing or updating work ‘

Figure 3.2: A phased approach of the Product Creation Process, showing the
progress of the different design deliverables

The advantages of a phased approach are shown in Figure 3.3] The project
members get guidelines from the phase model,: who does what and when. At
the same time the check lists per phase provide a means to check the progress for
the management team. The main risk is the loss of common sense, where project
members or management team apply the phase model too dogmatic.

Customization of the phase model to the specific circumstances is always needed.
Keep in mind that a phased process is only a means.

The phase process is used as a means for the management team to judge the
progress of the Product Creation Process. That can be done by comparing the
actual progress with the checklists of the phase model, at the moment of a phase
transition. The actual progress is measured at the moment of transition. Normally
the development will continue after the phase review, even if some deliverables are
behind schedule. In that case the problem is identified, enabling the project team to
take corrective action. Some management teams misinterpret the phase transition
as a milestone with mandatory deliverables. Based on this misinterpretation the
management team might demand full compliance with the checklist, disrupting the

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 15
November 18, 2023 version: 2.2

benefits disadvantages

blueprint: how to work following blueprint blindly
reuse of experience too bureaucratic
employees know what and when transitions treated black and white

reference for management

Figure 3.3: Advantages and Disadvantages of a phased approach

project. This kind of interference can be very counterproductive. See section [3.5]
for a better management method with respect to milestones.

large impact
decisions N

order order product

- long-lead high-cost announcement
phase transitions items items

check points

v

0. 1. 2. = 4. 5
feasibility definition system engineering) integration field
design & test monitoring
needs [I .
>
§ — design [I .
8 verification ﬂ .
engineering E ﬂ .
iteration

Figure 3.4: Characteristics of a phase model
Important characteristics of a phase model are shown in Figure [3.4}

Concurrency of need analysis, specification, design, and engineering, and concur-
rency between activities within each of these work flows.

Checkpoints at phase transition. Often more checkpoints are defined, for instance
halfway a phase.

Tteration over the work flows and over activities within the work flows.

Large impact decisions that have to be taken, often long before the full conse-
quence of the decisions can be foreseen.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 16
November 18, 2023 version: 2.2

3.4 Evolutionary models for Product Creation

The phase model stresses and supports concurrent activities, see also [§]. A common
pitfall is a waterfall interpretation of a phased approach. Following a strict top-

down approach can be a very costly mistake, because feedback from implemen-

tation and customers is in that case too late in the process. Early and continuous

feedback both from implementation as from customer point of view is essential,

see Intermezzo

V-Model <«<—> Incremental or Evolutionary
cycle time alternative models
2% of budget (EVO) | |RUP (Rational Unified Process)
2 weeks (XP) Open Source
up to 2 months SCRUM
test and requirements

system system evaluate specification
design test

\ I
design ‘ test ‘
\ I
component component
design test
component realization \ /

build design

Figure 3.5: V-model versus Incremental or Evolutionary development models

High market dynamics exposes one weakness of the phased approach: market
and user feedback becomes available at the end of the creation process. This is a
significant problem, because most product creations suffer from large uncertainties
in the specifications. Discovering at the end that the specifications are based on
wrong assumptions is very costly.

Figure [3.5] show the V-model and evolutionary model side by side. Evolu-
tionary methods focus on early feedback creation. EVO [6] by Gilb recommends
to use evolutionary development steps of 2% of the total development budget.
In every step some product feedback must be generated. Extreme Programming
(XP) [2] by Beck is based on fixed duration cycles of two weeks. XP requires
additional customer value in every increment.

The class of agile product creation approaches is struggling with the archi-
tecting process. The leaders of these communities dislike the “big design up-front”.
However, running in a treadmill of small increments may cause the loss of the “big
picture”. Architecting and short cycles, however, are not in conflict. The archi-
tecture also has to grow in incremental steps.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 17
November 18, 2023 version: 2.2

3.5 Milestones and Decisions

The project team is faced with a limited number of large impact decisions during
the creation process. The decision in general engage the organization with a commitment
somewhere in the future. For example:

Ordering of long lead items where changes in specification or design might obsolete
ordered items. Re-ordering will cause project delay. Using the initially
ordered items might decrease system performance.

Ordering of expensive materials where changes in plan, specification or design
might obsolete the ordered materials.

Product announcement can not be reversed once the outside world has seen the
announcement. Note that announcing a new product often impacts the order
intake of existing products. Announcing a new product late might cause
competitive risks.

Define a minimal set of large-impact decisions.

Define the mandatory and supporting information required
for the decision.

Schedule a decision after the appropriate phase transition.

Decide explicitly.

Communicate the decision clearly and widely.

Figure 3.6: How to deal with large impact decisions

An explicit decision can be planned as a milestone in the project master plan.
Information should be available to facilitate the decision: some of the information
is mandatory to safeguard the company, some of the information is only supportive.
In general the mandatory information should be minimized to prevent a rigid and
bureaucratic process, causing the company to be unresponsive to the outside world.
These decisions can be planned after the phase transition when most of the required
supportive information will be available in an accessible way. Figure[3.6]shows the
recommendations how to deal with large impact decisions.

3.6 Organization of the Product Creation Process

The Product Creation Process requires an organizational framework. The organi-
zational framework of the Product Creation Process is independent of the Organi-
zational frameworks of the other processe

! Quite often a strong link is present between People and Technology Management Process and
the Product Creation Process; Using similar frameworks can be quite counterproductive, because

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 18
November 18, 2023 version: 2.2

3.6.1 Hierarchical decomposition

operational technical commercial
entire portfglio ol portfolip
i operational a[r)ghig::t marketing
portfolio manager manager
]] |
A A A
i X family
product family famil /
famil operational arc?lmltéct marketing
y manager manager
]] |
: A A
single (S'"S':O';’g’cdt“m) product product
1 architect
‘product leader manager
])
A A
subsystem ST
subsystem project architect
leader
1 |
s Y
module developers

Figure 3.7: The simplified hierarchy of operational entities in the Product Creation
Process form the core of this process.

The operational organization is a dominant organizational view on the Product
Creation Process. In most organizations the operations of the Product Creation are
decomposed in multiple hierarchical levels, at the highest level the entire product
portfolio at the lowest level the smallest operational entity for instance a subsystem.
Note that in figure the hierarchy stops at subsystem level, although for large
developments it can continue into even smaller entities like components or modules.
The hierarchy is simply the recursive application of the decomposition principle.

Figure[3.7)is simplified by assuming that a straight forward decomposition can
be applied. This assumption is not valid when lower level entities, e.g. subsystems,
are used by multiple higher level entities, e.g. systems. For instance, if one
subsystem is used in different products. In Chapter 23] we elaborate this aspect
further.

3.6.2 Further decomposition of the Product Creation Process

The Product Creation Process can be decomposed in 3 processes as shown in[3.8}

Marketing: Defining how to obtain a sellable profitable product, starting with
listening to customers, followed by managing the customer expectations,
introducing the product at the customer and obtaining customer feedback.

these processes have quite different aims and characteristics. Of course, nearly all people are part of
both organizational frameworks.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 19
November 18, 2023 version: 2.2

Product Creation Process

Operational Design Marketing
Management Control
specification technical profitability
budget saleability
time — need ~—customer input

S
what is needed
——customer expectations

— specification)
— planning what will be realized ~—commercial structure
— progress control — desighn i —product pricing
ow to realize
L, besuliEe — verification — market introduction
management .
. meeting specs . .
— risk management . . —introduction at customer
following design
— project log — engineering —feedback

how to produce
and to maintain

Figure 3.8: Decomposition of the Product Creation Process

Project Management: Realizing the product in the agreed triangle of

e specification
e resources
e amount of time
Design Control: Specifying and designing the system. The Design Control Process

is that part of the Product Creation Process that is close to the conventional
R&D activities. It is the content part of the Product Creation Process.

The functions mentioned in figure[3.7map directly on the processes in figure 3.8}

e The operational or project leader is responsible for the operational management
e The architect is responsible for the design control

o The marketing or product manager is responsible for the commercial aspects

3.6.3 Design Control

The ISO 9000 standard has a number of requirements with respect to the design
control process. The design control process is a core content oriented process, it is
the home base of the system architect. The system architect will support the project
management and the commercial process.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 20
November 18, 2023 version: 2.2

The design control process itself is further decomposed, also shown in figure[3.8}

e Needs

e Specification
e Design

e Engineering
e Verification

The needs express what the stakeholders of the system need, not yet constrained
by business or technical considerations. Most development engineers tend to forget
the original needs after several iterations of commercial and technical trade-offs.

The specification describes what will be realized, in terms of functionality
and performance. This specification is the agreement with all stakeholders. The
difference between the needs and the specification is that in the specification all
trade-offs have been made. See also Chapter[15| where we elaborate the process of
needs analysis and requirements management.

The design is the description how the specification will be realized. For instance,
the physical and functional decomposition and the budgets for critical technical
resources belong to the design.

Needs, specification and design are documented in development documents.
The main function of these documents is to streamline the Product Creation Process.
During this process these are living documents fulfilling an important communi-
cation function, while at the same time they play an important role in the control
aspect of the design process.

The verification process verifies that the implementation meets the specifi-
cation in the way it is specified in the design.

The engineering process provides the foundation upon which the Customer
Oriented Process works for the entire life-cycle of the product. The documentation
generated in the engineering process is the output of the Product Creation Process.

3.6.4 Operational Management

The operational management is governed by a simple set of rules, see Figure
These rules combine a number of very tightly coupled responsibilities in one function,
to enable a dynamic balancing act by the operational leader. These responsibilities
form the operational triangle as shown in figure [3.10]

The rules ensure that the operational leader takes ownership of the timely
delivery of the specification within the agreed budget, with the “standard” quality
level. Transfer of one of these responsibilities to another person change the system
in an open loop syste

2 Many conventional development organizations have severe problems with this aspect. The

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 21
November 18, 2023 version: 2.2

business management project leader

%define project

— —P> assess risks
specification, resources, time

iupdate project < determine feasibility

.. accept or reject |
I accept

execute project
within normal
quality rules

Figure 3.9: Commitment of the operational leader to the project charter

Specification

Quality

Resources Time

Figure 3.10: The Operational Triangle of responsibilities; The operational leader
commits to the timely delivery of the specification within the agreed budget, with
the "standard" quality level

3.6.5 Marketing

The marketing manager knows the market: who are potential customers, what are
their needs, what is of value in the market, what are commercial partners, what is
the competition. This knowledge is “future” oriented and is used to make choices
for future products. What are feasible products, what are the features and perfor-
mance figures for these products, based on choices where value and cost are in
a healthy balance. Hence the marketing manager is involved in packaging and
pricing of products and options. A good marketing manager looks broader than
the current products. Most innovations are not “more of the same”, but are derived
from new opportunities, technical or in the application.

Note that most sales managers are much more backward oriented: we sell what
we have to customers who know existing systems. Good sales persons are often
not good marketing persons!

most common mistake is that either the quality responsibility or the resource(budget) responsibility
is transferred to the People and Technology Management Process. The effect is that excuses are
present for every deviation of the commitment, for instance I missed the timing because the people
were working on non project activities.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 22
November 18, 2023 version: 2.2

3.6.6 Product Creation Teams

Sales
Manager

Quality Logistics

Assurance

Application
Manager

Operational Support
project manager)

Marketing or Operational Leader

Requirements -
Product Manager (project leader)

Analyst

Subsystem
Operational
Leaders

Architect

Test Engineer Subsystem

Technology- Architects
Specific
Architects

Service Manufacturing

Development
support

Figure 3.11: The operational teams managing the Product Creation Process

So far we have discussed Operational management, Design Control and Marketing.
However, in the Product Creation Process more specialized functions can be present.
Figure [3.11] shows a number of more specialized functions as part of a number of
concentric operational teams. The amount of specialization depends on the size of
the operation. In very small developments none of the specializations exist and is
even the role of project leader and architect combined in a single person.

3.7 Acknowledgements

Rahim Munna suggested to add a short description of Marketing.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting . page: 23
November 18, 2023 version: 1.0

Chapter 4

The Importance of Feedback for
Architecture

.......

4.1 Introduction

Feedback is a universal principle that is applied in highly technical domains such
as control engineering, but also in social sciences. This Intermezzo discusses
feedback as part of the Systems Architecting Process and explains its importance.

4.2 Why Feedback?

4.2.1 Control

Feedback is used in control systems to ensure that the actual direction corresponds
to the desired direction. In general the deviation from the desired direction grows
exponentially in time, see Figure .1}

Many control systems implement a feedback loop to force the system back
in the desired direction. Figure {.1] also shows the effect of a discrete feedback
system over time. It will be clear that the sampling interval is determined by the
time constant of the deviation and the acceptable deviation level.

Product development can be seen as an ordinary system that can be controlled
analog to technical control systems. Product developments without feedback result

without feedback

—

......... with feedback

deviation of
direction

acceptable
deviation
level

sampling
interval

Figure 4.1: The deviation of the actual direction of product development with
respect to the desired direction as function of the time

in products that are out of specification (too late, too slow, too expensive, too heavy
et cetera). Sound development processes contain (often multiple) feedback loops.

4.2.2 Learning

Human beings learn from their mistakes, provided that they are aware of them.
Feedback is the starting point of the learning process, because it provides the
detection of mistakes. Efficiency of individuals and organizations can be increased
by learning. Without learning similar mistakes are repeated: a waste of resources.

4.2.3 Applicability

The principle of feedback can be applied on any activity. The higher the uncer-
tainty or the larger the duration of an activity is, the more important feedback
becomes.

stepsize 3 months 2 months 1 month
elapsed time 25 months 12 months 8 months

Target / Target |\ Target

Small feedback cycles result in Faster Time to Market

Figure 4.2: Example with different feedback cycles (1, 2, and 3 months) showing
the time to market decrease with shorter feedback cycles

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting . page: 25
November 18, 2023 version: 1.0

Figure 2] shows an example of a development with three different feedback
cycle times, respectively three, two, and one months. The three month feedback
cycle results in an project duration of 25 months. Decreasing the feedback cycle to
2 months brings the total project duration down to 12 months. One month feedback
cycles give a total time of only 8 months. This simple model ignores the cost of
obtaining feedback, but it clearly illustrates the essence of short feedback cycles.

4.3 Theory versus Practice

School 4

—

School 3

School 2

presence
per phase

School 1

Policy @ 2. \% a. .
and o) system .} _integration fietrd
Planning =ity ClEien design engl e"mi test mopitorin

Figure 4.3: Four different schools of architecting, showing the presence of the
architect in relation to the policy and planning process and the product creation
process

Systems architecting is partially a very conceptual activity. The concepts are
theoretical as long as they are part of presentations or specifications. Some archi-
tecting schools promote the system architecting function as strategic, providing
direction, without being drowned in operational problems. A second school promotes
an architect who is active in the definition phase of a product as well as in the
verification phase. We argue a third direction: architecting has to be done during
the entire development life cycle. In practice many architects function still in a
fourth way: entirely in the technical domain. Figure [d.3] visualizes the 4 different
schools as function of the process phase.

Policy 1

o 23 3 4. 5.
and feasil;:ili defin;tion SEE . Ao inéerin [Lcojatch et
Planning ty design 9! 9 &test monitorint

—

amount of
work

Figure 4.4: Theoretical versus Practical system architecture work in relation to the
development life cycle

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: 26
November 18, 2023 version: 1.0

Figure.4shows the amount of “theoretical” work and the amount of “practical”
work also as function of the process phase. Where we use the term “theoretical”
for concepts in presentations or specifications that have not been exposed to the
physical world. Similarly, “practical” is used for work where the design is realized
and tested.

A number of feedback loops can be closed during the Product Creation Process.
Normally the next phase in the process provides feedback to the previous phase in
the process. This phase transition feedback is often applied. However, feedback
from the next phase is a rather indirect measure for the desired direction. The next
step provides feedback on the usefulness of the input to continue the work, but the
user satisfaction and market success can not be measured by the next step.

Policy 2. 4. 5.
0. 1. & . . X
et feasibility definition S ‘engineering I CE e e g>
Planning design & test monitorin
product outlines specification technology functionality usability
effort performance manufacturability
skills interfaces installability
serviceability
saleability

Figure 4.5: Feedback per development phase

The feedback for theoretical work comes from the practical work. Figure
shows the feedback per development phase. This figure makes it immediately clear
that the amount of feedback is proportional to the amount of practical work going
on.

4.4 Conclusions

The conclusions of this paper are given here as a set of position statements:

1. For the education of system architects it is essential that they participate in
the entire feedback loop.

2. The education of system architects is never finished.

3. System architects must participate in the entire product creation lifecycle for
most of their carrier.

4. The value of system architects in the policy and planning process stems from
the practical feedback during the product creation process.

5. Feedback can never come too early.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 27
November 18, 2023 version: 1.0

6. System architects can have fantastic dreams, feedback is required to prevent
that dreams turn into a nightmares.

Gerrit Muller USN-SE

System Architectin .
Y & page: 28
November 18, 2023 version: 2.3

Chapter 5

The System Architecture Process

customer

5.1 Introduction

This chapter positions the systems architecting process in a wider business scope.
This positioning is intended to help understanding the process itself and the role of
the system architect (or team of system architects).

We focus on systems architecting within organizations that create and build
systems consisting of hardware and software. Although other product areas such
as solution providers, services, courseware et cetera also need system architects,
the process structure will deviate from the structure as presented here. See Inter-
mezzo [6|for an elaboration of these other architecting models.

5.2 System Architecture in the Business Context

Figure shows the main activities of the System Architecting Process as an
overlay over the business decomposition.

Processes are goal oriented, as discussed in Intermezzo[2] The process decom-
position is not orthogonal, several processes are overlapping. The System Archi-
tecting Process is a clear example of such non-orthogonality. Figure [5.2] shows a
map of the System Architecture Process and neighboring processes. Many processes,

customer

Customer-Oriented Process

People, Process, and Technology Management Process

Figure 5.1: The main System Architecture activities in the Business Context

such as manufacturing engineering, service engineering, have been left out of the
map, although these processes also have a high architecture relevance.

Both figures make it clear that the System Architecting Process contributes
heavily to the Product Creation Process, while it plays also an essential role in
the Policy and Planning Process. Both contributions are strongly coupled, see
figure[5.3]

The System Architecture Process bridges the gap between Product Creation
Process and the Policy and Planning Process. In many organizations this link is
missing. The absence of this link results in:

e re-inventing a (different) product positioning during the Product Creation
Process, with a limited context view

e policies which are severely handicapped by a lack of practicality or realism

The overview created by the System Architecting Process also helps in establishing
a technology policy.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 30
November 18, 2023 version: 2.3

[I |
Business‘

IT
‘] —] Marketing‘
J TH H
‘ Systems Architecting‘
[2]
Road-| |||\ 21| 5| | 2| ¢
Budget|| mapping IS § CAIEE
oL 5] i
People and Technology|||L| 5 ||'5 2lle Design Control
oo o H'=
o a cllo
=] © L= Project Management
Policy and Planning Product Creation

Figure 5.2: Map of the System Architecture Process and neighboring processes

Context: Product Portfolio, Time
»

Policy and Vision, Policy, Intention Product
Planning Creation
Process Process

Practical Knowledge

Feedback from Reality

Figure 5.3: Contribution of System Architecting to the the Coupling of Policy and
Planning Process and the Product Creation Process

5.3 Purpose of the System Architecting Process

Every business exceeding a few people enables the efficient concurrent work of
these people by dividing the tasks in smaller more specialized jobs, the decom-
position principle in action. This decomposition of responsibilities requires an
opposing force integrating the activities in a useful overall business result. Several
integrating processes are active in parallel, such as project management, commercial
management et cetera.

The System Architecting Process is responsible for:

o the Integral Technical aspects of the Product Creation Process, from requirement
to deployment.

o the Integral Technical Vision and Synergy in the Policy and Planning Process.

The System Architecting Process is striving for an optimal overall business
result, by creating and maintaining the key issues, such as a balanced and consistent
design, selection of the least complex solution, and satisfaction of the stakeholders.

The System Architecture Process is balancing amongst others:

e External and internal requirements

Gerrit Muller USN-SE

m Architectin .
Syste chitecting . page: 31
November 18, 2023 version: 2.3

Short term needs and long term interests

Efforts and risks from requirements to verification

Mutual influence of detailed designs
e Value and costs

Such a balance is obtained by making trade-offs, for example performance
versus qualities versus functionality, or synergy versus specific solution

It is the purpose of the System Architecting Process to maintain the consistency
throughout the entire system, from roadmap and requirement to implementation
and verification. On top of this consistency the integrity in time must be ensured.

An enabling factor for an optimal result is simplicity of all technical aspects.
Any unnecessary complexity is a risk for the final result and lowers the overall
efficiency.

5.4 The System Architect as Process Owner

The owner of the System Architecting Process is the System Architect or the
System Architecting Team. Many other people are involved in the System Archi-
tecting Process.

The system architect or the team members spent the majority of their time,
about 80%, in the Product Creation Process. From the remaining time the majority
is spent in the Policy and Planning Process. In [5.2] it is explained that these
processes are strongly coupled. This coupling is for a large part implemented by
employing the same people in both processes. A small amount of time is spent in
People, Process, and Technology Management.

5.5 System Architecting in Product Creation Context

The Systems Architecting Process is striving for consistency and balance from
requirement to actual product.

The amount of people working in product creation can vary from a few to tens
of thousands of people. All people working on the creation of a new product have
only knowledge of a (small) subset of the information. Inconsistencies and local
optimal solutions pop up all the time, caused by lack of knowledge of the broader
context.

The Systems Architecting Process has to prevent this natural degradation of the
system quality. Systems Architecting acts pro-active by clear and sharp require-
ments, specification and system design as well as reactive by following up the
feedback from detailed design, implementation and test.

During the Product Creation Process many specification and design decisions
are taken. Quite often these decisions are taken within the scope of that moment.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 32
November 18, 2023 version: 2.3

Consecutive decisions can be in contradiction with previous decisions. For instance,
a decision is taken to add memory to the product to increase performance, while
one month later the amount of memory is decreased to lower the cost. The Systems
Architecting Process maintains the integrity over time, by looking at decisions from
a broader perspective.

5.6 Acknowledgements

Discussions with and critical comments from Rard de Leeuw, Jiirgen Miiller, Henk
Obbink, Ben Pronk and Jan Statius Muller helped to shape, to improve the structure
and to sharpen the contents of the article "Positioning the System Architecture
Process". This article is based on the last sections of this article. I am grateful for
their contribution.

Jiirgen Miiller spotted hiccups in the flow of the new article, enabling a stream-
lining and extension of this article. Robert Deckers analyzed the text and pointed
out many inconsistencies and poor formulations.

An inspiring presentation by Bud Lawson helped me to make a more complete
and balanced list of System Architecture key issues.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 33
November 18, 2023 version: 0

Chapter 6

Products, Projects, and Services;
similarities and differences in
architecting

logo
TBD

6.1 Introduction

We have focused on the product creation of “box’ like products: products that have
a clear physical part; the product is a box that is created and the products are sold
as boxes by sales. In the twentieth century this was one of the dominating models
in industry. Another business model is project delivery: customers order a turn-key
solution to be delivered by the supplier.

At the end of the century, several other types of systems and related business
models became increasingly important. An increase of interoperating systems
has opened a world of services, e.g. traffic information for navigation systems.
Services are also systems, but these systems tend to be less tangible, while these
service systems often include people, processes and organizations.

Similarly, System of Systems emerge everywhere. We have become dependent
on the interoperation of multiple systems, the system of systems.

6.2 Products and Projects

project product
unique catalogue
customer specific generic
tailored to customer needs "one size fits all"
tender-contract-execution mass production
cost ~= project hours economy of scale
investment by customer investment in product design

Figure 6.1: Projects versus Products

Figure[6.1|shows an axis with on the left hand extreme projects and on the right
hand extreme products. We can characterize the extremes as:

Projects are unique for a specific customer. The solution is tailored to the customer
needs. The sales starts with a tender phase, the execution phase starts when
the contract has been signed. Cost is typically proportional with the number
of project hours. In project business the customer is the investing party and
carries most of the risk.

Products are standardized as part of the sales catalogue. Products are designed to
be generic, i.e. to serve multiple customers. The standardization in extremis
assumes that “one size fits all”. At the same time standardization enables
mass production, while the increased volume of multiple customers provides
an economy of scale. Product companies typically invest themselves in new
product designs

In practice business models are less black and white. Figure [6.2] shows a
number of forces that lead to convergence between these two extremes. Project
organizations see opportunities to increase their margin by harvesting and re-using
standardized components or products. Product organizations adapt their standard
products more to specific customer needs by making their products customizable
and configurable. Customer support can adapt the product at the customer site to
customer specific needs.

Figure[6.3]shows a simplified process diagram for project business. The Customer
Oriented Process is replace by a triplet of processes:

Tender process where the specification and price are negotiated with the customer.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 35
November 18, 2023 version: 0

harvest and use
standardized components/products

configuration and customization
customer specific at customer site

project product
.—> 4—.
Y y
unique catalogue
customer specific generic

Figure 6.2: Convergence of Projects and Products

policy and tender project
planning contract | EXecution | gystems

deployment

systems architecting/| products or
engineering| components

product creation

people, process, and technology management

Figure 6.3: Simplified process diagram for project business

Execution process where the solution is created.

Deployment process where the systems are installed at the customer site and the
operation is started.

6.3 Services

Figure [6.4]shows an example of a smart phone context. The smart phone as device
contains hardware, operating system and software. The device offers an application
infrastructure for many applications that are created by many different parties. The
application creation probably will be supported by tools.

The applications on the device and telecom services facilitate content services
in the broader world. E.g. a location service based on position, map, and directory
information.

Device builders have to cooperate with the telecom world and the content world

Gerrit Muller USN-SE

Architecti .
System Architecting page: 36
November 18, 2023 version: 0

partnerships

alliances
tools business models tools

movie
200l telecom II II map
pp service picture
[[
device SMat | lejecom content
phone
0s comm. content
standards standards
HW infrastructure infrastructure

Figure 6.4: Example of extensive complex of services for smart phone type of
device

to create a sellable device. Developing telecom services and developing content
services can also be seen as the creation of systems. However, this world has many
less technical aspects. Forging and nurturing partnerships and alliances is crucial,
as well as the development of business models.

use results
performance-based
"""""""""""""""""""""""" or service-level
functional " agreement
capability capability management/
technical -)
- facility management conventional
capability .
maintenance
"""""""""""""""""""""""" contract
expert support | customer support product
.. acceptance

and warranty
initial production | factory

Figure 6.5: Model of operational services showing that the boundary between
provider and customer can be defined at different levels

The type of deliverable and the related business model is also shifting. The
conventional model is that the supplier delivers a product according to specifi-
cation. The relation with the customer stops once he product has been delivered.
In many business to business segments the relation is extended by offering mainte-
nance contracts. However, in the conventional model, the customer takes ownership
of the system. The bottom two layers in Figure [6.5] represent the conventional
business models.

In business to business situations the system that is delivered will be managed

Gerrit Muller USN-SE

Architecti .
System Architecting . page: 37
November 18, 2023 version: 0

by a facilitation or technical department. E.g. in hospitals the radiology equipment
is supported by technical hospital staff. The actual operation of the system is done
by application experts, in the hospital example the radiology equipment is run by
dedicated clinical staff and radiologists. The radiology department provides an
imaging and diagnosis capability to the referring physicians.

The equipment manufacturer can shift their support “upwards” to offer:

Facility management a technical working and prepared system.

Capability management where the whole capability, such as diagnostic imaging,
is offered.

The consequence of this shift is that the supplier creates a recurring revenue stream.
The integral consequence for customer and supplier is that incentives are changing.
For example, when the supplier is responsible for a constant performance,
then the supplier might decide to upgrade the equipment much more regular. The
supplier also gets an incentive to minimize down time and maintenance costs.

The process structure might be adapted to facilitate the service development.
Service development, both for the content type as well as for the operational type,
require many less technical, more political, social, and economical development
activities.

6.4 System of Systems

System of Systems consequences
autonomous emergent behavior
different rate of change lack of understanding and

== overview
many heterogeneous systems
. continuous change
many humans in the loop

. o more political and economic
geographical distributed factors

Figure 6.6: System of Systems and the consequences of this approach

Today’s society depends heavily on the interoperability of many systems. We
recognize that the solution can be created by interoperability of multiple systems,
the so called System of Systems. See Figure [6.6] for the characteristics of System
of Systems and the consequences of this approach. The System of Systems can be
seen as a super system.

Examples of system of systems are:

Military capabilities , where amongst others planes, tanks, guns, officers, soldiers,
and sensors are interconnected.

Gerrit Muller USN-SE

Architecti .
System Architecting page: 38
November 18, 2023 version: 0

Health care treatment room , e.g. operating theater or catherization laboratory,
where respiratory and physiology monitors, surgical tools, clinical support
systems, nurses, surgeons, et cetera collectively perform the treatment function.

The individual systems in a System of Systems can operate autonomously.
Most often these systems have not been created with this specific super-system
in mind. The individual systems follow their own life cycles, with different rates
of change. The systems can be quite heterogeneous (large, small, expensive, low
cost, re-usable, disposable, fragile, robust, et cetera). Every system has its own
human machine interface and its own control paradigm. The geographical location
of the systems can be distributed and may change.

These characteristics have several consequences. The most dominant conse-
quence is that the super system is so complex that nobody has the understanding
and the overview of the whole. Hence nobody can predict what will happen and
we get so-called emergent behavior. The amount of systems with their different
change rates and the amount of humans create a super system that is never exactly
the same: it changes continuously. In the larger scope of the System of Systems
many non technical factors play a role, e.g. economical or political.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 39
November 18, 2023 version: 0

Part 11

The System Architect as a Person

Chapter 7

The Awakening of a System
Architect

business,
application insight / psychosocial
skills.

root generalist
) technical) technical
knowledge / knowledge process insight

7.1 Introduction

System architects are very rare commodity. This chapter describes the observed
general growth pattern of system architects. We hope that by analysis of the
the characteristics of existing system architects will facilitate the training of new
system architects. Reference [21]] contains a good description of a system architect.

7.2 The Development of a System Architect

business,

root SRR application insight >psychosocia|

technical technical skills
knowledge / knowledge process insight >

Figure 7.1: Typical Development of a System Architect

System architects need a wide range of knowledge, skills and experience to be
effective. Figure shows a typical development of a system architect.

The system architect is rooted in technology. A thorough understanding of
a single technological subject is an essential underpinning. The next step is a

broadening of the technical scope. Section describes the path from a mono-
disciplinary specialist to a multi-disciplinary system architect with broad techno-
logical knowledge.

When the awakening system architect has reached technological breadth, then
it will become obvious that most encountered problems have a root cause outside of
technology. The system architect starts to develop along two main parallel streams:

The business side: the market, customers, value, competition, logistics, service
aspects

The process side: who is doing what and why, necessitated by the amount of
involved stakeholders

During this phase the system architect will broaden in these two dimensions.
The system architect will view these dimensions from a technological perspective.
Again when a sufficient level of understanding is attained an awareness starts to
grow that people behave much less rationally than technical designs. The growing
awareness of the psychological and the sociological aspects is the next phase of
growth.

7.3 Generalist versus Specialist

Most developers of complex high tech products are specialists. They need an in-
depth understanding of the applicable technology to effectively guide the product
development. The decomposition of the development work is most often optimized
to create a work breakdown enabling these specialists to do their work with as much
autonomy as possible.

breadth of
knowledge

generalist

specialist

root
knowledge

depth of
knowledge

-

Figure 7.2: Generalist versus Specialist; depth versus breadth

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 42
November 18, 2023 version: 1.1

Figure[7.2)is a visualization of the difference between a specialist and a gener-
alist. Most generalists are constrained in the depth of their knowledge by normal
human limitations, such as the amount of available time and the finite capacity of
the human mind. The figure also shows that a generalist has somewhere roots in
detailed technical knowledge. These roots are important for the generalist self,
since it provides an anchor and a frame of reference. It is also vital in the commu-
nication with other specialists, because it gives the generalist credibility.

breadth of
knowledge

generalist

specialist []
¢
L

specialist
specialist
specialist
specialist
specialist
specialist
specialist

depth of
knowledge

-

Figure 7.3: Generalists and Specialists are both needed in complex products, they
have complementary expertise

Figure shows that both generalists and specialists are needed. Specialists
are needed for their in depth knowledge, while the generalists are needed for their
general integrating ability. Normally there are much more specialists required than
generalists.

There are more functions in the Product Creation Process that benefit from a
generalist profile. For instance the functions of project-leader or tester both require
a broad area of know how.

Architects require a generalist profile, since one of their primary functions is
to generate the top-level specification and design of the system. The step from
a specialist to a generalist is of course not a binary transition. Figure shows
a more gradual spectrum from specialist to system architect. The arrows show
that intermediate functions exist in larger product developments, forming natural
stepping stones for the awakening architect.

Examples of aspect architects are:

subsystem architects subsystems are the main organizational decomposition. In
hardware intensive systems subsystems tend to be physical, e.g. loader or
generator. Typical number of subsystems is between 5 and 15.

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: 43
November 18, 2023 version: 1.1

breadth of knowledge—»

- systems architect
(2] .
< aspect /
3 architect
— o
5 o
fgl| 5 7~
(o]
28 &
5 ¥ «©
= root
3 T knowledge
i
\
\

Figure 7.4: Growth in technical breadth, intermediate functions from specialist to
system architect

SW, mechanics or electronics architects or discipline oriented architects. The
architects ensure consistency across physical subsystems

function architects take responsibility for one system function, ensuring the soundness
of that function.

quality architects take responsibility for one quality, e.g. safety, reliability, security.

For instance a software architect needs a significant in-depth knowledge of software
engineering and technologies, in order to design the software architecture of the
entire system. On the other hand a subsystem architect requires multi-disciplinary
knowledge. The limited scope of one subsystem reduces the required breadth for
the subsystem architect to a hopefully realistic level.

Many products are becoming so complex that a single architect is not capable of
covering the entire breadth of the required detailed knowledge areas. In those cases
a team of architects is required, where the architects are complementing each other
in knowledge and skills. It is recommended that those architects have comple-
mentary roots as well; as this will improve the credibility of the team of architects.

7.4 Acknowledgements

Chuck Kilmer suggested a new title and offered many textual improvements.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 44
November 18, 2023 version: 0

Chapter 8

Systems Titles and Roles

do the work &
have the skills

do other work
or lack skills

8.1 Introduction

hidden
architects

any other
role

title #
architect

recognized
true
architects

impostor
or
pushed

title =
architect

The following questions are asked frequently during and after the courses:

e What is the difference between systems engineers and systems architects?

o Why do all these people have the title systems architect, while they actually

don’t do the work?

The first questions is also posed in other variants, using titles such as system
designer or systems manager. To complicate matters more there are people who do
part of the systems level work, for example requirements analyst, systems analyst,
system integrator or system tester, complementing the systems architect.

8.2 Cultural differences in terms

Exactly the same titles are used differently in different companies (or even divisions
or product groups within one company), in different domains (e.g. defense, automotive,
consumer electronics, IT), and geographic regions. No single unified standardized
definition is used across companies, domains, and geographies. We do recommend

to calibrate terminology when entering new territory, and to be continuously alert
for differences in interpretation even after calibration.

Throughout this book we use the term architecture for the combination of two
crucial aspects:

Depth understanding of the system-of-interest including product specification,
decomposition in subsystems and components, interface management, and
function and resource allocation, to create a sound and fitting system that
fulfills all qualities (e.g. safety, reliability, performance).

Breadth understanding of the context including the customer context and the
stakeholders in the value chain , and the life cycle context from conception
to decommissioning and all related business aspects.

Be aware that the term architect is used often for the system-of-interest part only.
We use the term system design for this subset of architecting work.

A major professional society in the systems world is INCOSE, the International
Council of Systems Engineering. The Systems Engineer as depicted by most of
INCOSE documents is a very broad function, including work of the project leader,
the requirements analyst, the systems architect, the configuration manager, and
quality assurance.

Another extreme for the definition of systems engineer was in the medical
domain, where this job of the systems engineer was solely the electro-mechanical
design of cables and cabinets.

8.3 Title versus skills and actual job

[

do the work & hidden recct)rgunelzed
have the skills architects .
architects
do other work any other mp;stor
or lack skills role
v pushed
title # title =

architect architect

Figure 8.1: Four quadrants to classify architect and titles

First of all we have to distinguish what role or function someone performs
and the title that is being used by the people in the context. Figure [8.1] shows the

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 46
November 18, 2023 version: 0

four quadrants that you get by using title as horizontal axis and competence level
as vertical axis. Note that the title axis is discrete, while the competence level is
continuous. The figure shows four quadrants:

Any other role (bottom left) for these persons that don’t do the job of an architect
and do not have the title.

Imposters or pushed persons (bottom right) are people lacking the skills or actually
not doing the work of an architect that nevertheless have the title architect.
Note that impostors are these people that actually pursued the title, for example
because of status or payment. Another category are those people that are
pushed by their management into this job, but lack the capability to do it.
People do not become true architects by declaration.

Hidden architects (top left) can be found in many organizations. These organi-
zations might use different titles or they might not be aware of the systems
discipline.

Recognized true architects (top right) are these architects that actually do the

architecting job skillfully and got he title in recognition.

8.4 Systems roles and titles

systems manager

?yslems architect

~ systems engineer
systems designer -
- - systems tester

Policy o 1 2. é 5.
antd feasibilty definition SRS ei?\‘eﬁ@i?ﬁ‘ field
Planning Y design Yrespne monitorin,

Figure 8.2: System Roles mapped on the development life cycle

In this section we provide a set of roles and relate these to the development
life cycles. As explained in the previous sections these roles can be allocated in
different ways and different terms can be used than shown here. However, the
conceptual roles as shown here are quite universal.

Figure shows the following roles:

Systems manager is the overall responsible for all systems aspects, ranging from
strategically positioning in the portfolio and the time to final operational
performance in the field. Note that such broad definition does not leave

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 47
November 18, 2023 version: 0

much room for in-depth understanding. An alternate term for this role can
be program manager.

Systems architect who combines understanding of the context with in depth under-
standing of the solution to create an appropriate system. Note that the architect
role combines some perceptive and creative modes of operation with more
analytical modes. This mixture limits how far the architect can go in the real
engineering.

Systems engineer is very close to the systems architect, but the emphasis shifts
from perceptive and creative more to engineering. With engineering we
mean the capability to finalize and document all details required for the
later processes such as logistics, manufacturing, sales, and customer support.
Note that also the systems engineer has limits and will depend on specialized
engineers (e.g. mechanical, electrical, or software) to finish the last details
of the technical product documentation.

Systems designers take the product specification as starting point and work on
(potential) solutions. System designers are “inward” focused, where system
architects connect the outward and inward perspectives.

System testers verify that the solution performs as specified. In practice system
testers need also trouble shooting capabilities to diagnose the cause of lacking
performance.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 48
November 18, 2023 version: 2.0

Chapter 9

The Role and Task of the System
Architect

v [b
& @} ’

design, assist project leader present,
think, brainstorm, with work breakdown, ~meet, teach,
analyze schedule, risks discuss

\

listen, talk,
walk around

9.1 Introduction

Architects and organizations are often struggling with the role of the system architect
(or software architect or any other kind of architect). This struggle is partially
caused by the intangible nature of the responsibilities of the architect. At the other
hand (good) architects are highly appreciated, even if their quantifiable output is
low.

This article starts with specific deliverables, then discusses the more abstract
responsibilities and, finally, discusses the day to day activities of an architect.

The role of the software architect is nicely discussed in [3]].

9.2 Deliverables of the System Architect

We start at looking for the tangible output that is expected from architects. Project
leaders and program managers do expect deliverables to be finished at appro-
priate milestones. Most Product Creation Processes define the deliverables of a
System Architect to be artifacts such as documents or models. These artifacts are
symbolized by the stack in Figure[9.1]

Report Design
U Spec

[[_Repor| | g

uoday L

=g

Figure 9.1: Deliverables of a system architect consists of artifacts forming a stack
of paper when printed

Figure [9.2] shows the main deliverables of a System Architect more specific.
Quite often the System Architect does not even produce all deliverables mentioned
here, but the architect does take the responsibility for these deliverables by coordi-
nating and integrating contributions of others. Note that some of these deliverables
are part of the Policy and Planning Process.

Customer and Life-Cycle Needs (what is needed)
System Specification (what will be realized)

Design Specification (how the system will be realized)
Verification Specification (how the system will be verified)
Verification Report (the result of the verification)
Feasibility Report (the results of a feasibility study)

Roadmap

Figure 9.2: More specific list of deliverables of a System Architect

9.3 System Architect Responsibilities

The System Architect has a limited set of primary responsibilities, as visualized in
figure[9.3] The primary responsibilities are:

Balance of system properties as well as internal design properties. The system
should be balanced: for example, the cost of subsystems should correspond
with its added value in terms of functionality and performance. Archi-
tecting is a continuous balancing act in many incomparable dimensions and
quantities.

Consistency across many organizational and design boundaries; From needs to
implementation details, from system level to detailed implementation.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 50
November 18, 2023 version: 2.0

Requirement
Spec
Design
Realization |

modules

$4¢

Function

module
subsystem
system

Decomposition
Integration

satisfied

Overview

4

Balance Consistency

X

KISS stakeholders
E|egance context
Simple Integrity Fitting

Figure 9.3: The primary responsibilities of the system architect are not tangible
and easily measurable

Decomposition, Integration Decomposition is the standard answer in dealing with
complex and big problems. Decomposing Systems in subsystems, subsystems
in modules et cetera is a major responsibility of the architect. In most
systems many decomposition dimensions are required: physical, logical,
functional, and many more, see [18]. The complementary action of decom-
position, however, is integration. The integral functioning and performance
of the system is the ultimate goal of product creation, which emphasizes
the importance of integration. In practice integration is much more difficult
than decomposition, in fact the architect must decompose in such a way that
integration is feasible.

Overview of the entire system and its context helps to make sensible specification
and design decisions. The architect should provide overview to all members
of the product creation team. Most of these members have a very limited
horizon. The architect should help them by providing proper context infor-
mation to make local design decisions.

Elegance, Simplicity are properties of a “good” architecture. The dangerous aspect
of this responsibility is the highly subjective nature of elegance and simplicity.
The appreciation of simplicity and elegance should be assessed or acknowl-
edged by others than the architect.

Integrity of the system specification and design over time. The focus of a devel-
opment team is often wandering over time, sometimes it depends on the

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 51
November 18, 2023 version: 2.0

hype of the week. The architect is responsible for maintaining a balanced
and focused development over time. For instance, when cost price reduction
is required then the architect should keep performance and reliability on the
agenda.

Fitting in stakeholder needs and system context, during the entire life cycle, is one
of the core responsibilities of the architect. The architect must connect depth
knowledge with breadth knowledge.

We can condense the primary responsibility of the System Architect as: to
ensure the good functioning of the System Architecting Process. In practice, this
responsibility is often shared by a team of System Architects, with one chief architect
taking the overall responsibility.

responsibility primary owner

business plan, profit | business manager
schedule, resources | project leader

market, saleability marketing manager

technology technology manager
process, people line manager
detailed designs engineers

Figure 9.4: (Incomplete) list of secondary responsibilities of the system architect
and the related primary owner

The list of primary responsibilities as discussed above is suffering from a lack
of measurability and is rather intangible. Systems Architects also have secondary
responsibilities, where these are primarily owned by other persons. Most other
roles in product creation are much sharper defined, as shown in Figure For
instance the business manager is responsible for the business plan and the financial
results. The project leader is responsible for the schedule and hence for completing
the project in time and within budget. The marketing manager is responsible for
addressing the relevant markets and hence for market share and salability of the
product. The technology manager is responsible for the timely availability of
technologies and related tools. The line manager is responsible for the availability
of the right people, with skills and processes to do their job. Final example are the
engineers who are responsible for the design of their component or module.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 32
November 18, 2023 version: 2.0

9.4 What does the System Architect do?

Figure shows the variety of activities of the day to day work of a system
architect. A large amount of time is spent in gathering, filtering, processing and
discussing detailed data in an informal setting. These activities are complemented
by more formal activities like meetings, visits, reviews et cetera.

D= e
@ 10 -
O
O

7N

_ listen. talk dgsign, a_ssist project leader present,
think, ’ ! brainstorm, with work breakdown, meet, teach,
walk around . . ;
analyze explain schedule, risks discuss
= [‘Lé) Report
O) I
travel to
write, customer, provide
test, consolidate, read, supplier, vision and
integrate browse review conference leadership

Figure 9.5: The System Architect performs a large amount of activities, where
most of the activities are barely visible for the environment, while they are crucial
for the functioning of architects

The system architect is rapidly switching between specific detailed views and
abstract higher level views. The concurrent development of these views is a key
characteristic of the way a system architect works.

Abstractions only exist for concrete facts

System Architects which stay too long at "high" abstraction levels drift away
from reality, by creating their own virtual reality.

Figure [9.6) shows the bottom up elicitation of higher level views. A system
architect sees a tremendous amount of details, most of these details are skipped, a
smaller amount is analyzed or discussed. A small subset of these discussed details
is shared as an issue with a broader team of designers and architects. Finally, the
system architect consolidates the outcome in a limited set of views. The order of
magnitude numbers cover the activities in one year.

The opposite flow in[9.6]is the implementation of many of the responsibilities

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 353
November 18, 2023 version: 2.0

Quantlty architect
per year

(order-of- tm.:e per
magnitude) ftem
consolidation ~driving views 10 100 h
in
deliverables , shared issues 102 1h

meetings

_ touched details 10* 0.5 - 10 min
informal

contacts

_ seen details 10°-10° 0.1-1sec
sampling
scanning)
product details 10" — 10"

real-world facts infinite
Figure 9.6: Bottom up elicitation of high level views

of the system architect. By providing overview, insight and fact-based direction a
simple, elegant, balanced and consistent design will crystalize, where the integrity
of designs goals and solutions are maintained during the project.

A lot of time spent by the architect serves the purpose of communication
between many project members. The architect not only responsible for the system
integration, but has also an integrating role in the project itself. The architect has
to interact a lot with all the people mentioned in Figure 9.4} in order to fulfil the
architect’s responsibilities.

9.5 Task versus Role

The task of the system architect is to generate the agreed deliverables, see section[9.2]
This measurable output is requested and tracked by the related managers: project
leaders and the line managers. Many managers appreciate their architects only for
this visible subset of their work.

The deliverables are only one of the means to fulfil the System Architect Respon-
sibilities, as described in section The system architect is doing a lot of nearly
invisible work to achieve the system level goals, his primary responsibility. This
work is described in section[9.4] Figure[0.7]shows this as a pyramid or iceberg: the
top is clearly visible, the majority of the work is hidden in the bottom.

9.6 Acknowledgements

Nicolette Yovanof pointed out that the text belonging to Figure 2 and Table 2 was
rather incomplete. She also mentioned that some more attention for the inter-
action with non-architects would be helpful. Chuck Kilmer provided feedback
on "The Awakening of a System Architect”, which resulted also in an update of

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 34
November 18, 2023 version: 2.0

From Manager perspective

Decreasing
Visibility

|M l Deliverables

Responsibilities

Activities

Figure 9.7: The visible outputs versus the (nearly) invisible work at the bottom

this paper. Byeong Ho Gong suggested a better coverage of the interfacing with
customers/stakeholders. Pierre van de Laar provided textual improvements.

Gerrit Muller USN-SE

System Architecting page: 55
November 18, 2023 version: 1.0

Chapter 10

Function Profiles; The Sheep with
Seven Legs

10.1 Introduction

Many human resource and line managers struggle with the questions:

e What people have the potential to become good system architects?

e How to select (potential) system architects?

Employees thinking about their careers might similarly wonder if they have the
capabilities to become a good systems architect.

We list a number of characteristics of individual humans. We map the these
characteristics on different jobs, such as system architect, developer, and line manager,
indicating the relative importance of this characteristic for that job. We first discuss
the different jobs and their typical characteristics in[I0.2]to[T0.7] Then we elaborate
the characteristics in

The attention for this subject is increasing. Recent research is being carried out
by Keith Frampton, see amongst others [5]].

8 1 - 8
7 - 1 7
6 - g 6
5 - g - 5
[}
o 73
) o
= 2
4 -- - @ - 2 -4
s 2
8 g 5
3 - T 22 — | = — 3
51 o5 s =)
| | g 2|2 =B sl |2lel, |8
x = =
] S c|o ©lo 0 oS =18 =Z(218]<
2--‘5 S| o 0| > oS 2151218 o G| 2= -2
S g2 2|3 = S|l Z|2la|le|e e|>|3|®
Llx|E|lS|o + [LlE|5 A= kS 7] | = =[5
c|= X 0|22 06|9(> = Qo c|lo|® L2 c|®|O
Slg|a|a 5|22 =588 |8|2|2=|vl=so|g]|S o o|5(S|6[8|=
1-12|2|ElS|L|5|s| S £22|2/8|2|8|3|2 ololE|=[2|=|5|5(S| 1
£ =|5|ol|8 o HCIEIEIEC IR = S =|la|lo|ln EIS5 B8 >
I ARIEEIRIEI S c|c|lo|l=|= 9] S |2 (2| S| gls|2
ElglolSIx|E|lols(c|R |zl G|S|E|SlEls =002 |E(ac|2(a|F
o|8|e o(3|alo|o|2(c|d(L 2lo|elo|o Zl@|3|®|(c|o|0| S
o|l8|c|E|l=|c|n|D|o|a|o|8|c|E|a|lalE|lo|n Elo|o|w|o|o|n|a|E

Figure 10.1: The function profile of the systems architect

10.2 Systems Architect Profile

The profile of the “ideal” system architect shows a broad spectrum of required
skills. Quite some emphasis in the skill set is on interpersonal skills, know-how,
and reasoning power.

This profile is strongly based upon an architecting style of technical leadership,
where the architect provides direction (know-how and reasoning power) as well as
moderates the integration (interpersonal skills).

The required profile is so requiring that not many people fit into it, it is a so-
called sheep with seven legs. In real life we are quite happy if we have people
available with a reasonable approximation of this profile. The combination of
complementary approximations of such ideal architect allows for the formation
of architecture teams. Such a team of architects can come close to this profile.

10.2.1 Most discriminating characteristics

In practice the following characteristics are quite discriminating when selecting
(potential) systems architects:

Generalist
Multi-tasking
Authority by expertise

Balance between conceptual and pragmatic

Gerrit Muller USN-SE

m Architectin .
Syste chitecting A page: 57
November 18, 2023 version: 1.0

Generalist The first reduction step is to select the generalists only, reducing the
input stream with one order of magnitude. The majority of people feels more
comfortable in the specialist role.

Multi-tasking The next step is to detect those people that need undisturbed time
and concentration to make progress. These people become unnerved in the
job of the systems architect, where frequent interrupts (meetings, telephone
calls, people walking in) occur all the time. Ignoring these interrupts is
not recommendable, this would block the progress of many other people.
Whenever the people with poor multi-tasking capabilities become systems
architect, then they are in severe danger of stress and burn out. Hence it is
also the benefit to the person self to assess the multi-tasking characteristic
fairly.

Authority by expertise The attitude of the (potential) architect is important for
the long term effectiveness. Architects who work on the basis of delegated
power instead of authority by expertise are often successful on the short
term, creating a single focus in the beginning. However in the long run
the inbreeding of ideas takes its toll. Architecting based on know-how and
contribution (e.g. authority by expertise) costs a lot of energy, but it pays
back in the long term.

Conceptual thinking and pragmatic The balance between conceptual thinking
and being pragmatic is also rather discriminating. Conceptual thinking is a
must for an architect. However the capability to translate these concepts in
real world activities or implementations is crucial. This requires a pragmatic
approach. Conceptual-only people dream up academic solutions.

10.3 Test Engineer Profile

The test engineer function at system level requires someone who feels and under-
stands the system. Test engineers are capable of operating the system fluently and
know its quirks inside out.

The main difference between an architect and a test engineer is the different
balance between conceptual thinking and practical doing. Test engineers often
have an excellent intuitive understanding of the system, however they lack the
conceptual expression power and the communication skills to use this understanding
pro-active, for instance to lead the design team.

10.4 Developer Profile

The core value of developers is their specific discipline know-how. Good devel-
opers excel in a limited set of specialties, knowing all tricks of the trade. On top

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 58
November 18, 2023 version: 1.0

8 8
7 7
6 - 3 - 6
J— - - - - 5
[=)
e)
> {=
4 | B £ 4
= <
. : g
@2 —|s @
3- = g |2 E -3
1) L6] £
c c = Ele = @ 2| o S
il o c|® O o SIS =9 = Z|2|9|©
2% El ol 0| > _ oS 2|22 |g < A -2
S|l |8|elela =|8lol2|2 |Z|2|2|2]e Sl_|g|2|2 c
HEEEIEINA B E R R R E L Y 5@ o|c|g|o
S519|2|v| s |2= |G| El8|312E 8w 2lo2lS5(8|68]|L S(S|2|E
1-1E|2|E[8|2|5|8|8|2|E|E(2|2|5|8|8|3|ElB[BlS 85 al [E5|=(8] 2
HHEEEE S BEEEEEEER EEE R REE R
g|8le|2|a|5|ale|g|S|slale|c|e|e|elalclelEle|3|=w| [S8|ala]
o|l8|c|E|l=|m|a|olo|lalo|8|G|E|a|alE|o|an|E|E|T|T|n o|ln|cl|E

Figure 10.2: The function profile of the test engineer

of this they should be able to deploy this know-how in a creative way. In today’s
large development teams a reasonable amount of interpersonal skills are required
as well as reasoning power and project management skills.

10.5 Operational Leader Profile

The operational leader, for instance a project leader, is totally focused on the result.
This requires project management skills, the core discipline for operational leaders.
The multi-tasking capability is an important prerequisite for the operational
leader too. If this capability is missing the person runs a severe risk of getting a
burn out.
Note also that the operational leader functions as kind of gatekeeper, where the
completeness is important.

10.6 Line Manager Profile

The line manager manages the intangible assets of an organization: the people,
the technology and the processes. Technology and process know-how are tightly
coupled with people, this know-how largely resides in people and is deployed by
people. Human resource management skills and process skills are the core disci-
pline for line managers, which need to be supported with sufficient specialist know-
how.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting . page: 59
November 18, 2023 version: 1.0

8 8
7 eeeed 7
6 --—o -1 6
5 - - — % 5
o S
> 2
4 - — . 5 - T — 4
= IS
® 1<} o
® _|e @
3 - S| g |2 miE 3
(7] O |'s (%)
c I3 =(9 =l 7] =P g
c X = o
.2 (<] c|l® oo w%gug = =2 8[S
2% |%|o 8| > —| ¢8| |=lglals|e| |8 [=|€|s 2
MM ERMCEREENEEEE - EE 5|5
Elslalg| 222 2|58 3|22 al=|clgl2=(2ls|e|S 2|58 2
[0) T | < [D3 O|O|E |+ =22
1 - Slgls|lsS g E,_.Q> (% =y =} 92 = L 1
£ SlEls|e|Slgl8 AT R 2 L E R k=) SlolS|3
E|E s|2|e 2) —|®(E(O|E|5[E S|8(5|G | a|E
HEEEREERE EEEEEEEEEE D E 2 EE E R E B
—_ — =
8le|s|E|2|z|7 5 8|a|8|s|5|e|5|8E[8|B|E|IE|S|3| B oln|lac|E

Figure 10.3: The function profile of the developer

10.7 Commercial Manager Profile

The commercial manager needs a commercial way of observing and thinking. This
way of thinking appears to be fuzzy and not logical for technology oriented people.
From technology oriented perspective a strange mind warp is required to perform
a commercial manager function.

The commercial manager is a valuable complement to the other functions,
responsible for aspects such as salability and value proposition.

10.8 Definition of Characteristics

10.8.1 Interpersonal skills

communication The ability to communicate effectively. Communication is a two-
way activity, presenting information as well as receiving information is important.

teamwork The ability to work as member of a team, in such a way that the team
is more than the collection of individuals.

documentation The ability to create clear, accessible and maintainable documen-
tation in a reasonable amount of time.

multi-tasking The ability to work on many subjects concurrently, where (frequent)
external events determine the task switching moments.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 60
November 18, 2023 version: 1.0

8 8
7- -7
6 - --- % - 6
‘©
£
5- - D - 5
() O
=4 E
4- - — @ |- - 4
@ 5 g
2 —lg °
3- £ hee 5|2 - - 3
(7] O |5 (]
=3 = - 7] =
5 S) 6|5 £\ 0 o = EIN
2-4=| |2 S| 2 2 |»|lo|ole|a o (%]l .2
s |5l28 = = 12|8| [=|e|la|lac|e| || _|8[S|5
olx|2|E| 22 o Clol|2]s x|lc|2 = = || E = c
clZEl=(o|sBl8|2|2|B|lexZ|=|Elae|le|e|B 5| ® ol c|®|S
S519|2|v| s |2= |G| El8|312E 8w 2lo2lS5(8|68]|L S(S|2|E
1- SE|S|2|5|s|S S|lg|>|(clanlsg|>|R o|lo|g|E |+« =[2|2(8| 1
£ Slalc|S|5l8lEls|lw|2|zale|ld|elBlE|=la|s|an (5SS
SEEIEEIEE clo|2|f|B 2|e|z|E|lEl2|E|s8|8(2|8 ol S el =
AEIEEEE A E =S E R E E G B Sl &g
< <) =
S|Ie|S|EIR 3 &5 8|88 5|e|laldE|8|3E|E|lS|B|B o|n|c|E

Figure 10.4: The function profile of the operational leader

flexible, open The attitude to respect contributions of others, the willingness to
show all personal considerations, even if these are very uncertain, the willingness
to adopt solutions of others, even in case of strong personal opinions.

Note that this overall attitude does not mean that a flexible and open person
always adopts the ideas of others (chameleon behavior). The true strength
of this characteristic is to apply it when necessary, so adopt an alternative
solution if it is better.

authority by expertise The personality which convinces people by providing data,
instead of citing formal responsibilities. Hard work is required before authority
by expertise is obtained; a good track record and trust have to be build up.
Authority is earned rather than being enforced.

10.8.2 Know-how

In terms of characteristics the know-how is qualified in 2 categories, generalist and
specialist.

Generalist The persons which are always interested in the neighboring areas, how
does it fit in the context? How does the “whole” work.

Specialist The persons which are always interested in knowing more detail.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting A page: 61
November 18, 2023 version: 1.0

o
=)
°
8 % . 8
1<)
g
7 5 2 -7
c
il
6 8 — - 6
5]
@
o
5 - - < - 5
@
(]
8
4 - — 0 -4
=
© ®
o -
3 £ g S 3
3 g g gl |2
- = -)
S 5 | & 3} EISIE| _|o = égw
2% S| o 0| > o —22|E(8 =) S| < | 2L -2
on_EQQ |8l ol2 :8“’: EHE>3-§ =
c5|51Z|° 2818|228 |2 |4/E|5(e|2|2(glc|c|8E (o <|w|s
S| o 92 glE=lElale|S 2 21w q):j"ooE.‘QD...E.Q.‘L""
1 - SEIsS2s | ® = > > = =} 92 = = L 1
IS Sls|el8 5|2 E|lS = olo|ola|B|2|=|G|lc|wE €S B |s|S
clEIZIE|IE|E|glg e\ B = Sl2|2|ElelE|s|E|2|8Ecs 8|52
HEBEIEIEIE I R = S Sl=|clElc|§|=|C|n|RE g |2(a|B
o|l3|e o|3|alofofE|a L 2|9|glo|o El2(5|®6 40|
o|8|T|E|=|®|n|D| O[]0) s|lalE|lo|n|E|E|C|O|vwo SO0 n|c|E

Figure 10.5: The function profile of the line manager

10.8.3 Reasoning Power

conceptual The ability to create the overview, to abstract the concepts from detailed
data. The ability to reason in terms of concepts.

pragmatic The ability to accept non-ideal solutions, to go after the 80% solution.
The ability to connect ’fuzzy” concepts to real world implementations.

constructive critical The ability to identify problems, formulate the problems and
to trigger solutions. The term critical thinking is also used. Note that critics
serves a constructive goal: to achieve better results.

fast absorption of know-how The ability to jump into a new discipline and to
absorb the required know-how in a short time. Systems architect are never
able to know all about the technologies used in the systems. This capability
helps them to get the right knowledge when needed.

creativity The ability to come with new, original ideas. A specific subclass of this
ability is lateral thinking: applying know-how from entirely different areas
on the problem at hand.

10.8.4 Executing Skills

Manual Skills The ability to do things, for instance build or test something. This
ability is complementary to the many “mental” skills in this list of character-
istics.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 62
November 18, 2023 version: 1.0

8- 8
7 - - -7
6 - - - 6
5- - B - 5
»
o]
g o 4
4- — - @ = -2 - 4
z| (2 &
Q o © o
2 =S =] S
3- =l --- < 8 - . 3
= [c =
g Sle| | 5 S
c = g Tl Elzle g 2lel, @
Re] o c|lo oo < | = @ =28
2% S| o 6| = PR 4%.95%’ S| < |22 - 2
S|l |8|elela =(8lo|2|E cl2]2=s ~|lE|Z|2|S c
|22zl 2S|Blelxl [Z[E|Elg|o 14 5|c|S|loc|glo
Sle|la|la| - |2L2|1=(5|8[8|al2 o|l=|o|=[=2 ole 3 528582
;E(ud)':m(ﬁg- 2lals 0|l 8l>IL3 O|O|E |+ =|2|2|®
1€ Sls|e|8l5|2El=|w|S olo|o|alT — & cl=|8|c -1
E|S|E|2|E|o|le|o|s|l@ T Sl=12) s |2|8| @ c|lo|E|2
Elglal5x[Elolse|ls|c|c|ald S1=|al€l<c S|o|a(L|E|lac|L|2|F
5(§|e o(5|ale|ls(S|a|B|2 2le|gls|c| |E|le|(z|g|c|olo|la
o|L|o|E|l=|m|n|D|o|a|o|8|o s|lalE|o|a Elo|o|w|o|o|n|a|E

Figure 10.6: The function profile of the commercial manager

10.8.5 Process Skills

process insight The ability to understand specific processes, the ability to recognize
the de facto processes, the ability to asses formal and de facto processes, both
the strong points as well as the weak points.

politics insight The ability to recognize the political factors: persons, organiza-
tions, motivations, power. The ability to use this information as neutralizing
force “depoliticizing”: facts and objectives based decision making instead of
power based decision making.

improvement drive The ever present drive to improve the current situation, never
getting complacent.

10.8.6 Project Management Skills

Completeness The ability to pursue all information. This is often done by means
of spreadsheets or databases. Large collections of issues are maintained and
processed.

This ability is often complementary to, or even conflicting with, the ability to

create understanding and overview: the parts view versus the holistic view.

schedule The ability to create schedules: activities and resources with their relation-
ships, scheduled in time.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting A page: 63
November 18, 2023 version: 1.0

monitor progress The ability to monitor progress, the ability to chase people, and
the ability to find and resolve the causes of delays.

initial cost The ability to create initial cost estimates and to refine these into budgets.
The ability to understand and reason in terms of initial costs. Initial costs are
the one time investments needed to develop new products and or businesses.

decision making The ability to make choices and to handle the consequences of
these choices.

10.8.7 Commercial Skills

customer value The ability to see and understand the value of a product or service
for a customer. The ability to asses the value for the customer.

sales feature The ability to recognize features needed to sell the product. The
ability to characterize the relevant characteristics of these features (“tick-

LR INT3 PN

mark only”, “competitive edge”, “show-off”, et cetera).

commercial insight The ability to think in commercial terms and concepts, ranging
from “branding” to “business models”.

10.8.8 Human Resource Management Skills

coaching The ability to coach other people; help other people by reflection, by
stimulating independent thinking and acting.

selection The ability to select individuals for specific jobs. The ability to interview
people and to asses them.

appraisal The ability to asses employees and to communicate this assessment in
a fair and balanced way.

motivation The ability to make people enthusiastic, to motivate them beyond
normal performance.

10.9 Acknowledgements

Pierre America applied fine tuning of translations, spelling and capitols. Lennart
Hofland suggested an improvement for the description of the commercial manager.
Sjir van Loo suggested an increase of coaching and selection skills of the architect.
Keith Frampton pointed me to recent research about this subject.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 64
November 18, 2023 version: 0.1

Chapter 11

Dynamic Range of Abstraction
Levels in Architecting

10° —
¥)
10 enterprise marketing
gap
S 1’ akeholders
EE 10° context
§3) e
o1 /" systems
// >—multi
° WHLIERTR] disciplinary
10 Y i
10° . \

11.1 Introduction

System architects need the capability to “zoom in” and “zoom out”. A tremendous
dynamic range of abstraction has to be covered from high level business and customer
objectives to detailed design decisions at engineering level. The system-of-interest
itself spans many abstraction levels. However the architect has to look beyond the
system-of-interest itself, towards the customer context, the life cycle, and to related
products.

11.2 From System-of-Interest to Context

The translation of the product specification of the system-of-interest into detailed
mono-disciplinary design decisions spans many orders of magnitude. The few
statements of performance, cost and size in the system requirements specification
ultimately result in millions of details in the technical product description: million(s)
of lines of code, connections, and parts. The technical product description is
the accumulation of mono-disciplinary formalizations. Figure [T1.1] shows this

10°

—_—

S, 10
8%
g o 2
37 10 system
| 10° requirements
10* multidisciplinary
s design
10
10°
107 static system definition

monodisciplinary

Figure 11.1: Connecting System Specification to Detailed Design

dynamic range as a pyramid with the system at the top and the millions of technical
details at the bottom.

10° 4 ol 10°
5 system ——» portfolio
100 2o Y P 10
&S
10° EZ system 10?
2 systems
10° | 10°
10* multidisciplinary 10*
10° multidisciplinary 10°
6 6
10 monodisciplinary 10
7 7
10 T 10
increase o 10°
monodisciplinary
A\ 4 109

Figure 11.2: From system to Product Family or Portfolio

The current system-of-interest is most often part of a broader set of products
that evolves over time: the product family or portfolio. The aggregate amount of
details in the product family or portfolio can be several orders of magnitude larger
than the amount of details for one system. Figure [[1.2] shows the increase of the
dynamic range from system to portfolio.

Architects also have to take the context of the system into account, from both
customer as well as business perspective. We can transform the portfolio pyramid
from Figure [I[1.2]into Figure [I1.3|to show the number of details of a portfolio in
its context. The context is also shown as a pyramid, representing the fact that in
the outside world, where systems are actually used, can be viewed at many levels
of abstractions.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 66
November 18, 2023 version: 0.1

enterprise context

T 10° -
gg 10° \..\;»\.,\Stakeholdersnﬂﬁ"ﬂ_,.
gg 10°
g | 10° L\

106 multidisciplinary design
109 parts, connections, lines of code

Figure 11.3: Product Family in Context

11.3 Architecture and Architecting

9 -
10 enterprise context some .contEXt
details are
106 essential
enterprise
3 S .
b X y) .
° v 10 “_stakeholders -~ /Architecting:
bS £ 10° : " /realization and'
§ T ~\design choices
< 103 " systems .\ _in context
6 multidisciplinary design '
10 some technical
9 details are
107 < parts, connections, lines of code essential

Figure 11.4: Architecture: the Essence of System and Context

The challenge of developing an architecture is to capture the essence of both
the systems to be build as well as the contexts where systems are being created and
used. Figure[TT.4]shows that most of an architecture covers the higher abstraction
levels. An architecture needs to abstract from most details to facilitate the capture
of the essence. Only a simplified description or model can be used at system level
to reason and facilitate communication.

However, some crucial details either from mono-disciplinary area or from the
customer or business contexts might have to be included. Quite often the devil is
in the detail. Hence known crucial details are part of an architecture description or

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 67
November 18, 2023 version: 0.1

model.
Note that architectures do have a scope:

System architecture captures the essence of a system in its context. Note that the
system context includes the product family or portfolio. However, the focus
of the system architecture is on the system itself, and as such will position
this system in the broader portfolio.

Family architecture captures the essence of the family of systems and its context.
The focus is now on the family, explaining how different products can support
specific market needs, and providing guidance to harvest synergy between
products.

Portfolio architecture is similar to family, but at an higher aggregation level.
Architecting involves all activities to create an architecture: exploring details in

system(s) and context, communication, design, specification, making decisions et

cetera. In other words architecting combines external zoom-in and zoom-out (fact

gathering and communication) with internal zoom-in and zoom-out (specification,
design, integration).

11.4 Revisiting Design and Engineering

10°

—

10

10°

number of
details

system X .
10° | - from needs and requirements to design:
k= decomposition, interface definition, allocation,
10* — & concept selection, technology choices
- flidisciplipary S anticipating engineering needs and constraints
2
10° § Capturing all information that is required for
£ logistics, manufacturing, legislation,
10’ monodisciplinary, ugj maintenance, life-cycle support

Figure 11.5: Positioning design and engineering in the dynamic range of
abstraction levels

We can revisit the terms design and engineering based on the dynamic range
of abstraction levels, as shown in Figure

Designing is the activity to get from needs and requirements to a design: decom-
position, interface definition, allocation, concept selection, technology choices,
etc. The design has to anticipate the engineering needs and constraints.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 68
November 18, 2023 version: 0.1

Engineering is capturing all information that is required for the Customer Oriented
Process, such as logistics, manufacturing, legislation, maintenance, life cycle
support.

Engineering and design mostly takes place internally in the organization, with
the exception of the communication with external suppliers.

11.5 Architecting and Design in Practice

g -
10 .
enterprise context
6)
10 . marketing
enterprise
B gap
S K%) 10 . stakeholders
[
o % 100 context
E3 . AN gap
c .
3 .~ systems ™
~— multi-
6 multidisciplinary disciplinary
10° i
109 monodisciplinary

Figure 11.6: Frequently observed gaps in practice

In practice, several problems can be observed in most organizations that can be
explained by “gaps”. Figure shows some gaps that can be observed in many
organizations:

Multi-disciplinary gap is the gap between product specification and detailed design
decisions.

Context gap is the gap between stakeholders and product specification.

Marketing gap is the gap between the detailed outside world with billions of
individuals and our abstracted understanding in terms of stakeholders, concerns,
and needs.

Architects have a core role in closing and preventing the multi-disciplinary and the
context gaps. In practice, the marketing managers do have the irresponsibility for
the marketing gap with their knowledge of stakeholders, enterprises, and enterprise
contexts.

The multi-disciplinary gap, from specification to detailed design, is often bridged
by experience: older engineers make decisions based on their past experiences.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 69
November 18, 2023 version: 0.1

Note that these decisions are often right. The problem is that the implicit nature
of these decisions does not facilitate communication, review, or discussion. Worse
is that this knowledge gradually disappears from the organization, making further
evolution even less transparent.

The context gap, how marketing research information relates to choices in
the product specification, requires an extrovert focus of architects. Early in their
careers many architects look inward (to design and engineering) and too little
outward (to customers and other stakeholders in the Customer Oriented Process).
Architects make major development steps when they start to address both gaps in
a balanced way.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 70
November 18, 2023 version: 0.2

Chapter 12

Architecting Interaction Styles

when in an impasse: provoke

provocation e iive when used sparsely

especially recommended when new in a field

facilitation 0l to the team, while absorbing new knowledge

Jeadi provide vision and direction, make choices
€adiNg isk: followers stop to give the needed feedback

take the viewpoint of the stakeholder

empathic 4 owiedge the stakeholder's feelings, needs, concerns

interviewing investigate by asking questions

; . . invite a few engineers and walk through
whiteboard simulation e system operation step by step

first listen to the stakeholder and then

judo tactics explain cost and alternative opportunities

12.1 Introduction

A system architect has to use different interaction styles in different circumstances.
In some circumstances a leading style is appropriate, while in other circumstances
a facilitating style is more effective. Figure[I2.1|shows the styles that are discussed
in this chapter.

12.2 Provocation

A provocative style can be used by the architect when the discussion is in an
impasse. The provocation can be based on taking an extreme viewpoint of one
of the stakeholders and confronting the other stakeholders with the consequences.
Such a provocation forces the involved stakeholders to formulate their needs more
sharp, including the consequences of following the recommendation.

A provocative style should be applied scarcely. Once team members get used
to this style then the style becomes ineffective. Most people do not like to be
provoked continuously, so they stop to respond after a few provocations.

when in an impasse: provoke

provocation effective when used sparsely

especially recommended when new in a field:

facilitation contribute to the team, while absorbing new knowledge

provide vision and direction, make choices

Ieadmg risk: followers stop to give the needed feedback

take the viewpoint of the stakeholder

empathlc acknowledge the stakeholder's feelings, needs, concerns

interviewing investigate by asking questions

. . . invite a few engineers and walk through
whiteboard simulation the system operation step by step

first listen to the stakeholder and then

JUdO tactics explain cost and alternative opportunities

Figure 12.1: Interaction styles for architects

12.3 Facilitation

The facilitation style is a style where the architect serves the team by facilitating
meetings and workshops. Facilitating a meeting means:

e preparing the meeting or workshop together with the owner of the meeting:
determining the goal, participants, place, agenda, means.

o facilitating the meeting itself: timekeeping, managing the flips, writing action
point and conclusions.

o finalizing the meeting: writing a report and presentation of the results, chasing
follow-up actions.

The facilitation style is especially useful for architects entering a new domain.
The architect provides visible value for the team, while as a spin off the architect
learns a lot about the new domain.

12.4 Leading

A leading style is a style where the architect is highly visible. The architect
provides vision and direction to the team. The leading architect can be recognized
by looking at the followers: if they really follow the architect then the architect is
effective as leader.

The risk of this style is that the team starts to trust the architect decisions too
much. Most of the team members have much more know how about the design
issues than the architect. The architect will often make decisions based on limited
know how that should be corrected by the specialists with more know how. The

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 72
November 18, 2023 version: 0.2

leading style sometimes inhibits the specialists to oppose the architect. The leading
architect must be aware of this effect. Sometimes even invitations to oppose and
provocations do not help to loosen up the followers.

12.5 Empathic

The empathic style is based on taking the viewpoint of the stakeholder under
discussion. This goes much further than the objective rational view. The feelings
and emotions of this stakeholder must be taken into account as well. The under-
standing of the state of mind is communicated back to the stakeholder. The result
of this way of interacting is that the architect gets a much better insight in the stake-
holder, while at the same time the stakeholder has the feeling to be taken seriously.

12.6 Interviewing

Architects pose lots of questions, questions are one of the most important instru-
ments of the architect. The interviewing style makes excessive use of questions.
The architect uses a priori knowledge to formulate open questions. These open
questions must lead to an understanding of the stakeholder concerns.

The difficult part of this style is to use a priori know how in a limited and
constructive way. The danger of a priori know how is that it limits observation and
that suggestive questions are formulated instead of open questions.

12.7 White-board simulation

The white-board simulation style is used in meetings where a few specialists are
present. The architect guides the specialists through a use case, where every
specialist explains the system behavior from the specialist viewpoint. For example,
the use case can be to push a next channel button on the user interface. In this
example the user interface signal will trigger an avalanche of events in the system,
going through many layers and propagating to many subsystems.

This guided simulation often reveals a lot of unknown system behavior, strange
dependencies, inefficient sequences and many more engineering surprises. The
normal reactions of the participants is that after a few steps they want to redesign
the system. The architect should suppress this urge, by parking improvements at
the side. The main purpose of this style is to build a shared understanding of the
current design.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 73
November 18, 2023 version: 0.2

12.8 Judo tactics

The basis of judo tactics is that the architect starts to listen to the stakeholder,
especially when the architect feels an urge to contradict the stakeholder. After
listening to the stakeholder, and acknowledging the validity of the needs, the architect
explains the costs and trade-offs. In many cases the stakeholders have a healthy
feeling for value and cost and look for a reasonable balance. Quite often the result
is a decision that the architect wanted to make right at the beginning. However,
this style works only if the architect really listens, and is willing to take a different
direction if needed. It might be that the architect discovers that the value for the
stakeholder is much larger than originally assumed!

In many cases ill communication and bad listening skills block reasonable
decisions. The judo style, where the architect starts to listen, avoids this trap.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 74
November 18, 2023 version: 0.1

Chapter 13

The Tool Box of the System
Architect

105 enepreconen
10° "\ snepe

3 \
10

0
10 N
103 / systems \ \

3 /Mmult-disciplinary Y
10 4

” pants, connections,

109 /" lnesofcode ¥\

“stakeholdess
V4 tools to manage

large amounts
of information

human
overview

number of
details

-—

13.1 Introduction

The subject of tools for systems architecting creates numerous debates. We will
use a broad interpretation of the word tool, including intellectual tools, low-tech
tools (such as pen and paper), but we will also discuss computer assisted tools.
One of the key questions is when to apply what tool. An essential capability for
systems architects is to pick an appropriate tool, and, if needed, to adapt it to the
situation at hand.

We discussed in Sections] and [§] that the role of the systems architect depends
on the organizational context. Similarly, there are organizations that force a set
of tools on systems architects based on the perceived role and way of working of
system architects.

We base our discussion of tools on the deliverables, responsibilities and activ-
ities as described in Sections [9) and [TT] (Figures [IT.4] and [T1.6). Key contribution
of systems architects in these sections is the simplification of complicated systems
into understandable essentials. Main challenges in achieving this contribution are
the heterogeneity of the system and its context, and the uncertainties and unknowns
in the system and its context. The goal is to make systems specification and design
decisions communicable, and to facilitate debate and reasoning about decisions.

Many organizations move in practice too fast to extensive use of computer
assisted tools. As consequence the architects and stakeholders move away from
overview and understanding essentials to more detailed concerns (that also have
be to be addressed!). The purpose of this section is to help understand the impact
of tool selection, and especially to bring balance in the application of intellectual
tools versus computer assisted tools.

13.2 Overview of Systems Architecting Tools

noncomputer tools computer-based tools
human-experience-based borrowed advanced tools
methods architecting specific tools
techniques general-purpose tools
patterns spreadsheet Excel
low tech tools drawing Visio
paper scripting Python
pen simulation
eIt e S organization infrastructure
facilitation configuration management
workshops product data management
change control
standards
process oriented artifact oriented
ISO 9000, CMM-I
concept oriented SysML

IEEE 1471 formalisms

Figure 13.1: Classification of Architecting Tools

Figure [13.1] shows an overview and a classification of systems architecting
tools. The left side shows the tools that are independent of computers and related
software programs. The right hand side shows tools that depend on computers and
specific software. The bottom part of the figure shows some of the standards that
impact the selection and application of tools.

13.2.1 Human Experience Based tools

Experience is crucial for systems architects. Systems architects meet new approaches
during their entire career, and they build a rich frame of reference by seeing many
systems in many circumstances. Reflection on the way of working transforms
events into valuable experience: approaches are transformed into methods and
techniques, and problems and solutions are transformed into patterns.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 76
November 18, 2023 version: 0.1

Methods describe an approach in terms of objective, the order or logic of steps to
follow, the techniques that can be applied, and the models, tools, notations,
and formalisms that can be supportive.

Techniques are ways to address a specific aspect of a problem. For example, how
to analyze timing requirements and problems. Techniques can be supported
by specific tools and formalisms. A technique may require specific models.
For instance, the analysis of response time may require functional flow models.

Patterns are recognized problem-solution combinations, including the consider-
ations in what context and circumstances a solution is appropriate for the
problem. Patterns can be highly technical, e.g. the publish-subscribe pattern
in software to solve flexibility and extendibility needs. However, patterns can
also be high level organizational or business, such as considerations about
products versus services in Figure [6.5]

13.2.2 Low-tech tools

Systems architects, like building architects, often make sketches. The sketches are
on napkins, paper, flip-charts, white-boards, using pens, pencils et cetera. Sketching
is a fast way to express and exchange ideas, and as such has to be values as
essential part of the systems architect toolbox. Note that similarly other low tech
means, such as folded paper, wire frames, and yellow note stickers provide fast and
intuitive ways to express and exchange ideas.

It might be a challenge to capture these sketches for further communication,
later re-use, and archiving. However, with today’s ubiquitous digital cameras this
is easily captured. Later in the process these sketches get captured electronically
in more structured form, e.g. in Visio.

13.2.3 Facilitation tools

System architects can contribute to teams by applying facilitation techniques, as
described in Section [I2] An example is the organization of work shops, where
teams can explore and share ideas effectively. There are many more facilitation
tools and techniques, such as:

e the use of flip charts to create a common memory on the wall

o the use of balanced feedback, e.g. soliciting benefits and concerns
e working in teams and plenary groups

e preparing meetings together with the leader

e round robin or random order contributions to get input from less dominant
team members

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 77
November 18, 2023 version: 0.1

13.2.4 Borrowed Advanced Tools

Systems architects cooperate with a large amount of experts. Every expert has its
own set of tools. Sometimes the architect borrows such tool and adapt it to be used
as system level. For example, mechanical engineers are used to tolerance budgets.
Systems architects use budgets for many different system qualities (e.g. response
time), where granularity of the budget and the algorithms behind the budget have
to be adapted to the quality at hand. Most tools in systems architecting find their
origin somewhere in another discipline.

13.2.5 Architecting Specific Tools

The problems to be addressed by a tool and the solutions for these problems need to
be well-defined and repeatable Before a computer assisted tool can be made. The
nature of many systems architecting problem is often quite opposite, with charac-
teristics such as heterogeneous, uncertainties and unknowns. The systems archi-
tecting effort is mostly spend in understanding the problem. Solving well under-
stood problems in a repeatable and predictable way is the domain of engineering.

Most systems specific tools are more engineering related (nailing down all
detailed information to facilitate the ordering, production, sales, and support of
the system) than architecting related. Examples are tools to capture requirements
(e.g. Doors), functional and physical architectures such as IDEFO (e.g. Core), or
object oriented architectures in for instance SysML.

13.2.6 General Purpose computer based tools

Architects and engineers use computers all the time for many different purposes.
Architects will use a lot of general purpose tools, such as spreadsheets (e.g. Excel),
drawing programs (e.g. Visio), scripting (e.g. Python), or simulation (e.g. Python,
MATLAB or many others).

The general purpose nature of these tools makes them attractive for architects,
since that helps them to cope with heterogeneity, unknowns and uncertainties.
The class of more advanced tools can be too restrictive to allow adaptation to the
problem at hand and its circumstances.

13.2.7 Tools prescribed by the organization infrastructure

Organizations do have an engineering tool infrastructure that systems architects can
not ignore. However, systems architects have to decide when and how to interface
to the organizational infrastructure. Examples of typical organizational infrastruc-
tures are many data bases and repositories for engineering related information:

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 78
November 18, 2023 version: 0.1

Configuration management describing the parts and the rules how the parts can
be configured. This repository can be part of a larger system such as an
Enterprise Resource Planning (ERP) system (typically SAP).

Product Data Management (PDM) storing all product and part related information
required for the Customer Oriented Process.

Change Control and Problem Report data bases, where all Change Requests,
Internal Problem Reports, and Field Problem reports are stored.

System architects sometimes have to work for some time outside these systems,
because these systems tend to slow down more creative work full of unknowns and
uncertainties. The challenge for project leaders and systems architects is to migrate
to these systems at the right moment: using these systems too early slows dona too
much, starting to use them too late might cause loss of information and quality
problems.

13.2.8 Process Oriented Standards

There are many process oriented standards that influence the way of working of
systems architects. For example the maturity models in CMM-I more or less
prescribe most of the tools (Configuration management, change control) discussed
in the previous paragraphs.

Process oriented standards tend to be agnostic for specific tools. In general
these standards try to capture best practices from the past in an attempt to preventing
past mistakes. Systems architects in practice suffer when these processes are imple-
mented to the letter rather than the intent. An unintended side effect can be that
systems architects are transformed into administrators, while their main contri-
bution is in content rather than administration.

13.2.9 Concept oriented Standards

Some standards try to capture the shared understanding of the architecting disci-
pline. A good example is the IEEE 1471 standard, where the concepts stake-
holders, concerns, architecture description, and viewpoints are captured. These
standards do no prescribe a way of working but provide a set of concepts and their
relations to ease communication.

13.2.10 Artifact Oriented Standards

In the defense world several frameworks have been created defining the artifacts
that can describe an architecture. Typical examples are DoODAF and MoDAF of
respectively the USA Department of Defense and the UK Ministry of Defense.
These frameworks do not define the process, but rather limit themselves to defining

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 79
November 18, 2023 version: 0.1

the artifacts that may describe the architecture. These standards tend to see the
artifacts as electronics artifacts with a significant degree of formalization to facil-
itate computer assistance.

Part of the Systems Engineering community has transformed UML from the
software engineering world into a more systems oriented modeling language SysML.
SysML is a set of formalisms to create artifacts that can be used for computer
assisted tools.

13.3 Human versus Computer Assisted Tools

One of the main challenges is to decide when and for what to use computer assisted
tools, as stated in the introduction. Figure [I3.2] shows a so-called four quadrant
analysis of intellectual (human) tools and computer assisted tools. The four quadrants
are obtained by adding a second dimension: strength and weakness.

humans tools

focus on overview tool dominates
< |identify essentials focus on details g
ga understand relationships no understanding %
L |insight, intuition fragmentation %
% |synthesis @

limited capacity "infinite" storage capacity
5 erroneous behavior "infinite" processing capacity | 4
< |incomplete complete 3
x| S
S |biased neutral Q
g no errors s

Figure 13.2: 4 Quadrant analysis of computerized and human tools

Strengths of humans , based on their intellect, are:

e to be able to focus on overview

to be able to identify the essentials

to understand relationships

to have insight and intuition

to be able to synthesize (to combine heterogeneous information into a
meaningful picture)

Strengths of computers , based on current technological level, are:

e near-infinite storage capacity

Gerrit Muller
System Architecting
November 18, 2023

University of South-Eastern Norway-NISE

page: 80

version: 0.1

e near-infinite processing capacity

e the ability to be complete by storing all information

e to be neutral, without emotions, opinions, or (political) interests
e to be perfect in execution, making no errors

Weaknesses of humans , inherent to their social and psychological background,
are

e storage and processing capacity is limited.
e showing behavior that is erroneous
e memory is imperfect, information is often incomplete

e biased, for emotional, social or political reasons
Weaknesses of computers , inherent to their mechanistic technical nature, are:

o the tool dominates, because there is no “reasonable” flexibility

e the information is in full detail, moving the focus on details

e computers do not have any understanding (garbage in, garbage out)
o the data tends to be fragmented, only stored relations are present.

enterprise context |
106 ;
_ enterprise
N 0 10 stakeholders tools t
8 IS 100 human 00IS 10 manage
g 2 AN |overview Iarge amounts
c 103 ./ systems ™ of information
6 J.,ﬁ\uIti-disciplinary""-.,,_‘ e.g.
10 GESE ; Doors
9 parts, connections, Core
10 lines of code

Figure 13.3: Tools Support Processing of Large Amounts of Details

The idea behind the four quadrants is that the weaknesses of humans can be
compensated by the strengths of computers and vice versa. If we map these charac-
teristics on the pyramids of Figure[IT.4]then we see that human intellect is required
at the higher abstraction levels where we strive for understanding between hetero-
geneous stakeholders. Computer assisted tools bring most of their value where
large amounts of data have to be managed and processed. Most computer assisted
tools address a limited set of concerns, such that the problem is well defined and
the solutions can be applied repeatable and predictable. Many computer assisted
tools are mono-discipline oriented, since disciplines capture repeatable knowledge.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 81
November 18, 2023 version: 0.1

13.4 Flow: from Data to Overview and Understanding

interpret & less detail
present results and

explanation T

select &

simplify

intermediate
data
analyse
des_ign raw data i i
suppliers \ formalize Foq reposnory‘
standards collect
regulations generate/ more detail
i

partners nstantiate| expanded data
customers

by automation support

Figure 13.4: From Data to Understandable Information

We have seen in the previous Subsection that computer based tools create most
of their value when large amounts of data have to be managed and processed. Other
discussions that pop up when computer assistance is used is the degree of formal-
ization and the use of automated outputs. Figure [I3.4] shows the flow from input
data up to the moment that the results are being used by a heterogeneous group of
stakeholders. The figure shows the following functions:

Collect data from many inputs, e.g. the design, suppliers, standards, regulations,
partners, and customers. The output of this function is a collection of raw
data: data that still has to be processed to make it useful.

Formalize to be able to enter the data into computer based tools. The nature of
the formalization is to look for appropriate abstractions to capture this data.
The consequence of the abstraction is that the amount of detail can decrease
slightly, for instance because repeated data is captured more structurally.

Repositories are used to store the formalized data so that this data can be used for
many different purposes. For example an information model can be stored
as entity relation ship model plus a data dictionary to capture all formatting
details. This information model data can be used to generate data structures
and code, it can be used to generate test cases for compliance testing, and
the data can be used for analysis.

Generation and Instantiation can be applied on prescriptive data in the repos-
itory to generate or instantiate components, stubs or test harnesses.

Analysis techniques are applied on the data to determine characteristics of the
design. For example, the form, shape and material characteristics of compo-
nents can be used to calculate the center of gravity of components and of the

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 82
November 18, 2023 version: 0.1

aggregate of multiple components. Another example is that configurations
can be analyzed for feasibility and performance.

Selection and Simplification is a function that is applied by humans (architects or
designers) to make the results ripe for communication and discussion. The
output of automated analysis techniques is often rather detailed and highly
formal, while the essential aspects are hidden in a huge amount of other
details.

Interpretation and Presentation are the last steps in making the information acces-
sible and understandable for the broader group of stakeholders. In interpre-
tation the meaning of the the outputs is added: is a center of gravity deviation
of 10mm a problem or is it quite good? The presentation is the format of the
output, what visualization will engage the stakeholders, how to ensure that
the information relates to the mental model of the diverse stakeholders?

A common mistake made by engineers is that they show their own intermediate
data to stakeholders that use a different mental framework themselves. The conse-
quence is that the communication is quite incomplete and the risk is significant that
stakeholders will disconnect or will not give any reaction even when necessary.

Systems architects have to make the last steps of selection, simplification, inter-
pretation and presentation. Note also that these steps bring their own risks: every
simplification is only valid within its limits, so architects are also responsible to
monitor the validity of discussions and decisions in light of the used simplifica-
tions.

interpret & less detail
present results and
explanation

design
suppliers

intermediate select &
data simplify
estimate
standards l
regulations

raw data
partners more detail
customers

Figure 13.5: Data Flow Early in Creation Process

Early in the development projects architects are using a slightly simplified flow
to facilitate system specification and design, as shown in Figure [I3.5] This figure
shows that early in the process many estimates and guesses are used, and that less
formalization is used. Remember that formalization and computer based tools are
especially relevant when large amounts of data have to be processed and managed.
More simple models can be used by architects as long as the amount of information
is small.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 83
November 18, 2023 version: 0.1

100 _t
1 oo
100 8%
E3
102 2 system ‘

3 -
10 interpret &
present

4 -
10 select & . n'_‘UI_t"
5 simpli disciplinary
10
6 analyze
10 - - mono-
107 disciplinary
callsEs generate/
instantiate|
generated/
instantiated

Figure 13.6: Data Flow Mapped on Pyramid

Figure[I3.6maps the data flow on the pyramid with the abstraction levels. This
mapping shows again the relation between the amount of information and the kind
of tools to be used: repositories, generator tools and analysis tools are typically
computer assisted, while the intellectual challenges of selection, simplification,
interpretation, and presentation are human activities.

100 |
u“—
100 2o
5=
10?2 2§
3 g S heterogeneous system
10 c uncertainties, unknowns
10 ‘ less formal, % yariable backgrounds, concerns
communication-
5 :
10 onented _____________ multi-
10° T % SysML disciplinary
4 % DOORS
107 g P s IDEFO
/ well defined q)
108 / machine
o/ eaget readade o
10° /£ \

generated/
more formal, more rigorous instantiated

Figure 13.7: Formality Levels in Pyramid

Figure [I3.7] summarizes these areas of application in the pyramid. The bottom
parts of the pyramid with large amount of details can be characterized as more
formal and requiring more rigor. Formalization requires well defined problems,
data, and operations that are repeatable. The data is machine readable to allow
automated tools. The use of repositories facilitates re-use over systems and compo-
nents.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 84
November 18, 2023 version: 0.1

The upper part of the pyramid is characterized by the combination of quite
heterogeneous data with uncertainties and unknowns used ba heterogeneous group
of stakeholders with variable backgrounds and concerns. This upper part is less
formal and oriented towards communication, discussion and decision making.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 85
November 18, 2023 version: 0.1

Part 111

Market, Requirements,
Roadmapping

Chapter 14

Short introduction to basic
“CAFCR” model

Conceptual

Realization ‘

14.1 Introduction

A simple reference model is used to enable the understanding of the inside of a
system in relation to its context.

An early tutorial[20] of this model used the concatenation of the first letters
of the views in this model to form the acronym “CAFCR” (Customer Objectives,
Application, Functional, Conceptual, Realization). This acronym is used so often
within the company, that changing the acronym has become impossible. We keep
the name constant, despite the fact that better names for some of the views have
been proposed. The weakest name of the views is Functional, because this view
also contains the so-called non functional requirements. A better name for this
view is the Black-Box view, expressing the fact that the system is described from
outside, without assumptions about the internals.

The model has been used effectively in a wide variety of applications, ranging
from motor way management systems to component models for audio/video streaming.
The model is not a silver bullet and should be applied only if it helps the design
team.

14.2 The CAFCR model

A useful top level decomposition of an architecture is provided by the so-called
“CAFCR” model, as shown in figure [I9.4] The Customer Objectives view and
the Application view provide the why from the customer. The Functional view
describes the what of the product, which includes (despite the name) also the non-
functional requirements. The how of the product is described in the Conceptual
and Realization view, where the conceptual view is changing less in time than the
fast changing realization (Moore’s law!).

drives, justifies, needs >
-t nables, support
What does Customer need
in Product and Why?
Product
How
Customer Customer Product
What How What
Customer Application Functional Conceptual Realization

objectives

Figure 14.1: The “CAFCR” model

The job of the architect is to integrate these views in a consistent and balanced
way. Architects do this job by frequent viewpoint hopping: looking at the problem
from many different viewpoints, sampling the problem and solution space in order
to build up an understanding of the business. Top-down (objective driven, based
on intention and context understanding) in combination with bottom-up (constraint
aware, identifying opportunities, know how based), see figure(19.

In other words the views must be used concurrently, not top down like the
waterfall model. However at the end a consistent story-line must be available,
where the justification and the needs are expressed at the customer side, while the
technical solution side enables and support the customer side.

The model will be used to provide a next level of reference models and submethods.
Although the 5 views are presented here as sharp disjunct views, many subse-
quent models and methods don’t fit entirely in one single view. This in itself not a
problem, the model is a means to build up understanding, it is not a goal in itself.

14.3 Who is the customer?

The term customer is easily used, but it is far from trivial to determine the customer.
The position in the value chain shows that multiple customers are involved. In

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 88
November 18, 2023 version: 0.4

What does Customer need
in Product and Why?

y A\ < Product
How
Customer Customer Product A~
What How What 7 N
Customer Application Functional Conceptual Realization
objectives

context \intention) OPjective

understanding driven
oppor- /constraint/ knowledge,
tunities awareness based

Figure 14.2: Five viewpoints for an architecture. The task of the architect is
to integrate all these viewpoints, in order to get a valuable, usable and feasible
product.

figure [19.6] the multiple customers are addressed by applying the CAFCR model
recursively.

The customer is a gross generalization. Marketing managers make a classi-
fication of customers by means of a market segmentation. It is recommended to
start building up insight by making specific choices for the customer, for example
by selecting specific market segments. Making early assumptions about synergy
between market segments can handicap the build-up of customer understanding
These kind of assumptions tend to pollute the model and inhibits clear and sharp
reasoning.

many stakeholders are involved for any given customer. Multiple stakeholders
are involved even when the customer is a consumer, such as parents, other family,
and friends. Figure [I4.4] shows an example of the people involved in a small
company. Note that most of these people have different interests with respect to
the system.

Market segments are also still tremendous abstractions. Architect have to stay
aware all the time of the distance between the abstract models they are using and
the reality, with all unique infinitely complex individuals.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 89
November 18, 2023 version: 0.4

Customer's
Customer Drives

Business .
lap, Customer
o8 My, Enables . —Dri
Dy " Scop € Chy, Business| Ve
Nee o4,
60/78 ass,h
"Chyy e, N System
8¢y Enables
Ure (producer)

Figure 14.3: CAFCR can be applied recursively

CFO CIO
CMO CEO CTO
decision maker(s) purchaser

Who is the customer?

department head

Ul maintainer

CEO: Chief Executive Officer
CFO: Chief Financial Officer

CIO: Chief Information Officer
CMO: Chief Marketing Officer
CTO: Chief Technology Officer

operator

Figure 14.4: Which person is the customer?

14.4 Life Cycle view

The basic CAFCR model relates the customer needs to design decisions. However,
in practice we have one more major input for the system requirements: the life
cycle needs. Figure[I4.5]shows the CAFCR+ model that extends the basic CAFCR
model with a Life Cycle view.

The system life cycle starts with the conception of the system that trigger the
development. When the system has been developed then it can be reproduced
by manufacturing, ordered by logistics, installed by service engineers, sold by
sales representatives, and supported throughout its life time. Once delivered every
produced system goes through a life cycle of its own with scheduled maintenance,
unscheduled repairs, upgrades, extensions, and operational support. Many stake-
holders are involved in the entire life cycle: sales, service, logistics, production,

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 90
November 18, 2023 version: 0.1

Customer Application Functional Conceptual Realization
objectives
operations Life cycle development
maintenance manufacturing
upgrades installation
sales, service, logistics, production, R&D

Figure 14.5: CAFCR+ model; Life Cycle View

R&D. Note that all these stakeholders can be part of the same company or that
these functions can be distributed over several companies.

Gerrit Muller USN-SE
System Architecting

age: 91
November 18, 2023 version: 0.1 p g

Chapter 15

Fundamentals of Requirements
Engineering

interfaces

$

system seen as black box

inputs — functions —> outputs
quantified characteristics

t

restrictions, prerequisites
boundaries, exceptions
standards, regulations

15.1 Introduction

The basis of a good system architecture is the availability and understanding of
the needs of all stakeholders. Stakeholder needs are primary inputs for the system
specification. The terms requirements elicitation, requirements analysis, and require-
ments management are frequently used as parts of the Product Creation Process that
cope with the trandormation of needs into specification and design.

15.2 Definition of Requirements

The term requirement is quite heavily overloaded in Product Creation context.
Requirement is sometimes used non-obligatory, e.g. to express wants or needs.
In other cases it used as mandatory prescription, e.g. a must that will be verified.
Obviously, dangerous misunderstandings can grow if some stakeholders interpret
a requirement as want, while other stakeholders see it as must.

We will adopt the following terms to avoid this misunderstanding:

Customer Needs The term Customer Needs is used for the non-mandatory wishes,
wants, and needs.

Product Specification The term Product Specification is used for the mandatory
characteristics the system must fulfill.

What customer needs:
lchoices What is needed by the customer?
trade-offs
negotiations . .
What product specification:
l What are we going to realize?
How system design:
N‘ How are we going to realize the product?
WhatWhat What ~ What are the subsystems we will realize?
How How How How will the subsystems be realized?

What What What
Yoty
How How How

‘What What What

e up to "atomic" components

How How How

Figure 15.1: The flow of requirements

In the system engineering world the term Requirements Management or Require-
ments Engineering is also being used. This term goes beyond the two previous
interpretations. The requirements management or engineering process deals with
the propagation of the requirements in the product specification towards the require-
ments of the atomic components. Several propagation steps take place between
the product specification and atomic components, such as requirements of the
subsystems defined by the first design decomposition. In fact the requirement
definition is recursively applied for every decomposition level similar to the product
specification and subsystem decomposition.

Figure [I5.1] shows the requirements engineering flow. The customer needs are
used to determine the product specification. Many choices are made going from
needs to specification, sometimes by negotiation, sometimes as trade-off. Often the
needs are not fully satisfied for mundane reasons such as cost or other constraints.
In some cases the product specification exceeds the formulated needs, for instance
anticipating future changes.

Figure [I5.1] also show the separation of specification, what, and design, how.
This separation facilitates clear and sharp decision making, where goals what and
means how are separated. In practice decision are often polluted by confusing goals
and means.

An other source of requirements is the organization that creates and supplies
the product. The needs of the organization itself a nd of the supply and support
chain during the life cycle are described in this chapter as Life Cycle Needs.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 93
November 18, 2023 version: 0.1

15.3 System as a black box

One of the main characteristics of requirements in the product specification is that
they describe what has to be achieved and not it how this has to be achieved. In
other words, the product specification describes the system as black box. Figure[15.2]
provides a starting point to write a product specification.

interfaces

!

system seen as black box

inputs — functions = outputs
quantified characteristics

!

restrictions, prerequisites
boundaries, exceptions
standards, regulations

Figure 15.2: System as a Black Box

The system is seen as black box. What goes into the box, what comes out and
what functions have to be performed on the inputs to get the outputs. Note that
the functions tell something about the black box, but without prescribing how to
realize them. All interfaces need to be described, interfaces between the system and
humans as well as interfaces to other systems. The specification must also quantify
desired characteristics, such as how fast, how much, how large, how costly, et
cetera.

Prerequisites and constraints enforced on the system form another class of
information in the product specification. Further scoping can be done by stating
boundaries and desired behavior in case of exceptions. Regulations and standards
can be mandatory for a system, in which case compliance with these regulations
and standards is part of the product specification.

15.4 Stakeholders

A simplified process model is shown in figure [[5.3] The stakeholders of the
product specification are of course the customers, but also people in the Customer
Oriented Process, the Product Creation Process, People, Process, and Technology

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 94
November 18, 2023 version: 0.1

customer
(purchaser, decision maker, user, operator, maintainer)

company {\

Policy and Planning Customer-Oriented Process
(business, marketing, (sales, service, production,
operational managers) logistics)

Product Creation Process
(project leader, product
manager, engineers, suppliers)

People, Process, and Technology management process
(capability managers, technology suppliers)

Figure 15.3: A simplified process decomposition of the business. The stakeholders
of the requirements are beside the customer self, mainly active in the customer
oriented process and the product creation process.

Management Process, and the Policy and Planning Process. The figure gives a
number of examples of stekholders per process.

The customer can be a consumer, but it can also be a business or even a
group of businesses. Businesses are complex entities with lots of stakeholders. A
good understanding of the customer business is required to identify the customer-
stakeholders.

15.5 Requirements for Requirements

Standards like ISO 9000 or methods like CMM prescribe the requirements for
the requirements management process. The left side of Figure [I5.4] shows typical
requirements for the requirements itself.

Specific , what is exactly needed? For example, The system shall be user friendly
is way too generic. Instead a set of specific requirements is needed that
together will contribute to user friendliness.

Unambiguous so that stakeholders don’t have different expectations on the outcome.
In natural language statements are quite often context sensitive, making the
statement ambiguous.

Verifiable so that the specification can be verified when realized.

Gerrit Muller USN-SE

m Architectin .
Syste chitecting page: 95
November 18, 2023 version: 0.1

Specific

Unambiguous

Verifiable Accessible
Quantifiable Understandable
Measurable Low threshold
Complete

Traceable

Figure 15.4: Requirements for Requirements

Quantifiable is often the way to make requirements verifiable. Quantified require-
ments also help to make requirements specific

Measurable to support the verification. Note that not all quantified character-
istics can also be measured. For example in wafer steppers and electron
microscopes many key performance parameters are defined in nanometers
or smaller. There are many physical uncertainties to measure such small
quantities.

Complete for all main requirements. Completeness is a dangerous criterion. In
practice a specification is never complete, it would take infinite time to
approach completeness. The real need is that all crucial requirements are
specified.

Traceable for all main relations and dependencies. Traceability is also a dangerous
criterion. Full traceability requires more than infinite time and effort. Under-
standing how system characteristics contribute to an aggregate performance
supports reasoning about changes and decision making.

Unfortunately, these requirements are always biased towards the formal side. A
process that fulfills these requirements is from theoretical point of view sound and
robust. However, an aspect that is forgotten quite often, is that product creation is a
human activity, with human capabilities and constraints. The human point of view
adds a number of requirements, shown at the right hand side of Figure[15.4} acces-
sibility, understandability, and a low threshold. These requirements are required
for every (human) stakeholder.

These requirements, imposed because of the human element, can be conflicting
with the requirements prescribed by the management process. Many problems
in practice can be traced back to violation of the human imposed requirements.
For instance, an abstract description of a customer requirement such that no real
customer can understand the requiremnts anymore. Lack of understanding is a
severe risk, because early validation does not take place.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 96
November 18, 2023 version: 0.2

Chapter 16

Key Drivers How To

Note: the graph is only partially elaborated
for application drivers and requirements

16.1 Introduction

A key driver graph is a graph that relates the key drivers (the essential needs) of
the customer with the requirements in the product specification. This graph helps
to understand the customer better, and the graph helps to assess the importance of
requirements. The combination of customer understanding and value assessment
makes the graph into an instrument to lead the project.

We will discuss one example, a Motor way management system, and we will
discuss a method to create a customer key driver graph.

16.2 Example Motor Way Management

In this section we discuss an example from practice. The graph discussed here was
created in 2000 by a group of marketing managers and systems architects. Creating
this version took a few days. Note that we only show and discuss a small part of
the entire graph to prevent overload.

Figure[16.1|shows an example of a key driver graph of a motor way management
system. A motor way management system is a system that provides information
to traffic controllers, and it allows traffic controllers to take measures on the road

Key-drivers Derived application drivers Requirements

. Early hazard detection Automatic upstream
Safe Reduce accident rates : . . :)
v with warning and signaling accident detection
Enforce law . -
Maintain safe road Weather condition
. — dependent control
Improve emergency condition
Traffic speed and
Effective 1CSpOnSE Classify and track dangerous density measurement
— Reduce delay due to accident goods vehicles
Flow Cameras

Detect and warn

> Improve average speed noncompliant vehicles

> Improve total network throughput
— Enforce speed compliance
> Optimize road surface
—> Enforce red light compliance

> Speed up target groups
— Enforce weight compliance -
> Anticipate on future traffic condition [— Deicing

Smooth . Traffic condition
Operation ——> Ensure traceability dependent speed control

— Ensure proper alarm handling

‘> Ensure system health and fault indication

Environment » Reduce emissions

Note: the graph is only partially elaborated
for application drivers and requirements

Figure 16.1: The key driver graph of a Motor way Management System

or to inform drivers on the road. As driver we typically see electronic information
and traffic signs that are part of these systems. Also the cameras along the road are
part of such system.

The key drivers of a motor way management owner are:

Safety for all people on the road: drivers and road maintainers.
Effective Flow of the traffic.

Smooth Operation of the motor way management.
Environment such as low emissions.

To realize these key drivers the owner applies a number of application processes.
For example the traffic controllers can improve safety by reducing the accident
rate. The accident rate can be reduced by detecting hazards and warning drivers
about the hazards. Examples of hazards are accidents that already have happened
and in turn may trigger new accidents. Another example of a hazard are bad
weather conditions. Hence the automatic detection of accidents and controls that
are weather dependent will help to cope with hazards, and hence will reduce accident
rates and improve the safety.

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 98
November 18, 2023 version: 0.2

Note that the 4 key drivers shown here are the key drivers of the motor way
management system. Other systems will also share these concerns, but might
not have these as key drivers. For example, smart phones will have a completely
different set of key drivers. Do not use this example as template for your own key
driver graph, because it biases the effort.

16.3 CAF-views and Key Drivers

Customer Customer Product

What How What
Customer Application Functional
objectives

Key Derived

(Customer) —» Application = Requirements

Drivers Drivers

goal means functions

may be skipped or interfaces

articulated by several performance figures
intermediate steps

Figure 16.2: The flow from Key Drivers via derived application drivers to require-
ments

We can capture the essence of the customer world in the Customer Objectives
view of the CAFCR model by means of customer key drivers. The customer will
organize the way of working such that these key drivers are achieved. Figure [16.2]
shows how the key drivers as part of the Customer Objectives view are supported by
application drivers. The application drivers are means to satisfy the customer key
drivers. These application drivers in turn will partially be fulfilled by the system-
of-interest. Appropriate requirements, e.g. specific functions, interfaces or perfor-
mance figures, of the system-of-interest will help the customer to use the system
to satisfy their customer key drivers. The key drivers are one of the submethods in
the Customer Objectives view.

Figure[16.3| shows a method to define key drivers.

Define the scope specific . Identify a specific customer and within the customer
a specific stakeholder to make the graph. Choosing a customer implies
choosing a market segment. A narrow well defined scope results in a more
clear understanding of the customer. The method can be repeated a few
times to understand other customers/stakeholders. Products normally have
to serve a class of customers. A common pitfall is that the project team
too early “averages” the needs and by averaging compromises the value for

Gerrit Muller University of South-Eastern Norway-NISE

m Architectin .
Syste chitecting page: 99
November 18, 2023 version: 0.2

« Define the scope specific. in terms of stakeholder or market segments

* Acquire and analyze facts extract facts from the product specification
and ask Why questions about the specification of existing products.

« Build a graph of relations between drivers and requirements where requirements
by means of brainstorming and discussions may have multiple drivers
« Obtain feedback discuss with customers, observe their reactions

« lterate many times increased understanding often triggers the MOVe of issues
from driver to requirement or vice versa and rephrasing

Figure 16.3: Method to define key drivers

specific customers. We recommend to first create some understanding of the
target customers before any compromising takes place.

Acquire and analyze facts We recommend to start building the graph by looking
for known facts. For example, in most organizations there is already an
extensive draft product specification, with many proposed requirements. For
every requirement in the draft specification the why question can be asked:
“Why does the customer need this feature, what will the customer do with
this feature?”. Repeating the why question relates the requirement in a few
steps to a (potential) key driver.

Note that starting with facts often means working bottom-ulﬂ When marketing
and application managers have a good understanding of the customer, then
the facts can also be found in the CA-views, allowing a more top-down
approach. Iteration, repeated top-down and bottom-up discussions, is necessary
in either case.

Build a graph of relations between drivers and requirements by means of brain-
storms and discussions. A great deal of the value of this method is in this
discussion, where team members create a shared understanding of the customer
and the product specification. Note that the graph is often many-to-many:
one requirement can serve multiple key drivers, and one key driver results in
many different requirements.

Obtain feedback from customers by showing them the graph and by discussing
the graph. Note that it is a good sign when customers dispute the graph,
since the graph in that case apparently is understandable. When customers
say that the graph is OK, then that is often a bad sign, mostly showing that
the customer is polite.

Iterate many times top-down and bottom-up. During these iteration it is quite
normal that issues move left to right or opposite due to increased under-

"Every time that course participants ignore this recommendation, and start top-down while
lacking customer insight, they come up with a set of too abstract not usable key drivers.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 100
November 18, 2023 version: 0.2

standing. It is also quite normal that issues are rephrased to sharpen and

clarify.
« Limit the number of key-drivers minimal 3, maximal 6
« Don't leave out the obvious key-drivers for instance the well-known main function of the product ‘

« Use short names, recognized by the customer.

» Use market-/customer- specific names, no generic names for instance replace “ease of use” by
“minimal number of actions for experienced users”,
or “efficiency” by “integral cost per patient”

« Do not worry about the exact boundary between create clear goal means relations
Customer Objective and Application

Figure 16.4: Recommendations when defining key drivers

Figure shows some recommendations with respect to the definition of key
drivers.

Limit the number of key drivers to maximal 6 and minimal 3. A maximum of 6
Key Drivers is recommended to maintain focus on the essence, the name is
on purpose Key driver. The minimum (three) avoids oversimplification, and
it helps to identify the inherent tensions in the customer world. In real life
we always have to balance objectives. For example, we have a strong need
to maximize safety and performance, while at the same time we will have
cost pressure. A good set of key drivers captures also the main tensions from
customer perspective.

Do not leave out the obvious key drivers such as the main function of the product.
For example, the communication must be recognizable when discussing smart
phones; the focus might be on all kinds of innovative features and services,
while the main function is forgotten.

Use short names, recognized by the customer. Key drivers must be expressed in
the language of the customer so that customers recognize and understand
them. The risk in teams of engineers is that the terminology drifts away
and becomes too abstract or too analytical. Another risk is that descriptions
or sentences are used in the graph to explain what is meant. These clari-
fying texts should not be in the graph itself, because the overview function
of the graph gets lost. The challenge is to find short labels that resonate with
customers.

Use market/customer specific names, no generic names . The more specific a
name or label is, the more it helps in understanding. Generic names facilitate
the “escape” of diving into the customer world. For example, the term ease
of use is way too much of a motherhood statement. Instead minimal number
of actions (for experienced users) might be the real issue.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 101
November 18, 2023 version: 0.2

Allocation to Customer Objectives or Application View Do not worry about the
exact boundary between Customer Objective and Application The purpose
of the graph is to get a clear separation of goals and means, where goals and
means are recursive: an application driver is a means to achieve the customer
key driver, and at the same time it is a goal for the functions of the system
of interest. Sometimes we need five steps to relate customer key drivers to
requirements, sometimes the relation is obvious and is directly linked. The
CAFCR model is a means to think about the architecture, it is not a goal to
fit everything right in the different views!

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 102
November 18, 2023 version: 0

Chapter 17

Requirements Elicitation and
Selection

top-down
key-drivers
(customer, busing

ess
operational drivers

(logistics, production, etc.)
roadmap

(positioning and trends in time)
mpetition
ositioning in the market)
| T —— | ontinued

c
regulations ——————————» Needs — Product Creation

"ideal" reference design r_j \ Process
prototyping, simulation __| /
(leaming vehicle) Feedback
bottom-up

(technological opportunities)
existing systems ——|

bottom-up

17.1 Introduction

The quality of the system under development depends strongly on the quality of
the elicitation process. We can only make a fitting system when we understand the
needs of our customer. The outcome of an elicitation process is often an overload
of needs. We need a selection process to balance what is needed with all kinds of
constraints, such as cost, effort, and time.

17.2 Viewpoints on Needs

Needs for a new product can be found in a wide variety of sources. The challenge
in identifying needs is, in general, to distinguish a solution for a need from the
need itself. Stakeholders, when asked for needs, nearly always answer in terms of
a solution. For example, consumers might ask for a flash based video recorder,
where the underlying need might be a light-weight, small, portable video recorder.
It is the architect’s job, together with marketing and product managers, to recon-
struct the actual needs from the answers that stakeholders give.

Many complementary viewpoints provide a good collection of needs. Figure[I7.1]
shows a useful number of viewpoints when collecting needs.

top-down
key-drivers
(customer, business)
operational drivers
(logistics, production, etc.)

_

roadmap i

(positioning and trends in time)
competition

itioning in th ket

(positioning in the market) \‘ Continued
regulations » Needs — Product Creation
- g Process
“ideal" reference design ——j \
prototyping, simulation __| /
(learning vehicle) Feedback
bottom-up

(technological opportunities)
existing systems —— |

bottom-up

Figure 17.1: Complementary viewpoints to collect needs

The key-driver viewpoint and the operational viewpoint are the viewpoints
of the stakeholders who are “consuming” or “using” the output of the Product
Creation Process. These viewpoints represent the "demand side".

The roadmap and the competition viewpoints are viewpoints to position the
products in time and in the market. These viewpoints are important because they
emphasize the fact that a product is being created in a dynamic and evolving world.
The product context is not static and isolated.

Regulations result in requirements both top-down, as well as bottom-up. A top
down example are labor regulations that can have impact on product functionality
and performance. A bottom up example are materials regulations, for instance do
not use lead, that may strongly influence design options.

The “ideal” reference design is the challenge for the architect. What is in the
architect’s vision the perfect solution? From this perfect solution the implicit needs
can be reconstructed and added to the collection of needs.

Prototyping or simulations are an important means in communication with
customers. This “pro-active feedback” is a very effective filter for nice but imprac-
tical features at the one hand and it often uncovers many new requirements. An
approach using only concepts easily misses practical constraints and opportunities.

The bottom up viewpoint is the viewpoint where the technology is taken as
the starting point. This viewpoint sometimes triggers new opportunities that have
been overlooked by the other viewpoints due to an implicit bias towards today’s
technology.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 104
November 18, 2023 version: 0

The existing system is one of the most important sources of needs. In fact it
contains the accumulated wisdom of years of practical application. Especially a
large amount of small, but practical, needs can be extracted from existing systems.

The product specification is a dynamic entity, because the world is dynamic:
the users change, the competition changes, the technology changes, the company
itself changes. For that reason the Continuation of the Product Creation Process
will generate input for the specification as well. In fact nearly all viewpoints are
present and relevant during the entire Product Creation Process.

17.3 Requirements Value and Selection

The collection of customer and operational needs is often larger than can be realized
in the first release of a product. A selection step is required to generate a product
specification with the customer and operational needs as input. Figure shows

the selection process as black box with its inputs and outputs.

strategy

roadmap competition

| |

—— product specification
customer needs —
. need
selection process -
] characterization
operational needs —» .
requirement
— .
T phasing

Technology, People, Process
costs and constraints

Figure 17.2: The selection process produces a product specification and a phasing
and characterization of requirements to prevent repetition of discussion

The selection process is primarily controlled by the strategy of the company.
The strategy determines market, geography, timing and investments. The roadmap,
based on the strategy, is giving context to the selection process for a individual
products. The reality of the competitive market is the last influencing factor on the
selection.

The selection will often be constrained by technology, people, and process.
The decisions in the selection require facts or estimates of these constraints.

During the selection a lot of insight is obtained in needs, the value of needs,
and the urgency. We recommend to consolidate these insights, for example by

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 105
November 18, 2023 version: 0

documenting the characterization of needs. The timing insights can be documented
in a phased plan for requirements.

: !
A
c
g1, £)
& |discuss do £ | don't | discuss
g T
don't |discuss discuss do
—urgent—» —value—»

Figure 17.3: Simple methods for a first selection

The amount of needs can be so large that it is beneficial to quickly filter out
the“obvious” requirements. For some needs it is immediately obvious that they
have to be fulfilled anyway, while other needs can be delayed without any problem.
Figure[I7.3]shows a number of qualitative characterizations of needs, visualized in
a two-dimensional matrix. For every quadrant in the matrix a conclusion is given,
a need must be included in the specification, a need has to be discarded or the need
must be discussed further.

This simple qualitative approach can, for instance, be done with the following
criteria:

e importance versus urgency

e customer value versus effort

In the final selection step a more detailed analysis step is preferable, because
this improves the understanding of the needs and results in a less changes during
the development.

A possible way to do this more detailed analysis is to “quantify” the character-
istics for every requirement for the most business relevant aspects, see for examples
Figure [24.10

These quantifications can be given for the immediate future, but also for the
somewhat remote future. In that way insight is obtained in the trend, while this
information is also very useful for a discussion on the timing of the different
requirements. In [4] a much more elaborated method for requirement evaluation
and selection is described.

The output of the requirement characterization and the proposed phasing can
be used as input for the next update cycle of the roadmap.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 106
November 18, 2023 version: 0

+ Value for the customer

« (dis)satisfaction level for the customer

+ Selling value (How much is the customer willing to pay?)
* Level of differentiation w.r.t. the competition

* Impact on the market share

* Impact on the profit margin

Use relative scale, e.g. 1..5 1=low value, 5 -high value

Ask several knowledgeable people to score

Discussion provides insight (don't fall in spreadsheet trap)

Figure 17.4: Quantifiable Aspects for Requirements Selection

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting . page: 107
November 18, 2023 version: 0

Chapter 18

Business Strategy; Methods and
Models

of the company direction setting

mission J [strategy

vision tactics
of the leader translation in actions
strategy operation
to fulfill mission practical daily
based on the vision execution

18.1 Introduction

The business strategy is input to many activities of architects. Lack of clear strategy
complicates the work of architects. At the other hand architects need to contribute
to the creation and evolution of the business strategy.

The “strategy world” is full of concepts. We will provide a few simple models
to position and explain these concepts. There is also an extensive amount of
methods and techniques to create and evolve a strategy. We discuss a few methods
and techniques that fit in the architecting contribution.

18.2 Basic Concepts

Nowadays companies foster an identity of the company by formulating a mission.
The mission can be supported by the articulation of typical four company values.
The company identity is used for branding: what is the image of the company,
how is the company perceived by the market, its customers, and its shareholders.
The mission and company values tend to be very generic, providing a direction to
managers and employees. The mission is shown at the top in Figure [I8.1]

mission
of the company

b

vision
of the leader

v

strategy
direction setting

v

tactics
translation in actions

¥

strategy operation
to fulfill mission practical daily
based on the vision execution

Figure 18.1: Some Basic Concepts

The leaders in the company formulate a vision: what value can the company
bring to the world, what role can the company play. The vision tends to be more
market domain specific and will evolve over time.

A true vision is a powerful instrument, uniting the company employees by a
shared vision. Unfortunately, too many visions are the result of a mechanistic
process. The creation of a vision depends on leaders with the ability to combine
a huge amount of context data in a sensible picture. A poor vision might result in
ghost hunting or lack of cohesion in the organization.

The mission and vision set the scope for the strategy: where does the company
want to go and why. At the right side of Figure[I8.1]a often used layering is shown
of strategy, tactics, and operation.

The tactics is an elaboration of the strategy, how can the strategy best be
achieved. For example, do we start with top-of-the-line systems, followed by cost
reduced systems, or vice versa.

The operations focus on the execution: get things done. Typically the opera-
tions has a fast hear beat, where resources and activities are managed continuously
and deviations or problems are resolved as soon as possible.

Systems architects will often get the mission and company values as given.
They will work using mission and values as guiding principles. Architects might
be involved in the creation and evolution of the vision. System Architects should
be involved in the strategy creation and evolution. They are typically involved in
the tactics. A significant amount of the architect’s time is spend in the operational
aspects of product creation.

Figure shows the “BAPO” framework developed at Philips Research by
Henk Obbink. The Business needs drive the Architecture. 1deally, the Process and
Organization should be designed to facilitate the creation of the Architecture. In
practice often the opposite is happening: the Organization structure is superim-
posed on the Architecture. In other words, we compromise the Architecture to fit
in the existing Organization. The room for Organization changes triggered by the
Architecture is limited since Organization changes tend to be slow. The conse-

Gerrit Muller
System Architecting
November 18, 2023 version: 0

University of South-Eastern Norway-NISE
page: 109

B P
Business :> Architecture |:\'> Process |:\'> Organization

From: COPA tutorial; Philips SW conference 2001.

Figure 18.2: BAPO framework

quence for architecting is that Process and Organization are part of the playing
field. Process and Organization should not be seen as fixed entities.

18.3 Methods for Strategy Support

build upon cope with
Strengths Weaknesses

select mitigate

Opportunities Threats

Figure 18.3: SWOT analysis

One of the methods that is frequently used when creating or evolving a strategy
is a SWOT-analysis, see Figure|18.3| where the letters stand for:

Strengths of the own organization, including technology and market position,
where the organization can build on.

Weaknesses of the own organization, where the organization has to cope with
these weaknesses. Note that acknowledgment of a weakness and relying on
outside support is a legitimate way to cope with weaknesses.

Opportunities in the world where the organization can benefit of their current
strengths. Opportunities have to be identified, assessed, and finally a subset
has to be selected to pursue.

Threats in the world, e.g. from changing markets or regulations, or from upcoming
competition. Threats have to be identified and assessed, and, when serious,
counter measures need to be formulated.

The SWOT analysis results in a “big picture” of the current situation that can be
used as starting point for the formulation for a strategy.

One of the strategic choices is what a company will do itself and when it will
rely on suppliers. There is spectrum of possibilities, from create and make it self,

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 110
November 18, 2023 version: 0

N K,

Own value /)0/0

Core IP \‘QJ’:,;&
Y

o . e
Critical for final
Key performance \

Base Commaodity

Total Product

make outsource buy refer customer
to 3rd party

Partnering

Figure 18.4: Core, Key or Base technology

via outsourcing, to buy. Figure [I8.4] shows a technology classification model to
reason about these choices. The decision how to obtain the needed technology
should be based on where the company intents to add value. The technology classi-
fication model uses core, key, and base technology:

Core technology is technology where the company is adding value. In order to
be able to add value, this technology should be developed by the company
itself.

Key technology is technology which is critical for the final system performance. If
the system performance can not be reached by means of third party technology
than the company must develop it themselves. Otherwise outsourcing or
buying is attractive, in order to focus as much as possible on core technology
added value. However when outsourcing or buying an intimate partnership
is recommended to ensure the proper performance level.

Base technology is technology which is available on the market and where the
development is driven by other systems or applications. Care should be taken
that these external developments can be followed. Own developments here
are de-focusing the attention from the company’s core technology.

18.4 Examples of strategic choices

Figure [18.5] shows a list of business models. Every business model has specific
characteristics in terms of capital use, return on investment, recurring revenues,
variability over time, and margin. At the other hand will the business model have

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 111
November 18, 2023 version: 0

Pay for product

Pay for accessories (cell phone, MP3 cases, skins, etc.)
Pay per use (per printed page, per accessed image)
Pay for service (imaging, printing)

Pay for capability (diagnosis, booklet)

Pay as part of subscription (telecom)

Pay for content (music, movies, eBooks)

Pay for consumables (ink, toner)

Advertizing company pays (Google)

Insurance pays (health care)

Figure 18.5: Examples of Business Models

significant impact on the product specification, design choices, organization, staff,
and processes.

consumer
capability provider

content

- . § infrastructure content
solution provider . "
provider publisher
- - —+
accessory supplier ‘ ‘ system supplier ‘ content
§ | creator
device supplier oo
supplier
component provider S
§ competence
technology provider provider

Figure 18.6: Where in the Value Chain?

The position in the value chain is also a strategic choice. Figure[I8.6|shows an
example of value chain. Companies that stay at the same position in the value chain
must protect their margin by excellence in that position. The risk is that “lower”
positions in the value chain get commoditized, meaning that the margin gets small
or negative. Many organizations address this margin problem by trying to rise in
the value chain or by expansion in the value chain.

The choice of the business model and the position in the value chain are primarily
business decisions. However, these decisions do have such large impact on the
architecting that architects should be involved in the decision making. The conse-
quence for the architects is that they have to participate in a largely financial and
economical discussion about the business.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 112
November 18, 2023 version: 0

18.5 Innovation

marketeers

market innovations
applications

segments

services

systems architect

engineers
k/\/ materials circuits functions . user \‘ g
mterfacg/ %
“_ technological innovations *\’ :
—\ inventors

Figure 18.7: Innovation requires all major contributors

In many organizations the holy grail of strategy is innovation. Innovation is is a
fundamental way to increase the value proposition to the market. Companies have
a continuous need for a better value proposition in a world with constant pressure
on the margin. The alternative to maintain the margin at an healthy level is to
reduce cost levels.

Most (mature) organizations achieve the desired improvement of the value
proposition by repetitive small improvement steps. However, many small steps
often do not open new markets, or create new applications. [Innovation is the
result of a creative effort both in the technology side, as well as the application
and marketing side. Figure shows that a concerted effort is needed of truly
innovative technology people (“inventors’), engineers, architects, and marketeers.

There is a tension between processes and management and innovation. The
inherent nature of innovation is to go beyond today’s limitations, while processes
and management also tend to enforce limitations. Innovation requires inspiration
rather than control. This same tension can also be observed in the architecting role.
Many architects are used to identify and mitigate risks, a valuable contribution to
product creation. However, the risk based focus can be a severe limitation when
searching for innovative solutions.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 113
November 18, 2023 version: 0.2

Chapter 19

The role of roadmapping in the
strategy process

business specifc
but
Sharpen, open and generic

19.1 Process decomposition of a business

The business process for an organization which creates and builds systems consisting
of hardware and software is decomposed in 4 main processes as shown in figure[T9.1]

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cashflow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cashflow tomorrow
as well.

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

customer

supplying business ﬂ

strategy customer oriented (sales,
process service, production) process
(]
3
AN

product creation
process

people, process and technology
management process

Figure 19.1: Simplified decomposition of the business in 4 main processes

Policy and Planning Process This process is future oriented, not constrained by
short term goals, it is defining the future direction of the company by means
of roadmaps. These roadmaps give direction to the Product Creation Process
and the People and Technology Management Process. For the medium term
these roadmaps are transformed in budgets and plans, which are committal
for all stakeholders.

Figure [19.2| characterizes the processes from the financial point of view. From
bottom to top soft or latent value (the assets) are transformed in harder value, to
become true money when the customers are paying for the products and services
(the cashflow).

At the same time figure [19.2] shows that the feedback flow from the customer
into the organization moves in the opposite direction. A nasty phenomenon is
the deformation and loss of feedback information while it flows through these
processes. The further away from the customer, the less sense of urgency and the
less know how of the customer needs. In many organizations this is a significant
problem: competence organizations which have lost the sight of the customer and
become introvert.

In many companies the value chain is optimized further, by using the synergy
between products and product families. Figure [19.3] shows that the simplified
process decomposition model can be extended by one process component or platform
creation to visualize this strategy. This optimization is far from trivial. At the
one hand synergy must be used, most companies cannot afford to create every-
thing from scratch all the time. At the other hand is the consequence of the set
up shown here that the value chain becomes longer (and takes somewhat longer),

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 115
November 18, 2023 version: 0.2

customer

supplying business ?@ S
K o
~Q
strategy

process customer oriented /

N
Q
S

term;

‘product creation cashflow

‘people, process and technology

Figure 19.2: Tension between processes

while the feedback deformation and loss increases even further! A more elaborated
discussion on these aspects can be found in [[13].

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 116
November 18, 2023 version: 0.2

customer

supplying business l

strategy ‘customer oriented /Short term:;

Yl cashflow!

‘product creation

‘component or platform creation /

V4

‘people, process and technology

term;
cashflow

Figure 19.3: Platform strategy adds one layer

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting A page: 117
November 18, 2023 version: 0.2

19.2 Framework for architecting and roadmapping

drives, justifies, needs P
- nables, support
What does Customer need
in Product and Why?
Product
How
Customer Customer Product
What How What
Customer Application Functional Conceptual Realization

objectives

Figure 19.4: CAFCR framework for architecting

Figure [19.4] shows the "CAFCR” framework for system architecting, see [18]].
The customer objectives view and the application view provide the why from the
customer. The functional view describes the what of the product, which includes
(despite the name) also the non functional requirements. The how of the product
is described in the conceptual and realization view, where the conceptual view is
changing less in time than the fast changing realization (Moore’s law!).

The job of the architect is to integrate these views in a consistent and balanced
way. Architects do this job by frequent viewpoint hopping, looking at the problem
from many different viewpoints, sampling the problem and solution space in order
to build up an understanding of the business. Top down (objective driven, based
on intention and context understanding) in combination with bottom up (constraint
aware, identifying opportunities, know how based), see figure [19.5]

In other words the views must be used concurrently, not top down like the
waterfall model. However at the end a consistent story must be available, where the
justification and the needs are expressed in the customer side, while the technical
solution side enables and support the customer side.

The term customer is easily used, but it is far from trivial to determine the
customer. The position in the value chain shows that multiple customers are involved.
In figure[19.6]the multiple customers are addressed by applying the CAFCR model
recursively.

The customer is a gross generalization. Marketing managers make a classifi-
cation of customers by means of a market segmentation. Nevertheless stay aware of
the level of abstraction used when discussing the customer/market/market segment.

The viewpoints of the "CAFCR” framework are useful for setting up a roadmap
as well. However on top of these views also business, people and process views
are needed in a roadmap, see figure 20.1] and [15]].

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 118
November 18, 2023 version: 0.2

What does Customer need
in Product and Why?

y A\ « Product
How
Customer Customer Product A
What How What 7 N
Customer Appllcatlon Functlonal Conceptual Reallzatlon
objectives

context mtentlon objectlve

understandmg driven

Oppor- /constrain knowledge
tun|t|es awareness based
I !

(I

Figure 19.5: Five viewpoints for an architecture. The task of the architect is

to integrate all these viewpoints, in order to get a valuable, usable and feasible
product.

" Drives
- Customer's
anies Customer | —Drives
Business
\/ L. \ Customer
é’ Yy, Enables . —Dri
//7)70 €r scope - | Business | ~ Prives
Ceo,)e/)es /7
ep, ”’9//@ N System
’fe ct Enables
Ure \ ~ [(producer)

Figure 19.6: CAFCR can be applied recursively

Gerrit Muller University of South-Eastern Norway-NISE
System Architecting

age: 119
November 18, 2023 version: 0.2 p g

Customer objectives A
1 [Avpicas Market £
pplication <
(%] —
n °
g % Functional Products %
> < iArchitect
o v Conceptual ot
sl Technology .
« £ |Realization o9
v o e s
£2 eople 5 E
7} S o
e s
l ‘ Process s8
—time, ca 5 years—
Figure 19.7: Structure of a roadmap
Gerrit Muller University of South-Eastern Norway-NISE
System Architecting page: 120

November 18, 2023 version: 0.2

19.3 From vision to roadmap to plan and further

The identity or the main focus of a company is often expressed in a mission
statement, supported by a vision on the market, the domain and its own position
in market and domain. The nature of both mission and vision is highly generic,
although business specific. Mission and vision is a compact articulation of the

company and its strategy.

business specific,
but
open and generic

Market forecasted facts
Products educated scenarios
Technology roadmap forecasted facts
People estimates
Process educated scenarios

Figure 19.8: From generic mission to factual roadmap

The roadmap builds on vision and mission and makes the strategy much more
specific in time as well as in contents. Figure|[19.8|shows the generic mission and
vision statement as overarching entities for the roadmap. As indicated within the
roadmap segments its content is much more specific, containing (forecasted) facts,
(educated) scenarios and estimates.

An integrated roadmap is made in steps:

1. Explore market, product and technology segments; what is happening in
the outside world, what is needed, where are opportunities in market and/or

technology.

2. Estimate people and process needs for the identified product and technology
needs. These estimates should be made without constraints. The question is
what is needed, rather than what is possible.

3. Determine a balanced, economic attractive and skills wise feasible content
for product, technology, people and process. Here trade-offs have to be made

Gerrit Muller
System Architecting
November 18, 2023 version: 0.2

University of South-Eastern Norway-NISE

page: 121

and creative marketing as well as technological skills are required to define
an effective product roadmap, which is at the same time realistic with respect
to the people and processes.

Customer objectives

pomenen MaTkEL homework
Functional

Products 200

o | 2002 64 | 2005 | 2006 | 2007

Concepuel 20021 2003|2004 | 2005 | 2006 | 2007
Technology software |.cal
Realization Orion| 1 o
Geminj 2 % bt
Scorpior] 54 Y 1
research 4 2 i
maintenancg 22 e
501 5o 1 o
feedback el o [T L []
estimate by program manager
estimate by people manager

People L
after iteration

Process

Figure 19.9: From Market, Product, Technology to People, Process

Figure [19.9] shows how to make the last few steps. The estimations for the
amount of people are made from 2 viewpoints: the people and technology manager
(the supplier of resources) and the operational manager (responsible for the timely
and reliable result of the product creation process and hence the “consumer” of
these resources).

The people and technology manager will make estimates which are discipline
specific, decomposed towards the programs, see figure [19.10]

The operational manager (or program manager) will make an estimate which
is program specific. A program is a cohesive set of products, where the program
manager is responsible for the timely development and quality of all products
within the program. This estimate will be decomposed into disciplines, see figure[TI9.11]

Every activity is estimated twice via this approach. In both figure and
figure[T9.TT|the corresponding second estimate is shown as well, in other words the
results are merged. This merge immediately shows differences in interpretation of
the input or differences in opinion. These differences should be discussed, so either
the inputs are reiterated, resulting in a shared estimate, or the difference in opinion
is analyzed and a shared estimate must be the result (although the compromise may
be marked as highly uncertain)

After this “harmonization” of the estimates the real difficult work starts, of
tweaking the product program, the required features and being more creative in the
solutions in order to come to a feasible roadmap. This step will change the product
and technology segments, with corresponding changes in people and process.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 122
November 18, 2023 version: 0.2

2 3 10 20

Orion 1 3 : g 20
ini 10 30 40 30
Gemini 2 o B ot 3
Scorpion 54 o % 20 15
research 4 13 ﬁ g 12
maintenance 22 jg gg gg a4
132 139 125 124
total 83 5 e 128 2
software | 2992 | 2003 | 2004 | 2005 | 2006 | 2007
actual

5!

6

50

40

30

20

12

12

40

50

137

128

estimate by program manager

estimate by people manager

Figure 19.10: People estimate, discipline view

Figure [19.12] shows the people roadmap from another domain in a more visual
format. In this example a clear growth of the staffing is visible, where for instance
system and software are growing much faster than electronics. Besides these
typical product creation disciplines also the customer oriented people and skills are
shown. The decomposition choosen here is to the needed or expected education
level (high, medium and low). The clear trend here is a significant growth of
customer support people, while at the same time it is expected that the education
level will decrease si gniﬁcantlyﬂ

If we decompose the people estimates from figure [19.12] in the operational
direction then a much more dynamic picture emerges. Operational activities have
a faster rhythm than disciplines. Understanding of this dynamics helps in the total
balancing act required from the strategy process. Special attention should be given
to the often implicit programs, such as:

o installed base management

"This is a quite normal trend. Young products are supported by highly skilled people, which is
possible because the installed base is still small. When the installed base is growing it is difficult
to find sufficient well trained people, who are motivated to work as support personnel. At the same
time the cost pressure increases, which makes it economically unattractive to hire expensive support
people. All together the consequence is that investments in the product and the processes are required
to operate in the more mature phase with less educated customer support people.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting . page: 123
November 18, 2023 version: 0.2

Gemini | 2902 | 2003 | 2004 | 2005 | 2006 | 2007
actual

system| 1 ; B . g :

10 30 50 40 30

software 2 -] = & 2

electronics 5 ig fg ig 1; g

mechanics 8 1*23 13 g é é

optics| 4 g g g 3 g

42 64 74 52 39

total| 20 i B 2] = 3

estimates by program manager

estimates by discipline manager

Figure 19.11: People estimate, program view

Sys
SYysS SW
SW
elec
SW elec -
elgc optical optica
product optical
creation mech mech mech
2002 2004 2006
customer high high high requires
support ned ed different
low process !

Figure 19.12: Roadmap of people skills

e component and platform creation
e research

e development infrastructure

At the end a sanity check should be made of the balance between the explicit
programs and the less explicit programs mentioned here. The explicit, product
oriented programs in general should use a significant amount of the total man
count, otherwise it is a symptom of an introvert organization (focus on how do
we do it, instead of what is needed).

The roadmap created as described above is a means to share insight in the
market and the future and to provide overview and focus to the entire organization,
in a broad time perspective. This process should take place in an open, explorative

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 124
November 18, 2023 version: 0.2

prog 3
prog 3
product creation prog 3 e —
. prog 2
operational
decomposition prog 1 prog 1 P—
2002 2004 2006

Figure 19.13: Operational axis is more dynamic

sharing vision/ambition
understanding opportunities
road map exploring broader context
positioning consequences
allocate milestones
prepare sales
plan commit products
empower people/skills

Figure 19.14: From roadmap to planning

atmosphere. This can be achieved by keeping the roadmap as a shared snapshot of
the future and not make it a committal plan. In other words nobody gains any right
because of the roadmap. The roadmap does not contain hard decisions, it contains
shared understanding and expectations.

The roadmap is used as input to create a committal plan, with a shorter time
horizon. It does not make any sense to make long term commitments, the future
is way too uncertain for hard decisions. The committal plan will typically have a
scope of 1 year. Within this year a consistent set of decisions are needed, ranging
from sales and turnover commitments to product creation commitments (main
product characteristics and timing) to technology, people and process commit-
ments. This commitment serves also as a means to delegate and empower, which
also requires allocation of resources. Figure [19.14] shows the essentials of the
roadmap and the committal plan.

Figure [I9.15] shows an example of a committal plan, containing the business
commitments (sales), the PCP commitments (products to be created) and the people

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 125
November 18, 2023 version: 0.2

2002 2003

Gemini

actual Q1 Q2 Q3 Q4
k$ 300 70 90 100 105
Sal eS unit 100 20 25 25+3 2247
S2,S3 sS4 S6

products 1 T4 ve
system 1 2 3 3 4
software 2 10 18 24 28
electronics 5 16 17 19 20
mechanics 8 8 8 6 6
optics 4 6 6 6
fte total 20 42 50 58 64

Figure 19.15: Example of committal plan

and technology commitments (allocated fte’sEI). Such a plan must be available per
program, in this example it is the Gemini program.

19.4 Summary

business specific,
but
Sharpen open and generic

X
& %
Q& L
— 12002 2003
Market forecasted facts| Gemini 1
ducts educated scenarios| "
Product 5 . 1
input\ products| 3
Technology roadmap forecasted facts| P P e Ommlttal H
People estimates| for p | an E
Process educated scenarios| fte N — H

ment [~

empower-

input for next roadmap

Figure 19.16: Overview of strategic entities

The mission, vision, roadmap and plan will normally be used as part of the
business plan, which is used towards the financial stakeholders of the company.
These entities together define the strategy and the deployment of the strategy.
Figure [19.16] shows an overview of the entities which play a role in the startegy
process.

The value of roadmap for the other processes is to provide context and overview
for the specific goal of that process. Especially for the product creation process it

%fte = full time equivalents

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 126
November 18, 2023 version: 0.2

customer

strategy process

roadmap plan

empowerment customer oriented

(sales,
service, production)

context, overview process

reality facts
reality facts

empowerment .
product creation

process

focus, context, overview

empowerment people, process and
technology

context’ oveNIeW management process

Figure 19.17: Summary of role in business

also provides focus, the development team can concentrate on the product, which
is currently being developed, without discussions of all other alternatives.

The value of the plan for the other processes is that it provides the delegation
boundaries, which allows for empowerment. Figure shows the value of
roadmap and plan for the other processes. In the opposite direction the other
processes should provide the reality facts to be used in next roadmap and plan.

19.5 Acknowledgements

Philip Bucher asked me for this presentation for the GATIC workshop, which
provided me with the right trigger to write this already long ago planned article.
Philip also helped by discussing the purpose and content.

Gerrit Muller USN-SE

System Architecting page: 127
November 18, 2023 version: 2.0

Chapter 20

Roadmapping

Market

>
H
g
g
<«Marketing»

Funcional Products

}Architect

Technology

People

~«——drives, requires:
——supports, enables—
[e]
g
B

people manager

Process

technology, proces

—time, ca 5 years—

20.1 Introduction

The definition of new products is a difficult activity, which frequently ends in a
stalemate: “It must be don” versus “It is impossible to realize in such a short time
frame”. The root cause of this frustrating stalemate is most often the fact that we
try to solve a problem in a much too limited scope. Roadmapping is a method to
prevent these discussions by lifting the discussion to a wider scope: from single
product to product portfolio and from a single generation of products to several
generations in many years.

The roadmap is the integrating vision shared by the main stakeholders. A
shared vision generates focus for the entire organization and enables a higher
degree of cooperating concurrent activities.

We discuss what a roadmap is, how to create and maintain a roadmap, the
involvement of the stakeholders and gives criteria for the structure of a roadmap.

20.2 Whatis in a roadmap?

A roadmap is a visualization of the future (for example 5 years) integrating all
relevant business aspects. Figure [20.1|shows the typical contents of a roadmap. At
the right hand side the owner of the view is shown, while the left hand side shows

the asymmetry of the views: the market is driving, while technology people and
process are enabling.

Customer objectives

Market

Application

Functional ProduCtS

Conceptual

<«Marketing»

¢Architect

Technology

Realization

People

——supports, enables—

<«——drives, requires

Process

_technology, process
people manager

—time, ca 5 years—

Figure 20.1: The contents of a typical roadmaps

Key to a good roadmap is the skill of showing the important, relevant issues.
The roadmap should provide an immediate insight in the most relevant develop-
ments from the 5 mentioned points of view. These issues are primarily related by
the time dimension.

The convention used in this article is to show products, technologies, people or
process when they are or should be available. In other words the convention is to
be extrovert, be oriented to the outside world. The introvert aspect, when and how
to achieve these items, are not directly shown. This information is often implicitly
present, since people and process often have to be available before the availability
of the technology, and technology often precedes the product.

2| Top-level Single page Poster
road map part of many presentations

Supporting Single page Poster

per view
road maps or per driver part of many presentations

Supporting Document

per relevant

reports subject

Figure 20.2: The roadmap is documented at several levels of detail

A good roadmap is documented and presented at top level and at a secondary
level with more details. Figure[20.2]shows the desired granularity of the roadmap
documentation, the secondary level is called supporting roadmaps. The top level

Gerrit Muller USN-SE

System Architecting page: 129
November 18, 2023 version: 2.0

is important to create and maintain the overview, while the more detailed levels
explain the supporting data. The choice of the decomposition into supporting
roadmaps depends on the domain. Typically, the supporting roadmaps should
maintain an integrated view. Examples of decomposition are:

e One supporting roadmap per key driver.

e One supporting roadmap per application area.

20.3 Why Roadmapping?

The Policy and Planning process as discussed in Chapter|[I]relies heavily on roadmapping
as tool. The main function of roadmapping is to provide a shared insight and
overview of the business in time. This insight and overview enables the management

of the 3 other processes:

e the Customer Oriented Process
e the Product Creation Process

o the People, Process, and Technology management Process

Where managing these processes means defining the charter and the constraints for
these processes in terms of budgets and results: Where do we spend our money and
what do we get back for it?

When no roadmapping is applied then the following problems can occur:

Frequent changes in product policy due to lack of anticipation.
Late start up of long lead activities , such as people recruitment and process change.
Diverging activities of teams due to a lack of shared vision.

Missed market opportunities , due to a too late start.

The frequent changes in the product policy are caused by the lack of time
perspective. In extreme cases the planning is done with a limited time horizon
of, for instance, 1 year. External events which are uncertain in time can shift into
view within the limited horizon when popular and disappear again when some other
hype is passing by. This effect is shown in Figure [20.3]

The availability of a roadmap will help the operational management to apply
a low pass filter on their decisions. The control becomes more analog rather than
discrete, where the amount of people can be increased or decreased dependent on
the expected delivery date, as shown in figure [20.4]

An inherent benefit of roadmapping is the anticipation, which is especially
important for all long lead time aspects. Examples are technology, people and
process. This is not limited to development activities only; market preparation,
manufacturing and customer support also require anticipation. For example, reliable
mass production has a significant lead time.

Gerrit Muller USN-SE

System Architecting page: 130
November 18, 2023 version: 2.0

l 2012 | 2013 | 2014 |

T<—horizon—> T Feature still

now feature unknown

Td*hurimn—?» Do!
now

feature

Tdfhorizon—b T Stop

feature

ow
Fhorizon# Do!

now feature

n

Figure 20.3: Management based on a limited horizon can result in a binary control
of product policy decisions

l 2012 | 2013 2104 |

m Preparation by

0.5 person
now feature

m Work with
1.5 persons

now feature

legend Continue with

0.5 person
number of people now feature
allocated

1.5 persons
ireeey now feature

Figure 20.4: Management with a broader time and business perspective results in
more moderate control: work with some more or some less people on the feature

20.4 How to create and update a roadmap

A roadmap is a joint effort of all relevant stakeholders. Typical stakeholders for
roadmapping at a typical high-tech company are

business manager , overall responsible for the enterprise

marketing manager(s)

people, process, and technology manager(s) , often called line or discipline managers
operational manager(s) , e.g. program managers or project leaders

architect(s)

An efficient way to create or update a roadmap is to work in “burst-mode”:
concentrate for a few days entirely on this subject. To make these days productive
a good preparation is essential. Figure [20.5]shows the roadmap creation or update
as three successive bursts of 2 days.

Gerrit Muller USN-SE

System Architecting page: 131
November 18, 2023 version: 2.0

Products

Products Products
Collective Collective Collective

meeting meeting

meeting
ca2days | rechno- | 35 days | Techno- | 35 days
logy logy

Process Process

Techno-
logy

Shared
Roadmap

Process

preparation
— by expert —»-—
teams

2 weeks to digest 2 weeks to digest
o —
and prepare and prepare

Figure 20.5: Creation or Update of a roadmap in "Burst-mode"

The input for the first days is prepared by expert teams. The expert teams focus
on the market, the products, and the technology layers of the roadmap. The current
status of people and process should be available in presentable format. The target
of the first burst is:

e to get a shared vision on the market

e to make an inventory of possible products as an answer to the needs and
developments in the market

e to share the technology status, trends and ongoing work, as starting point for
technology roadmap

e to explore the current status of people and process and to identify main issues

Between the first and second burst and between the second and third burst some
time should be available, at the one hand to digest the presented material and the
discussions, at the other hand to prepare the next session. The target of the second
burst is:

e to obtaining a shared vision on the desired technology roadmap

e to sharing the people and process needs for the products and technology
defined in the first iteration

e to analyze a few scenarios for the layers products, technologies, people, and
process

The thickness of the lines in figure [20.5] indicates the amount of preparation
work for that specific part of the roadmap. It clearly shows the the shift in attention
from the market side in the beginning to the people and process side later. This shift
in attention corresponds with the asymmetry in figure 20.1} the market is driving
the business, the people and processes are enabling the business.

Gerrit Muller USN-SE
System Architecting
November 18, 2023 version: 2.0

page: 132

Market: What is needed by the customers?

Products: How to package technologies
into products to fulfill market needs?

Technology: What technological trends are
relevant? What technologies are needed?

People: What kind of and how many people are
required to realize the products and technologies?

Process: What processes are required to let these
people realize the products and technologies?

time——»

Figure 20.6: The roadmap activities visualized in time.

The function of the collective meetings is to iterate over all these aspects and
to make explicit business decisions. The products layer of the roadmap should be
consistent with the fechnology, people and process layers of the roadmap. Note that
the marketing roadmap may not be fulfilled by the products roadmap, an explicit
business decision can be made to leave market segments to the competition.

Figure shows the roadmap activities in time. Vertical the same convention
is used as in figure [20.1} the higher layers drive the lower layers in the roadmap.
This figure immediately shows that although “products” are driving the technology,
the sequence in making and updating the roadmap is different: the technological
opportunities are discussed before detailing the products layer of the roadmap.

20.5 Roadmap deployment

The roadmap is a shared vision of the organization. This vision is implemented
in smaller steps, for instance by defining outputs per program and the related
resource allocations per program. In Figure it is shown that roadmap updates
are performed regularly, in this figure every year. After determining the vision a
“budget” is derived that sets the charter for the programs. The budget is revised
with an higher update frequency, typically every 3 months. The budget itself sets
goals and constraints for the operation. The programs and projects in the operation
have to realize the outputs defined in the budget. The operational activity itself
uses detailed schedules as means for control. The schedules are updated more
frequently than the budget update. Within the operational activity the updates are
mostly event driven: changes in the market, technology or resources that render the
existing plan obsolete.

From long term vision to short term realization is a 3-tier approach as shown in
Figure [20.8] The roadmap provides the context for the budget, the budget defines

Gerrit Muller USN-SE

System Architecting page: 133
November 18, 2023 version: 2.0

201X 201Y
| Q2 | Q3 | 4 Q1 | Q2 | Q3 | Q4 Q1 |
—> —
rpadmap \ roadmap n + 1 \ Policy
roadmapping and Plannin
\ Process
business plan:
i budget | | Q1 Q2 Q3 budget | | Q1
budget & allocation delta deltal delta delta
| A A A 4
detailgd TR Product Creation
planning Process

4 4
tech hurdle tech hurdle

Figure 20.7: The roadmap is used to create a budget and resource allocation. The
operational programs and projects use more detailed plans for control.

horizon update scope type
roadmap 5 years 1year portfolio vision
budget 1 year 3 months program commitment
detailed plan | 1 mnth-1yr | 1 day-1 mnth | program or activity | control means

Figure 20.8: Three planning tiers and their characteristics

the context for the detailed plans. The highest tier, the roadmap, has the longest
horizon, the slowest update rate, and the broadest scope. When going down in tiers,
the horizon tends to decrease, the update rate increases, and the scope decreases.
The roadmap provides a vision, and as such is not committal. A budget is a
commitment to all involved parties. Plans are means to realize the programs and
projects, and tend to adapt frequently to changed circumstances.

20.6 Roadmap Essentials
We recommend to create a roadmap that fulfills the following requirements:

o Issues are recognizable for all stakeholders.
o Allitems are clearly positioned in time; uncertainty can be visualized explicitly.
e The main events (enabling or constraining) must be present.

Gerrit Muller
System Architecting
November 18, 2023

USN-SE
page: 134

version: 2.0

e The amount of information has to be limited to maintain the overview.

20.6.1 Selection of most important or relevant issues

The art of making a roadmap is the selection of the most relevant issues. It is quite
easy to generate an extensive roadmap, visualizing all marketing and technological
information. However, such superset roadmap is only the first step in making the
roadmap. The superset of information will create an overload of information that
inhibits the overview we strive for.

20.6.2 Key drivers as a means to structure the roadmap

In [14] key drivers are explained as an effective method to elicit and understand
requirements. Key drivers can also be very helpful in the creation and update of
the roadmap. At the marketing side the trend in these key drivers must be visible
in the roadmap. Showing key driver trends also helps to structure the roadmap.

The supporting roadmaps can clarify how the key driver trends will be supported
For instance, a technology roadmap per key driver is a very explicit way to visualize
the relationship between the market in terms of key drivers, the products with the
expected performance levels, and enabling technologies.

20.6.3 Nothing is certain, ambiguity is normal

A roadmap is a means to share insight and understanding in a broader time and
business perspective. Both dimensions are full of uncertainties and mostly outside
the control of the stakeholders. It can not be repeated often enough that a roadmap
is only a vision (or dream?).

The only certainty about a roadmap is that reality will differ from the vision
presented in the roadmap.

As a consequence the investment in making the roadmap more accurate and
more complete should be limited. Nobody can predict the future, we will have to
live with rather ambiguous visions and expectations of the future.

20.6.4 Use facts whenever possible

The disclaimer that ambiguity is normal can be used as an excuse to deliver sloppy
work Unfortunately, a sloppy roadmap will backfire to the creators. It is recom-
mended to base a roadmap on facts whenever possible Examples of sources of
facts are:

e Market analysis reports (number of customers, market size, competition,
trends)

o Installed base (change requests, problem reports, historical data)

Gerrit Muller USN-SE

System Architecting page: 135
November 18, 2023 version: 2.0

e Manufacturing (statistical process control)
e Suppliers (roadmaps, historical data)

e Internal reports (technology studies, simulations)

Use of multiple data sources enable cross-verification of the sanity of assump-
tions For instance, predictions of the market size in units or in money should fit
with the amount of potential customers and the amount of money these customers
are capable (and willing) to spend.

20.6.5 Do not panic in case of impossibilities

It is quite normal that the roadmap layers appear to be totally inconsistent For
instance, a frequent occurring effect is that the budget estimate in response to the
market requirements is 3 times the available budgetﬂ Retrospective analysis of
past roadmaps shows that the realized amount of work for the given budget is often
twice the estimate made for the roadmap. In other words, due to a number of effects
the roadmap estimates tend to have a pessimistic bias. The overestimation can be
caused by:

e Quantization effects of small activities (the amount of time is rounded to
person weeks/months/years).

e Uncertainty is translated into margins at every level (module, subsystem,
system).

e Counting activities twice (e.g., in technology development and in product
development).

e Quantization effects of persons/roles (full time project leader, architect, product
manager, et cetera per product).

o Lack of pragmatism, a more extensive technical realization than required for
the market needs.

e Too many bells and whistles without business or customer value.

Initial technical proposals might be more extensive than required for market
needs, as mentioned in the lack of pragmatism. Technical ambition is good during
the roadmap process, as long as it does not pre-empt a healthy decisions. The
roadmapping discussions should help to balance the amount of technology antici-
pation with needs and practical constraints.

20.7 Acknowledgements

The insight that a roadmap should cover all 5 views form market to process came
to me via Hans Brouwhuis. Roadmapping as a business tool gained momentum

"This factor 3 is an empirical number which of course depends on the company and its culture

Gerrit Muller USN-SE

System Architecting page: 136
November 18, 2023 version: 2.0

within Philips during the quality actions inspired by Jan Timmer.
The critical and constructive remarks by Jiirgen Miiller helped to shape this
article.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 137
November 18, 2023 version: 0

Chapter 21

Change Management;
Introducing Systems Architecting
Aspects

2% order
roadmap

¥ order full-blown
roadmap roadmap;
improved
o order firstfull-blown fundament
roadmap

supporting
reports are expl
stil limited [~

serious
1* order attempt to
roadmap obtain a
consistent shared understanding of product

licit forecast of people
process needs

facts as vision (— positioning and required
perceived by technology investments
the

stakeholders

eye-ope y
{—» stakeholders, first overview of
business and time context ———time—»

tod

21.1 Introduction

Many organizations do not have explicit roles for systems work or do not use
explicit processes, methods or techniques for systems architecting. There are also
many organizations that are unaware of any systems aspects. The introduction of
any systems aspect in an organization is far from trivial. Introducing something
new induces a negative reaction, not only for systems related aspects. The field
of Change Management addresses the question how to introduce changes into an
organization.
Some heuristics from Change Management are:

e People do not want to be changed. They are quite often willing to change.
e Changing the way of working or changing the culture costs many years.

o It is recommended to work at multiple tracks at the same time: amongst
others managerial, operational, strategic, etc.

e Changes are better accepted when the initiators earn credit by showing usable
results.

21.2 Earning Credit, Work on Urgent Issues

An effective way to introduce changes, such as new systems architecting methods,
or introducing the role of a systems architect, is to earn credit by actively contributing
to the organizational results. Earning credit works fastest when urgent problems
are resolved. For example, systems architects typically can contribute in trouble
shooting during systems integration. The systems integration phase is always
hectic with lots of time and resource pressure, where mon-disciplinary engineers
point to other disciplines as the source of problems. The integral overview and
the systems thinking capabilities of system architects make them into ideal trouble
shooters. Unfortunately, systems architects not always fancy this “foot in the mud”
work.

An approach that nearly always fails is the “evangelism” approach, where
systems architects try to convince the stakeholders of the value of new methods
or roles by promoting the (theoretical) benefits. Most stakeholders are wary about
unproven claims, especially if the messenger does not have shown any ability yet.

the credit is used to introduce
a more fundamental change

/
7 S
i . h I .
earn credit apply new achieve ST EENES consolidate
) contrbuteto) homs aspect results and systems). oms aspect
urgent issues 2 N P N aspect W P
N P4
the results illustrate
how the systems aspect
contributes

Figure 21.1: Earn Credit and Work by Example

Spending credit is going faster and easier then earning credit. We recommend
to keep on earning credit, by working on actual (urgent) issues, when introducing
systems aspects. Every time that some small change is introduced, architects have
used some of their earned credit. Note that forcing changes costs a huge amount of
credit, architects can rarely afford that.

Figure[21.T|shows how to introduce changes, earning credit, followed by creating
an example, and finally by consolidating the change, using the credit earned initially.
This flow shows that the introduction of the change is done by showing an example
rather than preaching the change. An example is more easy understood than a
theoretical explanation, while the success of the application helps to sell the idea.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 139
November 18, 2023 version: 0

21.3 Example: Bootstrapping the Roadmapping Process

Many companies and business units have no ongoing roadmapping activity or only
a limited roadmapping activity, for instance a products roadmap only. The intro-
duction of a roadmapping process, as described in Section[20} is a daunting task for
a system architect. Roadmapping is an improvements at strategic level with mostly
a long term impact. System architects need to be sufficiently known and respected
in an organization to introduce roadmapping; it requires a significant amount of
credit to introduce such long term improvement.

Introduction of a roadmapping process can be viewed as part of a change
management process. Based on the Change Management heuristics we recommend
to introduce roadmapping in a number of smaller steps. The motto here is: Think
big, act small.

¢: 2" order
528 roadmap
> (@
SE &
ERS 1> order full-blown
£ roadmap roadmap;
| improved
o™ order first full-blown fundament
roadmap roadmgp;
supporting
serious reports are explicit forecast of people
-1 order attempt to Sill i) and process needs
roadmap obtain a
consistent shared understanding of product
facts as vision — positioning and required
perceived by technology investments
the eye-opener for many
stakeholders | giakeholders, first overview of
business and time context time——
- 2 to 4 years o

Figure 21.2: Bootstrapping the Roadmap Process

Figure shows the bootstrapping of a roadmap process, typically taking 2
to 4 years. The benefits of starting with roadmapping become available during the
first iteration. The mature roadmap, achieved in 2 to 4 years, will bring the full
benefits of organizational efficacy and efficiency.

A good start is to capture the existing visions, plans, budgets, et cetera, and to
integrate this information into a “minus one” order roadmap. In most cases posing
such questions forces the stakeholders to reflect on the current status. In many cases
the stakeholders discover that their outlook is rather unbalanced (for instance, the
first half year is covered in minute detail, the latter period is fuzzy) or the outlook
appears to be totally inconsistent (for instance, marketing has an entirely different
expectation than development). Hopefully, the stakeholders get an overview and

Gerrit Muller
System Architecting
November 18, 2023

University of South-Eastern Norway-NISE

page: 140

version: 0

gain insight in the broader context.

The result of the “minus one” order roadmap is that the architect gains credit
and that the stakeholders are motivated to change somewhat. The stakeholders get
ripe to make a next step, for instance to make a zeroth order roadmap.

Apply and
earn credit

Collect facts

Integrate facts,

Communicate S
create vision

Figure 21.3: Bootstrapping the roadmap process requires a repetition of 4 steps, as
visualized by this spiral

A zeroth order roadmap is the first attempt to get the market, the product and
the fechnology roadmap in place. Such a partial roadmap again helps to earn credit,
but it also helps to keep the stakeholders involved. Critical aspect here is the team
building aspect. Roadmapping is a team activity, requiring mutual respect and
trust, to enable the open and critical communication needed for the selection of the
truly essential issues in the roadmap.

The entire roadmapping process is a repetition of the same activities, visualized
in figure [21.3

e Collect facts (e.g. market, product, technology)

o Integrate facts and create a vision, where the architect helps in the selection,
the simplification, the interpretation, and the presentation.

o Communicate to a broad group of stakeholders in the organization.

e Apply the consequences for the short term and earn credit by showing a
positive contribution.

Of course these four steps are not entirely sequential, they represent the main flow
of the process.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 141
November 18, 2023 version: 1.2

Chapter 22

Market Product Life Cycle
Consequences for Architecting

Infancy Adolescence Mature Aging

22.1 Introduction

A class of products serving a specific market evolves over time. This evolution is
reflected in the sales volume of these products. The systems architecting approach
depends where products are in this evolution.

A

()

§

= stable

> g

¢ growth L decline

(_‘n“ \
taking
shape

J time‘

Infancy Adolescence Maturity Aging

Figure 22.1: Compared with ideal bathtub curve

The life cycle of a product market combination can be visualized by showing
the sales volume as a function of the time. In literature the form of the curve of the
sales volume as function of the time is described as bathtub, see figure 22.1] It is
customary to recognize four phases in this curve:

e The life cycle starts with very small sales in the infancy phase, where the
product finds its shape.

e A fast increasing sales volume in the adolescent phase.
e A more or less stable sales volume in the mature phase.

e A decreasing sales volume in the aging phase.

The curve and its phases represent the theoretical evolution. In the next paragraphs
we will discuss observations in practice and an explanation, and we will show that
the class of products and the market themselves also evolve on a macro scale.

22.2 Observed Life Cycle Curve in Practice

ideal "bathtub” gurve

sales volume

\ curve
\
product unable N

to make transition AN

S ~ ~
\: _A) ~ -
N~ t|me‘

- > > > >

Infancy Adolescence Maturity Aging

Figure 22.2: Market product life cycle phases

Henk Obbink (Philips Research) observed dips in the sales volume, as shown
in figure 22.2] The transition from one phase to the next does not seem to happen
smoothly. In some cases the sales drops further and the product does not make the
transition at all.

The hypothesis for the dips in the curve is that characteristics of all stake-
holders are different for the different life cycle phases. If the way of working of
an organization is not adopted to these changes, then a mismatch with the changed
circumstances results in decreasing sales. Figure [22.2] also indicates that, if no
adaptation to the change takes place, that the sales might even drop to zero. Zero

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 143
November 18, 2023 version: 1.2

} functional MRI scanner X-ray systems

MRI DVD+RW DVD VCR
elEL] flat TV TV

TV \/—\

sales volume

/ time

Infancy Adolescence Maturity Aging

Figure 22.3: Examples of product classes on the curve

sales effectively is killing the business, while still plenty of market opportunity is
present.

Figure [22.3| annotates the life cycle graph with a number of products and their
positioning in the life cycle. As can be seen products can move backwards in
the phases (i.e. become “younger”) by the addition of innovative features. For
instance MRS scanners moved backwards when functional imaging was added, an
innovative way to visualize the activity of specific tissues. Similarly, conventional
televisions rejuvenated multiple times by adding digital processing, flat screens,
and digital interfaces.

22.3 Life Cycle Model

Figure shows typical attributes of the life cycle phases.

The infancy phase is characterized by uncertainty about the customer needs,
and therefore the product requirements. Essential is that the creator/producer is
responsive to the customer needs, which will provide insight in needs and require-
ments. The way of working in this phase reflects the inherent uncertainty, the
chaotic development, and the innovative and pioneering mind set. Product cost is
still less of an issue, the risk related to the uncertainty is the dominant concern.
The design copes with the uncertainty by over-dimensioning those aspects which
are perceived to be the most uncertain.

The adolescent phase is characterized by strong (exponential) growth of the
sales volume, concurrent with an increase in performance, features and product
variants. The challenge is to cope with this strong growth in many dimensions.
With respect to the requirements a strategic selection is needed, to serve the growing
customer base, without drowning in an exploding complexity. The technical and
process challenge is to scale up in all dimensions at the same time. Up-scaling

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 144
November 18, 2023 version: 1.2

Infancy Adolescence|Mature Ageing
g‘gllénrg Business vision :gg'lj LUSITESS Harvesting of assets
. . . |Refining

Value from Responsiveness | Features Refinements / service existing assets

.)) R Low effort
Requirements | Discovery Select strategic | Prioritize high value only
Domlpant Feasibility Scaling Legacy Lack of product
technical knowledge

Obsolescence Low effort for
concerns obsolete technologies
Type of B A Fe\{vinventors & o) o §
TS pioneers Engineers Maintainers'

people p "designers"
Process Chaotic Bureaucratic Budget driven
Dominant Overdimensioning Conseryatlve Midlife refactoring Ul gadgets
pattern expansion

Figure 22.4: Attributes per phase

the Customer Oriented Processes and the Product Creation Process requires more
shared structure between the participants. This involves a mind set change: less
inventors, more designers. The design pattern used frequently in this phase is
conservative extension of a base design.

The mature phase is characterized by more stability of the business model and
the market, while the market has become much more cost sensitive. Instead of
running along in the feature race more attention is required to optimize the speci-
fication and development choices. The value can be shifting from the core product
itself to services and complements of the product, while the features of the product
are mostly refined. The age of the product starts to interfere with the business,
obsolescence problems occur, as well as legacy problems. Innovative contribu-
tions become counterproductive, more rigid engineers are preferred above creative
designers. The cost optimization is obtained by process optimization, where the
processes also become much more rigid, but also more predictable, controllable
and executable by a large community of less educated engineers. The design
copes with the aging technology by performing limited refactoring activities in
areas where return on investment is still likely.

The aging phase is often the phase where the product is entirely seen as cash
cow, maximize the return on (low) investments. This is done by searching all the
low effort high value requirements, resulting mostly in small refinements to the
existing product. Often the integral product know how and even specialist know
how has been lost. Only very important obsolescence problems are tackled. Again
the mind set of the people working on the product is changing to become more
maintenance oriented. Cost is a very dominating concern, budgets are used to

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 145
November 18, 2023 version: 1.2

control the cost. Many changes are cosmetic or superficial, taking place in the
most visible parts of the product: the user interface and the outer packaging.

22.4 Acknowledgements

Henk Obbink observed the discontinuity of market success at the phase transitions.
The analysis of this phenomenon was carried out by Jiirgen Miiller, Henk Obbink
and Gerrit Muller.

Pierre America improved the layout of the diagrams.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 146
November 18, 2023 version: 1.2

Part IV

Product Families, Generics and
Software

Chapter 23

Product Families and Generic
Aspects

customer

Y

People, Process, and Technology Management Process

23.1 Introduction

Platform

Common components

Standard design

Framework

Family architecture

Generic aspects, functions, or features
Reuse

Products (in project environment)

Figure 23.1: Different names for development strategies that strive to harvest
synergy

Harvesting synergy between products or projects is being done under many
different names, such as shown in Figure 23.1 We use generic developments or

harvesting synergy as label for this phenomena. The reader may substitute the
name that is used in their organization.

Many trends (increased variability, increased number of features, increased
interoperability and connectivity, decreased time to market, globalization of devel-
opment, globalization of markets) in the world force organizations into these strategies
where synergy is harvested. Harvesting synergy is, however, also a complicating
factor both organizational and technical. We strive to give insight in both needs
and complications of harvesting synergy, in the hope that awareness of the compli-
cations will help to establish an effective synergy harvesting strategy.

23.2 Why generic developments?

Many people advocate generic developments, claiming a wide range of advantages,
such as listed in Figure

Reduced time to market building on shared components
Reduced cost per function build every function only once
Improved quality

Improved reliability maturing realization
Improved predictability

Easier diversity management modularity

Increases uniformity } less learning
Employees only have to understand one base system
Larger purchasing power economy of scale

Means to consolidate knowledge

Increase added value not reinventing existing functionality
Enables parallel developments of multiple products

“Free” feature propagation product-to-product or project-to-project

Figure 23.2: Advantages which are often claimed for generic developments

Effective implementation of generic development has proven to be quite difficult.
Many attempts to achieve these claims by generic developments have resulted in
the opposite of these claims and goals, such as increased time to market, quality
and reliability problems et cetera. We need a better rationale to do generic devel-
opments, in order to design an effective Shared Assets Creation Process.

Figure [23.3] shows drivers for Generic Developments and the derived require-
ments for the Shared Assets Creation Process. The first driver (Customer value is
extrovert: does the product have value for the customer and is the customer willing
to buy the product? The second driver Internal Benefits is introvert, it is the normal
economic constraint for a company.

Gerrit Muller USN-SE

System Architecting . page: 149
November 18, 2023 version: 2.3

> application adaptability ——> availability of accumulated
» feature set

p- availability variations

design for

new features originating configurability

Customer value — 401 diferent products

el | shared architectural
t Ay . o L ; k
ove! b timely availability -=-=--=-=-=---1 ramewor|

> reliability — — — — — —» quality increase
:|omaturity

P> asset creation » predictability

Xy

Internal benefits —

N ;

et grive |, increase economy
of scale

L -»availability integrated

oV
e “base product

Figure 23.3: Drivers of Generic Developments

Today high tech companies are know how and skill constrained, in a market
that is extremely fast changing and rather turbulent. Cost considerations are an
economic constraint that has to be balanced with the capability to create valuable
and sellable products.

The derivation of the requirements for the product development shows that
these requirements are not a goal in itself, but are a means to facilitate an higher
level goal. For instance, a shared architecture framework is required to enable
features developed for one product to be used in other products too. This propa-
gation of features makes sense if it creates value for a customer. So the verification
of the shared architecture framework requirement has to involve the propagation a
new feature from one product to the next, using limited effort and lead time.

We emphasize the derivation from drivers to requirements because many generic
developments fulfil the requirements, such as availability accumulated feature set.
designed for configurability, shared architectural framework, and maturity or imple-
mentation, without bringing the assumed customer or sales value. For example,
many generic developments result in large monolithic solutions, without flexi-
bility and long development times. Developers of such framework have been
providing replies as: ”You can not have this easy shortcut, because our architectural
framework does not support it, changing the framework will cost us 100 man-years
in 3 years elapsed time”.

23.3 Granularity Of Generic Developments

Granularity is one of the key design choices for systems architects: what is an
appropriate decomposition level for modularity? Granularity decisions have to be
made at all levels for different purposes. For example, in the application granularity

Gerrit Muller USN-SE

System Architecting page: 150
November 18, 2023 version: 2.3

of functions and roles, at specification level granularity of options and features, in
conceptual design granularity of functions and concepts, and in implementation
granularity of many operations.

EV
system RIF
T Delegated integration
2
platform 2 cv MIP EVM
S
®
&
subsystem £ Generator
o
Q.)
2
module £ L
£ detector
component CCD
Shared integration

——actual integration level—»

component
module
subsystem
platform
system

Figure 23.4: Granularity of generic developments shown in 2 dimensions.

Figure 23.4] shows the granularity of generic developments in 2 dimensions.
The vertical dimension is the preparation level: What is the intended scope of
the generic developments, how far is the deployment prepared? The horizontal
dimension is the integration level: How far are the generic developments integrated
when the product developers deploy the generic development?

Both axis range from (atomic) component until (configurable) system. Devel-
opments on the diagonal axis, which have a scope where the preparation level
is equal to the integration level, are straightforward developments in which the
integration takes place as far as autonomously possible. Some generic develop-
ments concentrate on the generation of building blocks, leaving (“delegating”) the
integration to the product developer. For rather critical generic developments the
the integration of the shared asset goes beyond its own deliverable to ensure the
correct performance of the asset in its future context(s).

In these figures a number of medical generic developments are shown, as an
example for the categorization.

An extreme example of “delegated” integration is Common Viewing (CV). The
organization made an attempt to harvest synergy at the end of the eighties. The
vision was to create a large “toolbox” with building blocks that could be used in
a wide variety of medical products ranging from Magnetic Resonance Imaging

Gerrit Muller USN-SE

System Architecting page: 151
November 18, 2023 version: 2.3

(MRI) scanners to X-ray systems. A powerful set of (mostly SW) components
was created, using Object Oriented technology and supporting a high degree of
configurability

The CV toolbox proved difficult to sell to product developers, amongst others
due to the low integration level. The perception of the product developers was
that they still had to do the majority of difficult work: the integration. The vision
of a marketing manager changed the direction of CV into creating a completely
integrated product: EasyVision Radiography Fluoroscopy (EV RF). This medical
workstation for the URF (Universal Radiography Fluoroscopy) market was highly
successful, serving as an intelligent print server. The communication and print
function were highly configurable to make the product adaptable to its environment.

The EasyVision RF was used as a basis for a whole series of medical worksta-
tions and servers. The shared functionality is developed as generic development
at platform level. This platform is nowadays called EasyVision Modules (EVM).
Despite its name it has still a significant integration level, with its upside (product
developers are not bothered with the lower level integration) and its downside
(predefined functionality and behavior).

The old CV vision is revived and a second generation of EVM is being created,
covering the EVM platform functionality with finer granularity: a module level
of integration. The whole evolution as described here from CV as toolbox to
more fine grained EVM modules took about 15 years. During all these years
the balance between genericity (degree of sharing) and customer value has been
changing without ever achieving the combination of a high degree of sharing and
a high customer value at the same time.

23.4 Modified Process Decomposition

In [3] we discussed a simplified process description of companies. This decom-
position assumes that product creation processes for multiple products are more
or less independent. When generic developments are factored out for strategic
reasons then an additional process is added: the Shared Assets Creation Process.
Figure [23.5]shows the (still simplified) modified process decomposition

Figure shows these processes from the financial point of view. From
financial point of view the purpose of this additional process is the generation of
strategic assets. These assets are used by the Product Creation Process to ensure
the cash flow for the near future by staying competitive.

The consequence of this additional process is an lengthening of the value chain
and consequently a longer feedback chain as well. This is shown in figure 23.7]
The increased length of the feedback chain is a significant threat for generic devel-
opments. The distance between designers and developers of shared assets and
the stakeholders in the outside world is large. These developers easily lose focus

Gerrit Muller USN-SE

System Architecting page: 152
November 18, 2023 version: 2.3

customer

Business
Drivers

e
—

Customer
Roadmap
——Info—

—Product—>
—Support—

l—Order—
[——S5——

Policy and

Planning Process material » Customer-Oriented Process s

Product needs
and feedback

plan

Product
roadmap
Budget,
Needs &

[“Feedback
Doc.
Product-

— related —»
processes

Technical
— Product —»{

le—
e

¥

Product Creation Process

roadmap

Generic assets.
Budget, plan:

Needs & _ |
—

e
Y

Feedback
generic
assets
People
Process

Technology, Process
and People roadmaps
e
g
| S

Shared Assets Creation Process

People
Process

Techn

Needs &

[Feedback
People
—Technology®|
Process

‘ People, Process, and Technology Management Process

Figure 23.5: Modified process decomposition

on customer value and may focus on the technology instead. Successful sharing
requires a strong relation between customer value and technology.

23.5 Modified Operational Organization of Product Creation

The operational organization of the Product Creation Process is described in [3]
This organization is a straightforward hierarchy, where the limited amount of relations
(conflicts) between products or subsystems are managed at the closest hierarchical
management level.

Introduction of generic developments complicates the operational structure signif-
icantlyﬂ Figure shows the operational organization of the Product Creation
Process, with the necessary additions to support generic developments.

The conventional Product Creation Process is based on a relative straight-
forward hierarchy, where the control flow and delivery flow are opposite, where
both flows follow the hierarchy. The introduction of generic developments breaks
this simple structure: a generic development team delivers to multiple product
developments, where the control is taking place from an encompassing operational
level, to enable operational balancing of products and generic developments. In
other words the principal of the project leader is not the customer anymore, but an
intermediate manager.

"The complication can be avoided by working sequentially. However in today’s dynamic market
sequential work results in unacceptable lead times. Concurrent engineering is a fact of life. Organi-
zations are looking for opportunities to reduce the lead time more.

Gerrit Muller USN-SE

System Architecting page: 153
November 18, 2023 version: 2.3

customer

4 4 4

v y y

cashflow

generationt

Yy v y

o Shilow
| omomows ™|

accel
‘ stratedc PSS ‘
Ucn"'a“o“

‘ ASsetS

Figure 23.6: Financial viewpoint of processes

Every operational entity needs the 3 complementing processes in the product
creation process: operational management, design control and commercial. For
each of these processes a role is required of someone responsible for that process:
the operational manager, the architect and the commercial manager. Together these
3 people form the core team of the operation. Introduction of generic developments
also requires the introduction of these roles for the shared assets, such as platform
or components.

For the architect role this means that a platform architect is needed, who is
closely working together with the platform project leader and the platform manager.
At the other hand the platform architect needs many architectural contacts with
the product family architect, acting as the architectural principal, with the product
architect, acting as customers, and with the component architects, acting as suppliers.

The separation of the roles of the platform architect and the product family
architect is not obvious. For example in [9] 3 operational entities with related
processes and roles are identified. Application Family Engineering (AFE), Component
System Engineering (CSE), and Application System Engineering (ASE) map respec-
tively on Product Family, Component, and Product as shown in Figure We
will either have a gap or a double role, when mapping 4 operational entities on
3 processes. In practice the result is that one of the roles is missing, or played
implicit. For instance quite often the application family engineer starts to play
platform architect, forgetting the original task application family engineering. We
have observed that architects either tend to play the platform architect role or the
product family role. Architects combining both roles naturally are scarce.

Gerrit Muller USN-SE

System Architecting page: 154
November 18, 2023 version: 2.3

customer

N\
\

\

Policy and il ol
Planning Process Customer-Oriented Process

/$/
/S
&/ &
\ & Y

‘ Product Creation Process ‘

/ /

‘ Shared Assets Creation Process ‘

//

‘ People, Process, and Technology Management Process

Figure 23.7: Feedback and Value flow

23.6 Models for Generic Developments

Many different models for the development of shared assets are in use. An important
differentiating characteristic is the driving force, often directly related to the de
facto organization structure. The main flavors of driving forces are shown in

figure[23.9)

23.6.1 Lead Customer

The lead customer as driving force guarantees a direct feedback path from an actual
customer. Due to the importance of feedback this is a very significant advantage.
The main disadvantages of this approach are that the outcome of such a devel-
opment often needs a lot of work to make it reusable as a generic product. The
focus is on the key functions and performance parameters of the lead customer,
while all other functions and performance parameters are secondary in the beginning.
Also the requirements of this lead customer can be rather customer specific, with a
low value for other customers.

23.6.2 Carrier Product

The combination of a generic development with one of the product developments
also shortens the feedback cycle, although the feedback is not as direct as with
the lead customer. Combination with a normal product development will result in
a better coverage of performance parameters and functionality. Disadvantage can

Gerrit Muller USN-SE

System Architecting page: 155
November 18, 2023 version: 2.3

operational ‘ l technical ‘ ‘ commercial

. portfolio Fontolo portfolio
entire operational hi marketing
ortfolio architect
P manager manager
R
S A ’I"
product Genily family (il

y operational " marketing
architect
2 manager manager
e — T T

single A 1 A | A
product ll)l’OdECt smgl:;;o;uct platform product platform product
platform ;::mi: ?eajtjer architect architect manager manager
i 1 L T T
sub- component subs;‘slem . - -
system project project compt?nen(subsylstem component
CEATER [[architect architect manager
| L | I
A S — A
module ‘ component ‘ subsystem
developers developers

Figure 23.8: Operational Organization of the Product Creation Process, modified
to enable generic developments

advanced
demanding

good
direct feedback
too specific?

innovate for specific customer

lead customer refactor o extract generics

innovate for specific product

carrier P roduct refactor to extract generics

innovate in generic platform
integrate in products

platform
generic?

no feedback tech n0|0gy pUSh innovate in research laboratory

transfer to product development

Figure 23.9: Models for SW reuse

be that the operational team takes full ownership for the product (which is good!),
while giving the generic development second priority, which from family point of
view is unwanted.

In larger product families the different charters of the product teams create a
political tension. Especially in immature or power oriented cultures this can lead
to horrible counterproductive political games.

Lead customer driven product development, where the product is at the same
time the carrier for the platform combines the benefits of the lead customer and
the carrier product approach. In our experience this is the most effective approach
of generic developments. A prerequisite for success is an open and result driven
culture to preempt any political games.

Gerrit Muller USN-SE

System Architecting page: 156
November 18, 2023 version: 2.3

23.6.3 Platform

Generic developments are often decoupled from the product developments in maturing
product families, by creating an autonomous Shared Asset Creation Process. In
products where integration plays a major role (nearly all products) the shared assets
are pre-integrated into a platform or base product. Such platform or base product
follows its own release process before it can be used by product developments.

product feature 2 f

product feature 1

<
&

&

&

Product integration v Itest /

Platform integration | test
A A

feature

feature 2

Figure 23.10: The introduction of a new feature as part of a platform causes an
additional latency in the introduction to the market.

The benefit of this approach is separation of concerns and decoupling of products
and platforms in smaller manageable units. These benefits are also the main weakness
of such a model: as a consequence the feedback loop is stretched to a dangerous
duration. At the same time the duration from feature/technology to market increases,

see figure 23.10]

23.6.4 Alternative Generic Development Scenarios

A number alternative re-use strategies have been applied with more or less success:

Spin-out as an independent company is especially tried for key and base technologies.
However, many spin-out companies have been re-absorbed by their parent
companies. Examples are multimedia processors from TriMedia (parent
Philips Semiconductors, later NXP) and cell phone operating system Symbian
(parent Nokia)

Reuse after use works quite good in practice, especially for good clean designs.

Opportunistic copy where implementations are taken that are available. The results
are quite mixed. Short term benefits are quick results and hence short feedback
cycles. Longer term a problem can be that an architectural mess has been
growing that turns into a legacy.

Gerrit Muller USN-SE

System Architecting page: 157
November 18, 2023 version: 2.3

Open source where key and base technologies are shared and developed much
more publicly.

Inner-source , where a company stimulates sharing takes place within a company
modeled after an open source approach.

volutionary refactoring where the architecture and its components are actively
re-factored to keep them fit for the future and for potentially increased scope
of application

23.7 Common Pitfalls

We learn from out mistakes. Unfortunately, many mistakes have been made in the

area of generic developments. We compiled the list of pitfalls shown in Figure[23.11]
from mistakes in generic developments in the past. Some of the attempts to harvest

synergy were partially successful, but issues from the list limited the degree of

success.

Technical Process/People/Organization
» Too generic * Forced cooperation
* Innovation stops * Time platform feature to market
(stable interfaces) * Unrealistic expectations
* Vulnerability + Distance platform developer to customer

* No marketing ownership

* Bureaucratic process (no flexibility)

» New employees, knowledge dilution

» Underestimation of platform support

* Overstretching of product scope

» Nonmanagement, organizational scope increase
* Underestimation of integration

» Component/platform determines business policy
* Subcritical investment

Figure 23.11: Sources of failure in generic developments

Most of the problems have a root cause in people, process, or organizational
issues. The list with technical problems is relatively small:

Too generic platform or components that can do everything, but nothing really
good: “the Swiss army knife”

Innovation stops , because existing interfaces are declared to be stable. Existing
structure and interfaces can block innovation.

Vulnerability , because all products use one and the same core. If the shared core
has a problem anywhere then all products are hit simultaneously. Diversity

Gerrit Muller USN-SE

System Architecting page: 158
November 18, 2023 version: 2.3

is a characteristic that enhances resilience. In nature, species often survive
disasters, such as diseases, due to the diversity in the population.

Forced cooperation by upper management, de-motivating employees, and creating
social and political tensions in the organization.

Time platform feature to market because of stacked release procedures.

Unrealistic expectations by upper management, often as a consequence of the
claims from architects and engineers o the benefits of harvesting synergy.
When less is delivered than promised, then a negative spiral sets in of cost
reduction and hence even more decreasing outcome.

Distance platform developer to customer , see Figure [23.7

No marketing ownership , but engineering push only. Marketing support is crucial,
since marketing is one of the key players when making decisions about
investments. Lack of marketing ownership results in a continuous fight for
funding, with starvation in the end.

Bureaucratic process , and loss of flexibility. The increased scope of the operation
(common components or platform plus derived products) often requires a
more formal organization than the individual products used to have. The
formalization easily turns into bureaucratism, slowing down the entire organi-
zation.

Knowledge dilution caused by the hiring of new employees. Often an increase in
resources is needed early during the creation of shared assets. If these new
resources are inexperienced, then the knowledge is diluted, resulting in less
quality of the created assets.

Underestimation of shared asset support required when the shared assets are used
by products. Product designers need support when specifying and designing
new products based on these assets, and they need support for trouble shooting
during integration and introduction in the field. When components are used
in new circumstances (e.g. new products), then always unexpected problems

pop-up.

Overstretching of product scope beyond the natural level of synergy. Harvesting
synergy is a balancing act, between maximum value creation for specific
customers and minimizing diversity in the realization. When the minimization
of diversity dominates over value creation, then customers are not served
well, resulting in a loss of business. Organizations easily lose their customer
focus, when creating a synergy drive.

Gerrit Muller USN-SE

System Architecting page: 159
November 18, 2023 version: 2.3

Non-management of organizational scope increase that is inherent when multiple
products share assets. The scope increase requires organization, process and
staffing adaptations.

Underestimation of integration of shared assets in other products. Systems integration
is often ill understood and hence underestimated, see ??. When existing
products have to migrate to the use of shared assets, then this requires that
these products adapt their architecture too.

Component/platform determines business policy which is effectively an inversion
of the need driven approach. This inversion relates to the distance between
shared asset development and customers. What happens is that what can be
done dominates over what needs to be done. The shared asset developers get
de facto power, since all products depend on their delivery.

Subcritical investment , caused by a cost reduction focus. Shared asset devel-
opment primarily should bring market and customer value, while keeping
the cost limited by harvesting synergy. As soon as cost reduction dominates
over value creation, then all products and shared assets can get too little
investment, causing delays and quality problems.

23.8 Acknowledgments

During the first CTT course system architecture, from november 22 until november
26 1999, a lively discussion about generic developments took place, which created
a lot of input for this article. I am grateful to the following people, who attended
this course: Dieter Hammer, Wil Hoogenstraaten, Juergen Mueller, Hans Gieles,
Huib Eggenhuisen, Maurice Penners, Pierre America, Peter Jaspers, Joost Versteijlen,
Peter Beelen, Jarl Blijd, Marcel Dijkema, Werner Roelandt, Paul Janson, Ashish
Parasrampuria, Mahesh Bandakka, Jodie Ledeboer

I thank Pierre America for working on consistency in spelling and the use of
capitols. Ad van den Langenberg pointed out a number of spelling errors.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 160
November 18, 2023 version: 2.1

Chapter 24

Product Familiy Business
Analysis And Definition

& Customer
&5 architecture
R
NS 2 e Abppication
5 2 % architecture
N\ s 3
& S 2 Functional
& o § S achiecture
1 < g £y
£ g 2 Conceptual
8 3 § architecture
& i
°
5 S Realization
E architecture
1st prototypelst product 1st family definition —— {ime —

24.1 Introduction

The creation and evolution of a product family is based on a business analysis.
Such a business analysis is used for the definition of the family: which products
are member of the family, what distribution of features, which performance range.

Several methods can be used to make the step from business analysis to product
family definition, see for instance Figure 24.1]

Roadmapping

Reference Architecture
Requirements Capturing
Feature Space Exploration
Value Engineering

Scope Determination

Figure 24.1: Methods for Family Analysis

24.2 Roadmapping

About once per year it is recommended to work for a number of weeks on roadmaps.
These roadmaps serve as a shared vision of the next 5 years, see [15]]. Roadmapping
is done at the level of a product portfolio or product family. The value of roadmapping
is that it brings understanding over 5 views: market, product, technology, process
and people. This understanding has the time perspective as the main dimension.

The roadmaps provide a time and product portfolio context for the definition
of a product family. A number of the activities in roadmapping and product family
definition are quite similar; both require an market analysis, a good understanding
of commercial opportunities and insight in the technology.

Roadmapping is focused on insight, understanding and shared vision, without
any commitment. The definition of a product family results in a more specific
detailed output, which is at least partially committal. In other words. Roadmapping
is transforming a strategy into tactics, while Product Family definition transforms
the tactics into operational activities.

24.3 Reference Architecture

Customer Application Functional Conceptual Realization

objectives
Customer Architecture: Application Architecture: Functional Architecture:
« Key drivers « Applicational drivers e Commercial Decomposition:

e Features, Functions,
« Customer Business Models * Application Domain Model: Options
* entities + relations
« Market Model (competition, * behavior Price Performance
complementors) Dimensioning
« Stakeholders

Figure 24.2: Product Family Reference Architecture, zooming in on the views
determined by the business analysis and family definition process

A reference architecture covers 5 viewpoints on a product family, see figure[24.2]
The business, application and functional architectures are the main subjects of
interest during the business analysis and family definition process.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 162
November 18, 2023 version: 2.1

24.3.1 Business Architecture

The business architecture models the world of the customer. Again a number of
complementary views are required.

The key drivers of the customer are identified, see [[14]. A limited, but specific
set of key drivers is a powerful guide in the entire creation process.

The business model of the customer is determined, see typical questions addressed
by a business model in Figure [24.3|

Who appreciates what?

Who pays when for what?

Who takes decisions?

Figure 24.3: Questions addresses in the business model

The business of the customer is served by many different suppliers. Some of
these suppliers are competing with your own business, while others are comple-
mentary. This information is compiled into a market model.

Example Set top boxes are supplied to different kinds of customers, varying
from consumers to content providers. In case of the content providers different
business models are practiced, ranging from pay-per-view to entirely paid by the
advertisers.

The set top box is only a small part of the value chain. Many complementers
are active in this entire chain, which starts at the content generation and ends at
the television screen of the consumer. Philips is quite active in all complementing
products at the consumer side, such as television and video storage, while it is
active in parts of the value chain proceeding the set top box.

The competition exists from comparable set top box manufacturers, but also
new devices such as game computers (Playstation 2) enter this market.

24.3.2 Application Architecture

The application architecture models the way the user works or enjoys your products
in a broader context.

The key drivers of the business architecture are transformed into application
drivers, which describe what the user needs to fulfill the key drivers of the business.
These application drivers provide insight. The direct relation with the key drivers
and the functional requirements provide traceability and a means to focus the
requirement process.

Application domain models support the other processes by providing a shared
reference. A model describing the entities and their relations “’sets the stage”; it

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 163
November 18, 2023 version: 2.1

defines the relevant entities such as persons, tools, deliverables, consumables et
cetera. A dynamic view on the application is given in the behavior model. Both
models at this level should focus on the main issues, detailed definitions endanger
the overview and understanding.

Figure explicitly mentions stakeholders as part of the application archi-
tecture. Of course stakeholders will show up as an entity. The (human) stake-
holders play such an dominant role in the application that it is useful to make a
separate overview of the stakeholders and their roles.

Example: An X-ray diagnostic system requires predefined diagnostic proce-
dures to be used easily. These procedures are based on rather specific domain
knowledge, such as demographic data, pathology and anatomical data. The essen-
tials of the way of working should be described in the application drivers.

The application model would describe all relevant entities, such as patient,
patient table, monitors, UI devices, tube, detector, ECG monitor, film, examination
room, technician, nurse, patient et cetera including their relationship.

Note that understanding is the aim of this exercise, not completeness. Those
entities and relations should be shown which are relevant for the shared (by commercial
and technical people) understanding of the application.

The behavior model would describe the dynamics of the application. It could
for instance describe the patient flow, and the information flow.

The application stakeholder view focuses on the human players, which are in
this case: referring physician, receptionist, radiologist, patient, technician, nurse,
technical support staff of the hospital, et cetera.

24.3.3 Functional Architecture

The functional architecture is the commercial view on the system, describing the
commercial flexibility of the products. The functional architecture is the basis of
the sales catalog.

The commercial decomposition defines in terms of functions, features and
options the capabilities of the products and their structure from commercial point
of view. The product manager decides which items to package in sellable products.

The price performance ranges are also defined in the functional architecture.

24.4 ’YoYo-View” over time

To define a product family technical, business and application know how are a
prerequisite. Figure [24.4] shows that this know how is often the result of previous
experience with single products D The curve indicates the architectural focus as

'recruitment of experienced people is also an effective way to obtain the know how. In fact the

same learning curve is followed, but external.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 164
November 18, 2023 version: 2.1

Customer
architecture

Application
architecture

Functional
architecture

Conceptual
architecture

Realization
architecture

(@]
=
(=
=
©
Q

1st prototypelst product 1st family definition —— time —»

Figure 24.4: The analysis and definition of a family requires a number of iterations
over the views in the reference architecture

a function of time. This focus is iterating over the CAFCR views. The diagram
simplifies this learning curve to a single prototype and product, in reality more
generations are required for the build up of the know how.

When enough knowhow is present in the group of people, this know how
is made explicit in the form of a reference architecture. The “problem” is now
analyzed by making a business analysis, feature space exploration and valuation
of the features. As shown in figure [24.4] this activity ranges over the business,
application and functional architectures.

The next step is to go back to a more fundamental question: What is an effective
scope for the product family? A broad scope is attractive for customers when
they benefit from a rich offering of product members and options. From business
perspective a broad scope is desirable to increase economy of scale effects and to
harvest synergy by sharing development efforts. However, at the same time a broad
scope increases dependencies between markets and products, increases organiza-
tional complexity, and increases internal communication and process needs. Over-
stretching the product scope has been a major cause of product family failures.

Once the organization has sufficient know and the scope is clear, then the actual

product family specification and design can take place in a more or less top down
fashionP]

2 Although iterative (evolutionary, agile) development approaches are highly recommended.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 165
November 18, 2023 version: 2.1

24.5 Relation with the Technical Architecture

Customer Application Functional Conceptual Realization
objectives

product-specific components

architecture ‘ ‘ ‘ ‘ ‘ ‘

guidelines

generic components

Figure 24.5: Technical Architecture for a Product Family

The family definition will have to iterate with the technical and implemen-
tation architecture. Figure [24.5] shows an example of the contents of a technical
architecture in case of a Component Based Product Family.

Rather fundamental decisions which have to be taken for the technical archi-
tecture is where to address the requirements, in:

e Product Specific Components,
e Generic Components, or in
e Architecture Guidelines.

Ideally the technical structure closely resembles the functional structure, by a
natural mapping of functions and features on components.

24.6 Requirements Capturing

Collection and analysis of requirements is indispensable. Many methods exists to
do this. In [14] the requirements capturing is described for products. However the
methods described in this article are also applicable for Product Families.

Product Family Definition requires special attention for commonality and variation
analysis and for product positioning. In section some more detailed method is
described to address these issues.

Also special attention should be paid to the life cycle requirements, these
requirements often originate at internal stakeholders, such as sales, manufacturing,

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 166
November 18, 2023 version: 2.1

Installation

Configuration

Customization

Life-cycle management (amongst others upgrading)
Configuration Management

Licensing strategy

Figure 24.6: Subjects requiring special attention for Product Families

service et cetera. Figure[24.6|shows a list of subjects which require special attention
in case of product families.

24.7 Feature Space Exploration and Value Engineering

. Make an inventory of features
. Map features on market segments
. Determine products

1

2

3

4. Map features on products
5. Determine valuation criteria
6

. Valuate features per product

Figure 24.7: From Feature Exploration to Valuation per Product

Analysis of commonality and variation of features over products helps to define
the product family in first instance and to make a family design in second instance.
This analysis starts with an exploration of the feature space, and results in a valued
set of features per product. Figure shows which steps are taken in this process.
See also [[14]] which describes how to obtain requirements.

market
—_ —
segments

«—features

Figure 24.8: Market Feature Map

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 167
November 18, 2023 version: 2.1

The features can be mapped on market segments, resulting in a matrix, see
figure The feature axis can be ordered, for instance by following the key
driver, application driver derivation.

Again iteration is the magic word. Iterate a few times from Market segment
to Features and vice versa. If key drivers are used as structure for the feature axis,
then these key drivers should be included in the iteration. Market segments can
have different key drivers!

—— products »

«— features —

Figure 24.9: Product Feature Map

The Market segmentation can be transformed in products, once sufficient insight
is obtained in the market segments and the features involved. This results in a
Product Feature Map, see figure[24.9

« Value for the customer

« (dis)satisfaction level for the customer

« Selling value (How much is the customer willing to pay?)
« Level of differentiation w.r.t. the competition

« Impact on the market share

* Impact on the profit margin

Use relative scale, e.g. 1..5 1=low value, 5 -high value
Ask several knowledgeable people to score

Discussion provides insight (don't fall in spreadsheet trap)

Figure 24.10: Example of Valuation Criteria

Valuation criteria are needed to determine the value of features. Figure 24.10]
shows an example of Valuation Criteria.

Figure [24.T1] shows the result of the entire process. Here all the features have
been valuated, the corresponding values are substituted in the matrix.

This matrix is the starting point for the selection process, see section [24.4]
which finally has to answer:
Which Feature will be realized When for Which product?

A much more elaborated method for feature space exploration, valuation and
scoping can be found in [4].

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 168
November 18, 2023 version: 2.1

— products —

‘ P2200

o
=
@
3
3

P1900

satisfaction
customer
sales price
market share
satisfaction
customer
sales price
market share
satisfaction
customer
sales price
market share

D [Cheeter || 1 5 4 3 4 4 4 5
L

= [hffeeder |

=
g\m\434534434
“—

“sunpower‘ 2 2 1 |2 2 1 |2 2 4

Figure 24.11: Product Feature Map with substituted Numbers

24.8 Scope Determination

A fundamental question in Product Family approach is the scope of the family
Which part of the Market do we want to serve?

A clear shared answer on this question is the key to an efficient continuation of
the Family Creation Process. Some more nuance can be added to the question by
including the time dimension (When?).

Note that figure also simplifies the scoping to a single iteration. In reality
some iteration with the technical and implementation architecture takes place.

-«+—————Commercial Product Family——

Technical Product

Family 1
Technical Product

Family 2

Figure 24.12: Commercial and Technical Viewpoint on Product Families

The scope determination is primarily a commercial scoping. Later in the process,
as part of the Family Design, also technical scope determination is needed. Figure[24.12]
shows that a commercial Product Family can be realized by two technical product
Families.

Example High end products ("Up-market Televisions™) will emphasize a richness
of features, irrespective of for instance memory and processor constraints, while
the mid range products ("Mainstream Televisions”) have a severe cost constraint,
which translates in memory and processor constraints. From commercial point of
view it should appear as one continuous family. From technical point of view the
requirements could be conflicting too much, while two technical families with a
different optimization focus, match perfectly with the commercial requirements.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 169
November 18, 2023 version: 2.1

24.9 Acknowledgements

Frank van der Linden wrote a position paper on this subject to trigger the discussion
for the "Family Engineering Handbook™. After Frank left Philips Research to join
Philips Medical Systems I inherited the job to write this section of the handbook. I
thank Frank for writing the original position paper which served as a starting point
of this article.

Discussions with Jiirgen Miiller helped to sharpen the contents of this article.
Discussions in the composable architecture meeting, attended by Pierre America,
William van der Sterren, Jan Gerben Wijnstra and Jiirgen Miiller helped to make
the article more complete and consistent. Ad van den Langenberg pointed out a
number of spelling errors.

James Sirota pointed out that the explanation of the Yoyo-figure was very
limited. He also suggested to add a warning about opportunistic re-use.

Gerrit Muller USN-SE

System Architecting page: 170
November 18, 2023 version: 1.3

Chapter 25

The Role of Software in Systems

human user

‘ application SW

|

‘ digital electronics

K
control SW

-y

legend

local
automation
or safety

mechanical optical
‘ device device sensor

25.1 Introduction

The relation between the software and system disciplines is difficult in many organi-
zations. The poor relation between the disciplines results in gaps in the design and
later in quality problems in the final systems. As a consequence software is in
many organizations perceived as a problem and a bottleneck in product creation.

Part of the explanation is traditionally physical disciplines, e.g. mechanical,
optical, or electrical engineering, dominated system design. Historically the engineers
from these physical disciplines were confronted most with the application domain.
These engineers have evolved into domain engineers.

In the modern world software has a significant impact on many system qualities,
as we will show in this chapter. More and more customer value depends on
software. Unfortunately, many software engineers have not yet build up sufficient
knowledge of the physical aspects of their systems or of the application domain.
At the same time the engineers from the physical disciplines, who dominate the
system design, do not yet understand the jargon and the concepts from the “virtual”
disciplines (software, digital electronics engineering).

25.2 Why is Software a Bottleneck in Product Development?

25.2.1 Growth of software effort

Software is a relative young discipline. The amount of software in systems is
growing exponentially. The contribution of different disciplines to the system,
measured in effort is shifting continuously. Figure 25.1]shows the growth of effort
to make software and the related relative decrease of the other disciplines.

100%

—>

physics/chemistry, etc.

relative
effort

mechanics

electronics SW

1970 2000

time——»

Figure 25.1: The relative contribution of software effort as function of time

25.2.2 Roles of the disciplines in a system

The different disciplines do have an asymmetric relation when we look at the
control in systems. Figure shows a typical control hierarchy in a system.
At the bottom we see the physical disciplines who realize physical devices and
sensors. We prefer to keep these physical components independent from each
other seen from control perspective. Safety provisions are the major exception
to this rule.

The physical devices need actuation that is delivered by some analog (power)
electronics, e.g. amplifiers. Note that there might be all kinds of conversions in
between in the more complex reality, e.g. pressure in a hydraulic system, light
in an optics system. Again we prefer to keep the analog electronics mutually
independent. The analog electronics is controlled by digital electronics. The
control stack continues with control software that sits on top of the digital hardware.
Finally, application software determines what the control software should do. Hopefully,
the human user is the person who is really in control.

Gerrit Muller USN-SE

System Architecting page: 172
November 18, 2023 version: 1.3

---Feedback-==-eceeee-

v x
£ control SW-
digital electronics
local

et automation

v H
Y - orsey
mechanical optical EET -
device device

Figure 25.2: The Control Hierarchy of a system along the Technology dimension

Note that in all layers there are several reasons to have short cuts from sensors
to control:

Safety is always kept as simple and direct as possible, since any complexity intro-
duces new safety risks. A good safety design carefully allocates safety
functions to the different layers to achieve the desired safety while achieving
the desired control flexibility.

Automation can be done on lower layers if this simplifies the overall design.
Automation provides value when the higher level work flows are well under-
stood and well defined.

Performance is a special case of automation, where the short cut facilitates better
performance, for example fast response times.

The software technology is in most modern systems the integrating technology,
as shown by the control hierarchy. In the next section we will dive somewhat
deeper in the relation between system qualities and software technology. In modern
systems software technology determines to a high degree most system qualities.
The inherent system qualities are often determined by the physical design, but the
actually achieved quality is often determined by the way the software is constructed.
For example, we can dimension a system with quite powerful motors to ensure high
performance, but if the software does not fully utilize the motors, then the system
performance is lower than can be expected from the physical design. Similarly
for reliability that inherently is determined by the physical design. However, the
software control may negatively impact reliability. For example, in a system with
pumps, the software used a sequence where one of the pumps regularly ran dry.
The consequence was that this pump failed often.

Gerrit Muller USN-SE

System Architecting page: 173
November 18, 2023 version: 1.3

e

-
concrete — abstract
, -]
tangible - intangible
-
mature immature

production lead-time - instanteneous deployment

. _ .
material cost __ flexible?

-
-
-
Mechanics Analogue / power Digital Software
Optics Electronics Electronics Data

Figure 25.3: Characterization of disciplines, ordered along the level of abstraction

25.2.3 Characterization of disciplines

Physical disciplines work on aspects that can be touched, the subjects are tangible.
Virtual disciplines work on abstract concepts, the subjects are intangible. Figure[25.3]
shows the disciplines on an axes of decreasing tangibility and increasing abstractness.
Mechanics is one of the older disciplines that is highly tangible. Analog (power)
electronics is younger as discipline and less tangible. Digital electronics is again
younger. Although the digital electronics itself can be touched, the circuitry itself
is much more conceptual and abstract.

Figure 25.3] also provides a number of other characterizations that follow the
same trend as tangibility and abstractness:

maturity The more tangible the more mature a discipline seems to be. Mature
means here well known and founded; the discipline has an established and
documented body of knowledge.

production lead time The physical world is constrained by nature. Processing
and production of components have an inherent lead time. Software can be
seen as infinitely fast. However, when testing, quality control and configu-
ration management are included in the production lead time, then this lead
time becomes strongly dependent on people, processes, and tools. Hence the
question mark behind flexible at the right hand side of the figure.

material cost Physical systems do have inherent cost in the materials and its processing.

These differences in nature, especially production lead time and material cost,
cause also differences in other business processes and the approach to life cycle
aspects. For many physical components the logistics design is crucial for cycle
time, stocks, and cost, where software does have zero reproduction cycle time, cost
and infinite stocks.

Gerrit Muller USN-SE

System Architecting page: 174
November 18, 2023 version: 1.3

25.3 System or Software Issues?

Systems can be specified in terms of their functionality and qualities. Most qualities
of a system are strongly influenced or even determined by the software design.
Figure[25.4]based on [[19] shows a checklist for qualities. In this figure all qualities
that have a strong or weak relation with the software design are highlighted.

usable interoperable serviceable ecological
usability Connectivity oAb ecological footprint
attractlvgness 3111 party extendible configurability Igo_n_ta_mlpgt_lqn_ .-
responsiveness installability 0058 cacaaa.. .
i i . disposability
|magebqluallty liable d p h
wearabilit -to-
storabilityy liability future proof own-to-eart

" A attributes

transportability testability evolvability cost price

dependable | traceability _ portability
safety_ standards compliance | upgradability consumption rate
security — extendibility (water, air,
reliability efficient maintainability chemicals,

rDbuSFHESS resource utilization etc.)
integrity cost of ownership size, weight

availability logistics friendly
effective consistent Emanufacturability 1 legend

throughput or reproducibility :Iogistics flexibility § *veak SWrelation

productivity | | predictability 1lead-time 1 GemSsesmlse

------------- ¢ | strong SW relation

Figure 25.4: Quality Checklist annotated with the relation with software

During System Design the system is decomposed in subsystems and implemen-
tation technologies. The combination of subsystems and technologies together has
to realize the qualities. During this step the contribution or the role of a subsystem
and implementing technology is determined.

Figure shows the System level design aspects that are strongly related to
software. Figure [25.6] shows a list of mechanisms used by SW engineers. These
mechanisms facilitate the system level design aspects mentioned in Figure

Both Quality Attributes and Design Aspects are System Level issues, however
most of these issues are predominantly influenced by the software. The System
Architect should: define the system level what, co-design the system level how
and be involved with the single technology or subsystem how.

Due to the strong Software impact the software architect should: understand/review
the system level what, co-design the system level how and design the software
how.

This requires significant domain know-how of the Software Architect, see [11]].

Figures [25.5] and [25.6] contain too many design aspects and software mecha-
nisms to discuss as part of this book. The main purpose of these lists is to show the
variety of technology issues to be addressed by the software architect.

Many of the design aspects have a many to many relation to the software
mechanisms. For example, the design strategies for performance, safety, and security

Gerrit Muller USN-SE

System Architecting page: 175
November 18, 2023 version: 1.3

Customer Application Functional Conceptual Reaiization
objectives

design philosophy per quality attribute performance, safety, security, ...
granularity, scoping, containment, cohesion, coupling ségn-tvrgl'isz‘gglé‘;’:tgl
interfaces, allocation, budgets

information model (entities, relations, operations)

identification, naming HAL_message_acknowledge_status versus ACK
static characteristics, dynamic behavior

system-level infrastructure

software development process, environment, repository, and tools
life cycle, configuration management, upgrades, obsolescence
feedback tools, for instance monitoring, statistics, and analysis
persistence

licensing, SW-keys

setup sequence, initialization, start-up, shutdown

technology choices

make, outsource, buy, or interoperability decisions

Figure 25.5: System design aspects that are strongly SW related

relate to nearly all software mechanisms. Vice versa most software mechanisms
penetrate throughout most software and relate back to most of the design aspects.

The software part of systems is complex in itself. The software is a construct
made by many people, stacking construct on construct. The risk is that software
architects spend all their time internally in the software, while they also have to
relate the software choices to the context, the system.

25.4 Acknowledgments

Jiirgen Miiller helped to sort out the attributes, aspects, mechanisms et cetera,
which helps to position the Software Discipline in the System Development.

Gerrit Muller USN-SE

System Architecting page: 176
November 18, 2023 version: 1.3

Customer Application Functional Conceptual Realization
objectives

error handling, exception handling, logging

processes, tasks, threads

configuration management; packages, components, files, objects, modules, interfaces
automated testing: special methods, harness, suites

signaling, messaging, callback scheduling, notification, active data, watchdogs, timeouts
locking, semaphores, transactions, checkpoints, deadlock detection, rollback
identification, naming, data model, registry, configuration database, inheritance, scoping
resource management, allocation, fragmentation prevention, garbage collection
persistence, caching, versioning, prefetching, lazy evaluation

licensing, SW-keys

bootstrap, discovery, negotiation, introspection

call graphs, message tracing, object tracing, etc.

distribution, allocation, transparency; component, client/server, multitier model

Figure 25.6: List of Software Mechanisms that are frequently applied to solve the
system level design aspects

Gerrit Muller USN-SE

System Architecting page: 177
November 18, 2023 version: 1.3

Part V

Management and Architects

Chapter 26

The Tense Relation between
Architect and Manager

Business Operational
manager manager

\/

Marketing Architect Line

manager manager
Sales Goods flow
manager manager

26.1 Introduction

The relation between managers and systems architects somehow tends to be somewhat
difficult. This is not desired, since we position the systems architects as part of the
leadership of an organization.

In this intermezzo we look at managers and architects in a generalized way.
Generalizations are always risky; the purpose of this generalization is to better
understand the inherent tensions between architects and managers. No “real” architect
nor manager will exactly look like the generalization in this intermezzo.

26.2 What is a Manager?

A manager is someone who manages everything needed to get a task executed.
The manager has the responsibility for the task. The responsibility comes with
the required authority to do the task. Every Process in the simplified business
decomposition in [I] and 3] generally has a manager associated with the process

who is responsible for the execution of that process. Often these tasks are further
decomposed with managers associated with every subtask.
Systems architects frequently encounter the managers shown in Figure [26.1]

Business Operational
manager manager

\ /

Marketing . Line
manager Architect manager
Sales Goods flow
manager manager

Figure 26.1: Managers frequently interacting with architects

26.3 Comparison of Architect and Manager

Figure [26.2] shows a comparison between architects and managers for 6 different
aspects: responsibility, view on solutions, view on changes, personal character-
istics, leadership values, and personal ambition.

26.3.1 Responsibility

Managers have a well defined responsibility, related to their function. In most
organizations managers also are empowered accordingly. The scope of responsi-
bility is limited, the total responsibility is divided over many managers.

The responsibility of the architect is much more fuzzy, see[9] For every aspect
the architect is working on there is some manager who has the formal responsibility
for that specific subject. The architect has limited formal power. At the other hand
architects have a lot of informal influence.

26.3.2 View on Solutions

The view on solutions is quite different. The architect partially trusts his or her
intuition, looking for the notion of an elegant solution. The word elegant can cover
many aspects, such as: balanced, simple, beautiful. As representative of the stake-
holders the architect will guard the fitness for use, is it the “right” solution? At the

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 180
November 18, 2023 version: 1.5

responsibilities architect manager architect manager
scope wide limited personal
formal weight low high characteristics
independent conformance
view on architect manager critical demanding
solutions curious control minded
design elegant if it works it is OK
application perfect fit no complaints leadership values
; based on based on
future proof important task dependent
- - . knowledge KPI's
view on chitect vision title creates
changes : manager expectations
changes needed: | changes introduce: task driven
viewpoint reElEEtEs - problenjs' »
+time - uncertainties persona| ambition
+ problem analysis | - new changes
9 best solutions highest
attitude fact of life avoid changes hierarchical level

Figure 26.2: Comparison of caricature of architect and manager

same time the architect will place the solution in a time perspective, is the solution
“future proof™?

Most managers stay close to their task and responsibility. A solution that
matches the specification is by definition good. If there are no complaints, then
there is no problem.

26.3.3 View on Changes

Architects (ought to) spend a significant part of their time in the turbulent outside
world, inhabited with demanding customers in changing markets with aggressive
inventive competitors, and innovative suppliers. At the same time architects are
active in the company across many internal boundaries, enabling architects to
detect, analyze and to help solving many internal problems. Architects are contin-
uously confronted with situations where change is required. The internal and the
external world are highly dynamic, causing need for change everywhere. Archi-
tects see changes as a fact of life.

Managers tend to take an opposite view on the need for change caused by
the limited scope and the heavy weight of the responsibility of their task results.
Managers have experienced that changes always introduce problems, involve uncer-
tainties, and trigger more changes. The resulting behavior is to avoid changes/footnote
Keep aware that we discuss caricatures of architects and managers. In practice
there are many (bad) architects behaving very conservative..

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting . page: 181
November 18, 2023 version: 1.5

26.3.4 Personal Characteristics

Managers are control minded, managers like to be in control of the task being
performed; that is exactly their job. Managers demand conformance as a means to
be in control. The people working at a task have to conform to the way the manager
wants to perform the task.

Architects have an entirely different personality. Architects need independence
and curiosity to be able to act as representative of the stakeholders. At the same
time architects need to be critical, is this the best way to do address the task?

26.3.5 Leadership Values

Many organizations still think in hierarchical terms. Hence the manager is seen as
the person who sets the direction. However, it is questionable if managers do have
the appropriate knowledge and vision to determine the direction.

Architects have a broad perspective and know how, while (good) architects also
have vision. This is a natural combination to provide true leadership.

Some architects are handicapped by an introvert personality making it difficult
to “sell” the vision and to take the leaders position. It will be clear that team-work
of manager and architect will work wonders in such a case.

26.3.6 Personal Ambition

The personal ambition of managers and architects are opposite as well. Many
managers are driven by normal career incentives: higher position, power, status
and more money. Architects seem to be driven by the case at hand, they want to
achieve the “best” solution.

This difference in ambition makes the architect difficult to control, because
architects are rather insensitive for the normal incentives, such as promotions and
salary raises.

26.4 How to improve the relationship

The starting point for any solution is the recognition of the problem. This inter-
mezzo is primarily provided to create awareness of the problem that there is tension
between architects and managers. No silver bullets are given here as solution.

A quite promising direction to address this problem is modern management
techniques, see Figure [26.3|for a list of suggestions.

The architect plays a vital role in bootstrapping these management techniques.
In many techniques the architect plays the role of catalyst due to the combination of
personal characteristics such as independence and know how. If the architect hides
in technological solutions, then the architect does not trigger the required change.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 182
November 18, 2023 version: 1.5

Empowerment

Delegation

Leadership instead of task-driven management
Process orientation instead of hierarchical organizations
Teamwork

Mutual Respect

Recognition of diversity and nonconformity

Reverse Appraisal

Stimulating open communication

Figure 26.3: List of modern management techniques that can be used to improve
the relation between managers and architects

We can also work at both sides to improve this relationship. Architects can
be stuck in the solution world with little attention for all non technical aspects
that determine the architecture. A vital step is that architects learn to communicate
better what the impact of technical choices is on the less technical business aspects.
Once architects are able to communicate more clearly with managers, then their
recognition and influence will increase. See the next chapter for a further elabo-
ration.

Many managers do not know what to expect from architects. It helps managers
if they do understand the role of the architects better, so that they can ask the right
questions and provide coaching. This book can be used in courses directed to
management teams to help them to understand the architecting role.

26.5 Acknowledgments

Jiirgen Miiller attended me on the fact that telling only the negative (The relationship
is tense) is not good enough. An architect should always look for the constructive
way out. I therefore added section ??. Wil Hoogenstraaten also commented that the
described relationship is well recognizable, but how to escape from this situation?

Louis Rubinfield pointed out the importance of communication, which resulted
in adding "stimulating open communication" as improvement means.

Gerrit Muller USN-SE

System Architecting page: 183
November 18, 2023 version: 0.1

Chapter 27

How to present architecture
issues to higher management

mention the red information only

Operating principle worst-case Power details
performance 4

backup materigljf

= | = | |=

27.1 Introduction

The architect bridges the technology world with the other business related worlds,
by understanding these other worlds and by having ample know-how of technologies.
Management teams are responsible for the overall business performance, which in
the end is expressed in financial results.

Many architects and management teams are captured in a vicious circle:

e architects complain about management decisions and lack of know-how of
managers

e managers complain about lack of input data and invisible architects

One way to break this vicious circle is to improve the managerial communi-
cation skills of architects. We address a frequently needed skill: presenting an
architecture issue to a management team.

The architect should contribute to the managerial decision process by commu-
nicating technology options and consequences of technological decisions. Figure
shows a number of the relevant, somewhat overlapping, viewpoints. The figure
indicates what links architects should communicate to management teams.

a _management N

va
! ~_——financial
market % organizational logistics
N v
/ /
YyYvwyy
issues
7 > technology

Figure 27.1: Architectural issues related to managerial viewpoints

common characteristics highly variable characteristics

+ action-oriented ? technology knowledge

+ solution rather than problem from extensive to shallow

+ impatient, busy ? style from power play to

+ want facts not beliefs inspirational leadership

+ operate in a political context

+ bottom-line oriented:
profit, return on investment,
market share, etc.

Figure 27.2: Characteristics of managers in higher management teams

Architects must have a good understanding of their target audience. Figure[27.2]
characterizes the managers in management teams. Their main job is to run a
healthy business, which explains many of these characterizations: action oriented,
solution rather than problem, impatient, busy, bottom-line oriented.: profit, return
on investment, market share, et cetera, and want facts not believes. These managers
operate with many people all with their own personal interests. This means that
managers operate in a political context (something which architects like to ignore).

Some characteristics of management teams depend on the company culture.
For example, the amount of technology know-how can vary from extensive to
shallow. Or, for example, the management style can vary from power play to inspi-
rational leadership.

Gerrit Muller USN-SE

System Architecting . page: 185
November 18, 2023 version: 0.1

27.2 Preparation

Presentations to higher management teams must always be prepared with multiple
people: a small preparation team. The combined insights of the preparation team
enlarge the coverage of important issues, both technical as well as business. the
combined understanding of the target audience is also quite valuable. Figure
shows how to prepare the content of the presentation as well as how to prepare for
the audience.

Always prepare with small team!

content - mutual interact@}understand audience

70% 30%

+ gather facts of effort | of effort

+ gather audience background
+ perform analysis
+ analysis audience interests
+ identify goal and message
+ identify expected responses
+ make presentation
+ simulate audience,

+ polish presentation form exercise presentation

Figure 27.3: How to prepare

The content of the presentation must be clear, address the main issues, and
convey the message, see also[27.3] The message must have substance for managers,
which means that it should be fact based. The first steps are gathering facts and
performing analysis. Based on these facts the goal and message of the presen-
tation must be articulated. All this information must be combined in a presen-
tation. When the presentation content is satisfactory the form must be polished
(templates, colors, readability, et cetera). Although this has been described as a
sequential process, the normal incremental spiral approach should be followed,
going through these steps in 2-3 passes.

The members of management teams operate normally in a highly political
context, mutually as well as with people in their context. This politics interferes
significantly with the decision making. The political situation should be mapped by
the preparation team, the political forces must be identified and understood. This
is done by analyzing the audience, their background and their interests. The prepa-
ration team can gain a lot of insight by discussing the expected responses of the
management team. At some moment the preparation team can simulate (role-play)
the management team in a proof-run of the presentation. The understanding of the

Gerrit Muller USN-SE

System Architecting page: 186
November 18, 2023 version: 0.1

audience must be used to select and structure the content part of the presentation.
This activity should be time-multiplexed with the content preparation; 70% of the
time working on content, 30% of the time for reflection and understanding of the
audience.

27.3 The presentation material

+ clear problem statement (what, why)
supported by
+ solution exploration (how) facts and figures

+ options, recommendations

+ expected actions or decisions

Figure 27.4: Recommended content

Figure provides guidelines for the contents of the presentation. A clear
problem statement and an exploration of solution(s) should address the technical
issues as well as the translation to the business consequences. Normally a range of
options are provided The options are compared and recommendations are provided.
Note that options that are unfavorable from architectural point of view are never-
theless options. It is the challenge for the architect to articulate why these options
are bad and should not be chosen. Architect enable and streamline the decision
making by providing clear recommendations and by indicating what actions or
decisions are required.

All content of the presentation should be to the point, factual and quantified.
Quantified does not mean certain, often quite the opposite, future numbers are
estimates based on many assumptions. The reliability of the information should be
evident in the presentation. Many facts can be derived from the past. Figures from
the past are useful to “calibrate” future options. Deviations from trends in the past
are suspect and should be explained.

The presentation material should cover more than is actually being presented
during the presentation itself. Some supporting data should be present on the
sheets, without mentioning the data explicitly during the presentation. This allows
the audience to assess the validity of the presented numbers, without the need to
zoom in on all the details.

It is also useful to have additional backup material available with more in depth
supporting data. This can be used to answer questions or to focus the discussion:
speculation can be prevented by providing actual data.

The use of demonstrators and the show of artifacts (components, mock-ups)

Gerrit Muller USN-SE

System Architecting page: 187
November 18, 2023 version: 0.1

mention the red information only

ﬁfcal performan\

Market drivers

Options

AN

Power budget
A ‘ B

infra 7| 8
sensor 6

8
displa 17
< total 35‘ 3

———

(follow up:
allocate Jan, Piet, Klaas
per 1/11
go/nogo 1/1/0:

backup material 4=

Lo

Bill of material Schedule fte's profit-investment
f &2 B

A ‘ L AL B salesprice | 10 10

infra 7 8 infra 2 8 cost/p_ 4

sensor 6 8 control 6 4 M

display 17 display 6 8 sales. 10M 101
costs 3m am
<lo(al 36 ‘ 37, (Eml 17| 23 investment oM Y
it 5M 3M

ommenda Operating principle worst-case Power detail
recommendation: performance T A\ Bz\ e
ssecta N | [cHO > 0 TR L TRl MK
] 20 11

b
7

|| =

Figure 27.5: Mentioned info, shown info and backup info

makes the presentation more lively. The demonstrations should be short and attractive
(from customer point of view), while illustrating the value and technological possi-

bilities and issues.

poor form can easily distract from purpose and content

presentation material

+ professional

+ moderate use of

color and animations

+ readable

+ use demos and show artifacts

presenter's appearance
+ well dressed

+ self confident but open

but stay yourself,

stay authentic

Figure 27.6: Form is important

Architects prefer to focus on the content, form is supportive to transfer the
content. However architects should be aware that managers can be distracted by
the form of a presentation, potentially spoiling the entire meeting by small issues.
Figure gives a number of recommendations with respect to the form of the
presentation and the appearance of the presenter.

The presentation material (slides, demonstrators, video, drawings, et cetera)

Gerrit Muller
System Architecting

November 18, 2023 version: 0.1

USN-SE
page: 188

has to look professional. Slides will use color and other presentation features.
However, moderation in the use of colors, animations and other presentation features
is recommended; an overload of these colors and features does not look profes-
sional and will distract the audience from the actual content. Information on the
slides has to be readable: use large enough fonts and use sufficient contrast with
the background. Pay special attention to quality and readability, when copy-pasting
information from other sources. Sometimes it is better to recreate a high quality
table or graph than to save effort by copy-pasting an unreadable table or graph.

The appearance of the presenter can also make or break the presentation. The
presenter should give sufficient attention to clothes and overall appearance. Don’t
exaggerate this, you should stay yourself and still be authentic. Other people
immediately sense it when the appearance is too exaggerated, which is also damaging
for your image.

27.4 The Presentation

do not do
- preach beliefs + quantify, show figures
and facts
- underestimate technology + create faith in your knowledge

knowledge of managers
- tell them what they did wrong ~ + focus on objectives
- oversell + manage expectations

Figure 27.7: Don’t force your opinion, understand the audience

Figures and show in the don’t column a number of pitfalls for an
architect when presenting to higher management teams. The preferred interaction
pattern is given in the do column.

The pitfalls in Figure preaching believes, underestimating know-how of
managers, and telling managers what they did wrong, are caused by insufficient
understanding of the target audience. In these cases the opinion of the architect
is too dominant, opinions work counterproductive. Overselling creates a problem
for the future: expectations are created that can not be met. The consequence of
overselling is loss of credibility and potentially lack of support in tougher times.
Architects must manage the expectations of the audience.

When presenting the architect tries to achieve multiple objectives:

e Create awareness of the problem and potential solutions by quantification
and by showing figures and facts.

Gerrit Muller USN-SE

System Architecting page: 189
November 18, 2023 version: 0.1

e Show architecting competence in these areas, with the message being: “you,
the manager, can delegate the technical responsibility to me”. This creates
faith in the architect’s know-how.

o Facilitate decision making by translating the problem and solution(s) in business

consequences, with the focus on objectives.

This means that sufficient technological content need to be shown, at least to create
faith in the architect’s competence. Underestimation of the managerial know-
how is arrogant, but mostly very dangerous. Some managers have a significant
historic know-how, which enable them to assess strengths and weaknesses quickly.
Providing sufficient depth to this type of manager is rewarding. The less informed
manager does not need to fully understand the technical part, but at least should
get the feeling that he or she understands the issues.

do not do
- let one of the managers hijack + maintain the lead
the meeting

- build up tensions by withholding ~ + be to the point and direct
facts or solutions

- be lost or panic at unexpected + acknowledge input, indicate
inputs or alternatives consequences (facts based)

Figure 27.8: How to cope with managerial dominance

The impatience and action orientation of managers makes them very dominant,
with the risk that they take over the meeting or presentation. Figure 27.8|shows a
number of these risks and the possible counter measures:

Managers hijacking the meeting can be prevented by maintaining the lead as
presenter.

Build up tensions by withholding facts or solutions, but be to the point and direct.
For example, it can be wise to start with a summary of the main facts and
conclusions, so that the audience know where the presentation is heading.

Be lost or panic at unexpected inputs or alternatives. Most managers are fast and
have a broad perspective that helps them to come with unforeseen options.
Acknowledge inputs and indicate the consequences of alternatives as far as
you can see them (fact based!).

An example of an unexpected input might be to outsource a proposed development
to a low-cost country. The outsourcing of developments of core components might
require lots of communication and traveling, creating costs. Such consequence has
to be put on the table, but refrain from concluding that it is (im)possible.

Gerrit Muller USN-SE

System Architecting page: 190
November 18, 2023 version: 0.1

27.5 Exercise

The SARCH course [12] on System Architecting contains an exercise, where the
participants can apply then lessons learned by giving a presentation to a (simulated)
management team. The presenter gives his presentation for the participants and the
teacher, who play the role of this higher management team.

+ Bring a clear architecture message to
+ a Management team at least 2 hierarchical levels higher

+ with 10 minutes for presentation including discussion
(no limitation on number of slides)

* architecture message =
technology options in relation with market/product

* address the concerns of the management stakeholders:
translation required from technology issues into
business consequences (months, fte's, turnover, profit, investments)

Figure 27.9: Exercise presentation to higher management

Figure 27.9] shows the description of this exercise. The group of participants
is divided in 4 teams of about 4 people, preferably from the same domain. These
teams have somewhat less than 2 hours for the preparation of the presentation. The
exercise is explained to them several days before and the teams are also formed
days before. This enables the team to determine a subject and message in a background
process, during lunch and in the breaks. Determining the subject and message
requires quite some elapsed time. It is highly recommended to take a subject from
real-life: ”What you always wanted to tell topmanagement”.

present and
discuss feedback

prepare in team of 4

13:30 14:00 15:00 16:00 17:00

Figure 27.10: Schedule of the presentation exercise

Figure [27.10] shows the schedule of the exercise. Every presentation is 10
minutes sharp, including the interaction with the management team. Directly after

Gerrit Muller USN-SE

System Architecting . page: 191
November 18, 2023 version: 0.1

the presentation feedback is given by the participants as well as by the teacher. This
feedback should follow the normal feedback guidelines: mentioning the strong
points, before discussing the options for improvement. The teacher must ensure
that sufficient feedback is given, the material in this exercise can be used as guideline.

The limited preparation time implies that the result will also be limited. The
form will be limited (handwritten flipovers) and most of the historical data will be
made up.

The teacher should stimulate the complete group to really participate in the role
play, it can also be a lot of fun.

Gerrit Muller USN-SE

System Architecting page: 192
November 18, 2023 version: 1.3

Chapter 28

Simplistic Financial
Computations for System
Architects.

28.1 Introduction

Many system architects shy away from the financial considerations of the product
creation. In this document a very much simplified set of models is offered to help
the architect in exploring the financial aspects as well. This will help the architect
to make a “sharper” design, by understanding earlier the financial aspects.

The architect should always be aware of the many simplifications in the models
presented here. Interaction with real financial experts, such as controllers, will
help to understand shortcomings of these models and the finesses of the highly
virtualized financial world.

In Section [28.2]a very basic cost and margin model is described. Section [28.3]
refines the model at the cost side and the income side. In Section the time
dimension is added to the model. Section [28.5] provides a number of criteria for
making finacial decisions.

28.2 Cost and Margin

The simplest financial model looks only at the selling price (what does the customer
pay), the cost price (how much does the manufacturing of the product actually
cost). The difference of the selling price and the cost price is the margin. Figure[28.1
shows these simple relations. The figure also adds some annotations, to make the
notions more useful:

e the cost price can be further decomposed in material, labor and other costs

e the margin (’profit per product”) must cover all other company expenses,
such as research and development costs, before a real profit is generated

e most products are sold as one of the elements of a value chain. In this figure
a retailer is added to show that the street price, as paid by the consumer, is
different from the price paid by the retailer[1].

The annotation of the other costs, into transportation, insurance, and royalties per
product, show that the model can be refined more and more. The model without
such a refinement happens to be rather useful already.

retailer margin
and costs

A Margin per product.

margin The margin over the sales volume,

must cover the fixed costs, and generate profit
transportation, insurance,

miscellaneous

]
O
=
Q) X
— b royalties per product, ...
) = labour
g o]
2 9 2
= & | Cost per pr‘oduct,
) : + | excluding fixed costs
material o)
(&)

purchase price of components may cover
development cost of supplier

 J

Figure 28.1: The relation between sales price, cost price and margin per product

The translation of margin into profit can be done by plotting income and expenses
in one figure, as shown in Figure 28.2] as function of the sales volume. The slope
of the expenses line is proportional with the costs per product. The slope of the
income line is proportional with the sales price. The vertical offset of the expenses
line are the fixed organizational costs, such as research, development, and overhead
costs. The figure shows immediately that the sales volume must exceed the break
even point to make a profit. The profit is the vertical distance between expenses
and income for a given sales volume. The figure is very useful to obtain insight in

Gerrit Muller USN-SE

System Architecting page: 194
November 18, 2023 version: 1.3

the robustness of the profit: variations in the sales volume are horizontal shifts in
the figure. If the sales volume is far away from the break even point than the profit
is not so sensitive for the the volume.

variable

fixed costs

»

sales volume
break even in units
point

expected
sales volume

Figure 28.2: Profit as function of sales volume

28.3 Refining investments and income

The investments as mentioned before may be much more than the research and
development costs only, depending strongly on the business domain. Figure 28.3]
shows a decomposition of the investments. The R&D investments are often calcu-
lated in a simple way, by using a standard rate for development personnel that
includes overhead costs such as housing, infrastructure, management and so on.
The investment in R&D is then easily calculated as the product of the amount of
effort in hours times the rate (=standardized cost per hour). The danger of this
type of simplification is that overhead costs become invisible and are not managed
explicitly anymore.

Not all development costs need to be financed as investments. For outsourced
developments an explicit decision has to be made about the financing model:

e the supplier takes a risk by making the investments, but also benefits from

Gerrit Muller USN-SE

System Architecting . page: 195
November 18, 2023 version: 1.3

financing

business dependent:
marketing, sales pharmaceutics industry
sales cost >> R&D cost

training sales&service

strategic choice:

NRE: outsourcing, royalties NRE or per product

including:
staff, training, tools, housing
materials, prototypes
research and development overhead
certification

often a standard staffing rate is used
that covers most costs above:
R&D investment = Effort * rate

Figure 28.3: Investments, more than R&D

larger sales volumes

e the company pays the investment, the so called Non Recurring Engineering
(NRE) costs. In this case the supplier takes less risks, but will also benefit
less from larger sales volumes.

If the supplier does the investment than the development costs of the component
are part of the purchasing price and become part of the material price. For the NRE
case the component development costs are a straightforward investment.

Other investments to be made are needed to prepare the company to scale all
customer oriented processes to the expected sales volume, ranging from manufac-
turing and customer support to sales staff. In some business segments the marketing
costs of introducing new products is very significant. For example, the pharmaceu-
tical industry spends 4 times as much money on marketing than on R&D. The
financial costs of making investments, such as interest on the capital being used,
must also be taken into account.

We have started by simplifying the income side to the sales price of the products.
The model can be refined by taking other sources of income into account, as shown
in Figure[28.4] The options and accessories are sold as separate entities, generating
a significant revenue for many products. For many products the base products are
sold with a loss. This loss is later compensated by the profit on options and acces-
sories.

Gerrit Muller USN-SE

System Architecting page: 196
November 18, 2023 version: 1.3

other recurring license fees
income pay per movie

content, portal
services E inCOMEsenice updates

services maintenance

options, E sales pricegption * VOlUMEgyii
accessories option option
options
products sales priceproduct * VoOluMe product

Figure 28.4: Income, more than product sales only

Many companies strive for a business model where a recurring stream of revenues
is created, for instance by providing services (access to updates or content), or by
selling consumables (ink for prink jet printers, lamps for beamers, et cetera).

One step further is to tap the income of other players of the value chain.
Example is the license income for MPEG4 usage by service and content providers.
The chip or box supplier may generate additional income by partnering with the
downstream value chain players.

28.4 Adding the time dimension

All financial parameters are a function of time: income, expenses, cash-flow, profit,
et cetera. The financial future can be estimated over time, for example in table form
as shown in Figure [28.5] This table shows the investments, sales volume, variable
costs, income, and profit (loss) per quarter. At the bottom the accumulated profit is
shown.

The cost price and sales price per unit are assumed to be constant in this
example, respectively 20k$ and 50k$. The formulas for variable costs, income
and profit are very simple:

vartable costs = sales volume * cost price

income = sales volume x sales price

profit = income — (investments + variable costs)

Gerrit Muller USN-SE

System Architecting page: 197
November 18, 2023 version: 1.3

Y1Q1| Y1Q2| Y1Q3| Y1Q4| Y2Q1| Y2Q2| Y2Q3
investments| 100k$| 400k$| 500k$| 100k$| 100k$ 60k$| 20k$

sales volume (units) - - 2 10 20 30 30
material & labour costs - -| 40k$| 200k$| 400k$| 600k$| 600k$
income - -| 100k$| 500k$| 1000k$| 1500k$| 1500k$

quarter profit (loss) | (L00k$) | (400k$) | (440k$)| 200k$| 500k$| 840k$| 880k$

cumulative profit | (100k$)| (500k$) | (940k$)| (740k$) | (240k$)| 600k$| 1480k

cost price / unit = 20k$ variable cost = sales volume * cost price / unit

: e income = sales volume * sales price / unit
sales price / unit = 50k$ quarter profit = income - (investments + variable costs)

Figure 28.5: The Time Dimension

Figure 28.6] shows the cumulative profit from Figure 28.5] as a graph. This
graph is often called a "hockey” stick: it starts with going down, making a loss,
but when the sales increase it goes up, and the company starts to make a profit.
Relevant questions for such a graph are:

e when is profit expected?
e how much loss can be permitted in the beginning?
o what will the sustainable profit be in later phases?

These questions can also be refined by performing a simple sensitivity analysis.
Figure shows an example of such an analysis. Two variations of the original
plan are shown:

e a development delay of 3 months

e an intermediate more expensive product in the beginning, followed by a more
cost optimized product later

The delay of 3 months in development causes a much later profitability. The
investment level continues for a longer time, while the income is delayed. Unfortu-
nately development delays occur quite often, so this delayed profitability is rather
common. Reality is sometimes worse, due to loss of market share and sales price
erosion. This example brings two messages:

e a go decision is based on the combination of the profit expectation and the
risk assessment

o development delays are financially very bad

The scenario starting with a more expensive product is based on an initial
product cost price of 30k$. The 20k$ cost price level is reached after 1 year.
The benefit of an early product availability is that market share is build up. In

Gerrit Muller USN-SE

System Architecting page: 198
November 18, 2023 version: 1.3

A
+
G
o
1IM$| &
0.5M$
Y1 Y1 Y1 Y1 Y2 Y2
Ql 1 QZ 1 Q3 1 Q4 1 Qll 1 Q3 1
time
(0.5M$)
ams)|
(%]
VE

Figure 28.6: The “Hockey” Stick

this example the final market share in the first example is assumed to be 30 units,
while in the latter scenario 35 units is used. The benefits of this scenario are mostly
risk related. The loss in the beginning is somewhat less and the time to profit is
somewhat better, but the most important gain is be in the market early and to reduce
the risk in that way. An important side effect of being early in the market is that
early market feedback is obtained that will be used in the follow on products.

In reality, a company does not develop a single product or system. After
developing an initial product, it will develop successors and may be expand into a
product family. Figure reffig:SFCmultipleDevelopments shows how the cumulative
profits are stacked, creating an integral hockey stick for the succession of products.
In this graph the sales of the first product is reduced, while the sales of the second
product is starting. This gradual ramp-up and down is repated for the next products.
The sales volume for the later products is increasing gradually.

28.5 Financial yardsticks

How to assess the outcome of the presented simple financial models? What are
good scenarios from financial point of view? The expectation to be profitable is not
sufficient to start a new product development. One of the problems in answering
these questions is that the financial criteria appear to be rather dynamic themselves.
A management fashion influences the emphasis in these criteria. Figure[28.9|shows
a number of metrics that have been fashionable in the last decade.

The list is not complete, but it shows the many financial considerations that
play a role in decision making.

Gerrit Muller USN-SE

System Architecting page: 199
November 18, 2023 version: 1.3

/- early more expensive
* #» product + follow-on

)
& ;
S / /A delay of 3 months
M$| & s
i o original model
0.5M$ I
YL Yl Yl YL Y2 Y2 Y2
Q1 Q2 3 4 01/ &3,
/ e
(0.5M$)
(IM$)

loss

Figure 28.7: What if ...?

Return On Investments is a metric from the point of view of the shareholder or
the investor. The decision these stakeholders make is: what investment is the
most attractive.

Return On Net Assets (RONA) is basically the same as ROI, but it looks at all
the capital involved, not only the investments. It is a more integral metric
than ROL.

turnover / fte is a metric that measures the efficiency of the human capital. Optimization
of this metric results in a maximum added value per employee. It helps
companies to focus on the core activities, by outsourcing the non-core activ-
ities.

market ranking (share, growth) has been used heavily by the former CEO of
General Electric, Jack Welch. Only business units in rank 1, 2 or 3 were
allowed. Too small business units were expanded aggressively if sufficient
potential was available. Otherwise the business units were closed or sold.
The growth figure is related to the shareholder value: only growing companies
create more shareholder value.

R&D investment / sales is a metric at company macro level. For high-tech companies
10% is commonly used. Low investments carry the risk of insufficient product
innovation. Higher investments may not be affordable.

cashflow is a metric of the actual liquid assets that are available. The profit of a
company is defined by the growth of all assets of a company. In fast growing

Gerrit Muller USN-SE

System Architecting page: 200
November 18, 2023 version: 1.3

—ME—>»
0o o

——cumulative 1
——cumulative 2

cumulative 3
——cumulative 4

——cumulative total

quarter—m

Figure 28.8: Stacking Multiple Developments

companies a lot of working capital can be unavailable in stocks or other non
salable assets. Fast growing, profit making, companies can go bankrupt by a
negative cash-flow. The crisis of Philips in 1992 was caused by this effect:
years of profit combined with a negative cash-flow.

28.6 Acknowledgements

William van der Sterren provided feedback and references. Hans Barella, former
CEO of Philips medical Systems, always stressed the importance of Figure [28.2]
and especially the importance of a robust profit. Ad van den Langenberg pointed
out a number of spelling errors.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting . page: 201
November 18, 2023 version: 0.1

Return On Investments (ROI)

Net Present Value

Return On Net Assets (RONA) leasing reduces assets, improves RONA
turnover / fte outsourcing reduces headcount, improves this ratio
market ranking (share, growth) "only numbers 1, 2 and 3 will be profitable”

R&D investment / sales in high tech segments 10% or more

cash-flow fast growing companies combine profits with negative cash-flow,
risk of bankruptcy

Figure 28.9: Fashionable financial yardsticks

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 202
November 18, 2023 version: 0.1

Chapter 29

How to appraise or assess an
architect?

1 ask for ranking

manager
e, | 2 ask for justification

(why ...?)
3 clarify criterions

4 iterate ranking and
justification

29.1 Introduction

The responsibilities of system architects are ill defined. Either the responsibilities
overlap significantly with other players in the Product Creation Process, or the
responsibilities are very abstract and vague (not specific and measurable), see [17].

- difficult to define yardstick

- difficult to measure

abstract (vague) responsibilitieé\ .
...) -difficult to compare
lot of overlap of responsibilities /

- difficult to certify

- difficult to translate in (financial) consequences

How to assess an architect?

Figure 29.1: The function of an architect is difficult to evaluate

Figure[29.T|provides the problem statement: How to asses the architect, when it
is difficult to define a yardstick, measurements, comparisons, or certifications due

to the ill defined responsibilities. The financial remuneration, which is normally
based on measurements and comparisons also becomes very difficult.

Section 29.2] formulates the success criterions for architects. These criterions
are used in section[29.3] to describe an assessment method.

29.2 When is the architect successful?

In [[17] the deliverables, responsibilities and activities of the system architect are
discussed. Figure [29.2] summarizes this article. The deliverables of the architect
are abstract paperwork or electronic information, no tangible modules or systems.
The primary responsibilities are not easily measured: how sound (balanced, well
decomposed, consistent, et cetera) is the system specification and design? The
architect is spending most of his time on activities which do not result in one of
the deliverables and most of the activities do not directly contribute to the primary
responsibilities. However all of these activities are indispensable for the role of the
architect and together ensure the architecture quality.

Deliverables

paperwork only

<

—

(- abstract and qualitative

decomposition
integration

ﬂ

CIT T 1
IO A
LN s / Responsibilities

balance consistency

overview simplicity ~ integrity

many very detailed

< PR
;ﬁ ; \+ Activities

| necessary but invisible

o8 Ble

thinking, talking, discussing, scheduling, presenting, measuring, writing, reviewing, visiting customers
analyzing, listening, brainstorming, supporting, teaching, testing, reading, visiting trade-shows
simulating, communicating, troubleshooting, selling, integrating, browsing, consolidating, visiting suppliers

Figure 29.2: Tangible deliverables based upon many invisible activities

Figure [29.3] shows the architecting function and the criterions for successful
architecting. Architecting is the transformation of problem and solution know how
and often an already existing architecture into a new architecture. This process
takes place in the context of many stakeholders, with their expectations, needs,
concerns and constraints. The architecting is done by the product creation team
(project leader, engineers, product manager and the system architect), although the
architect should take the lead in this process.

The architect has played his role successful if the 2 criterions which are shown
are fulfilled:

o the resulting architecture satisfies the stakeholders

e the architect has enabled the product creation team by leading the archi-
tecting process.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 204
November 18, 2023 version: 0.1

result
satisfies

Stakeholders
expectations, needs,
concerns, constraints

problem know how Architecting
R4
p ,0@ \Q,b architecture legenda
&
— (\ / human context
TN 2
O busil
///// PCP team \\\\\\\\ usiness context

“larchitect, project leader,|
engineers,
product manager

context
Figure 29.3: Criterions for successful architecting

29.3 How to assess the architect?

The criterions discussed in section [29.2] must be explored in order to facilitate

the assessment of the architect. Most appraisal systems are based on formalized
yardsticks, such as the (generic) function appraisal system, the (specific) job description
and the (also specific) personal career development plan.

formalized expectations

function appraisal system,
f.i. from Hay Management Consultants

impact
scope of control
freedom of thinking

actual architect performance

architecture fitness

sales turnover
business success
market continuity

job description
deliverables
timing

career development plan
skills
know how

internal stakeholder satisfaction

contribution
deliverables
timing

skills

know how

Figure 29.4: Yardsticks for architect assessment

Figure [29.4] shows the formal yardsticks at the left hand side. The main issues
addressed in the yardsticks are also mentioned.

The function appraisal systems, such as defined by Hay Management, are based
on parameters as scope of control, impact and freedom of thinking. The Hay
management system is calibrated over multiple companies, domains and functions,
by the active participation of the Hay Management company.

The experience is that the architect function does not easily fit in this method.
ASML has defined all their functions in this system, with a multiple ladder approach
and were able to fit the system engineer function in an acceptable way in this
model. Other companies are struggling more with the architect function, due to

Gerrit Muller
System Architecting
November 18, 2023

University of South-Eastern Norway-NISE
page: 205

version: 0.1

the problems described in section [29.1]

The reference for the individual appraisal is the specific job description, which
defines the deliverables and the timing. Deliverables are a poor performance indicator,
lots of paper is a sign of a bad architect! However a small amount of paper is not
yet a sign of a good architect. Instead of measuring the deliverables the architecture
fitness can be assessed, which in turn is a measure for the architecting contribution
of the architect.

Complementary is the personal career development plan, which defines the
desired skills and know how. The measurement of skills and know how can be
done by assessing the internal stakeholder satisfaction.

The right hand side of figure [29.4| shows the actual architect performance, in
terms of architecture fitness and internal stakeholder satisfaction. The architecture
fitness is characterized by parameters such as sales turnover, business success and
market continuity. The internal stakeholder satisfaction is characterized by the
opinion of the stakeholders of the architects role in terms of contribution, deliver-
ables, timing, skills and know how.

product manager project leader

groun Ieader architect colleague architect |

operatlonal manager engineer)

manufactunng logistics, serwce

Figure 29.5: 360 degree assessment

An informal 360 degree approach can be used to “measure” the internal stake-
holder satisfaction with respect to the architect. A subset (3 to 6) of internal stake-
holders is interviewed, where the performance of the architect is discussed in terms
of contribution, deliverables, timing, skills and know how, see figure[29.5]

The stakeholders to be interviewed should have had sufficient interaction with
the architect and should have complementary, somewhat overlapping viewpoints.
By asking specific, but open questions, the role of the architect can be articulated.

Assessment is a relative act, in order to provide meaning to the input data,
the data needs to be calibrated. This calibration can be done by comparing the
architect being assessed with colleagues. It is useful to ask for a ranking with
multiple colleagues, both architects and non architects. The ranking question asked
to the interviewees has mostly a trigger function: by forcing a one dimensional
comparison the performance in different dimensions has to be combined in a single

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 206
November 18, 2023 version: 0.1

very high The Boss
(business

T Jim Green manage) 1 ask for ranking
(family architect)

> John Brown

c (produt . e .

2 i) o0, 2 ask for justification

S kS (why ...?)

b 5 Yo Nerd

o o)

< ‘g (SW engineer)

= Se Nior I i i

5 e g Nor 3 clarify criterions

@ (product

= architect)

©

>

4 iterate ranking and
D. Blackhat justification

(product
architect)

Figure 29.6: Ranking as trigger for discussions

assessment figure.

The relative position and the distance between ranked people will generate new
questions: "Why do you think that Yo Nerd has a greater value than Se Nior?".
Also the differences in ranking between interviewees gives a lot of insight in the
(often implicit) criterions which are used by the interviewees, for instance: “Ju
Nior is highly valued by the engineer for his excellent technical solutions, while
the product manager criticizes him for not listening to the customer”.

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting . page: 207
November 18, 2023 version: 0.1

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

Mark Abraham. Define and price for your market starting at end market
values! http://www.sticky-marketing.net/articles/
pricing-for—-channels.htm, 2001.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA, 2000.

Dana Bredemeyer and Ruth Malan. Role of the software architect. |http:
//www.bredemeyer.com/pdf_files/role.pdf, 1999.

Jean-Marc DeBaud and Klaus Schmid. A systematic approach to derive the
scope of software product lines. In 271! international Conference on Software
Engineering: Preparing for the Software Century, pages 34—47. ICSE, 1999.

K. Frampton, J. M. Carroll, and J. A. Thom. What capabilities do IT architects
say they need? In /0th United Kingdom Academy for Information Systems
(UKAIS) Proceedings, 2005.

Thomas Gilb. Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering Using
Planguage. Elsevier Butterworth-Heinemann, London, 2005.

W. Huitt. Maslow’s hierarchy of needs. Educational Psychology Interactive.
Valdosta, GA: Valdosta State University., 2004.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley, Reading, MA, 1999.

Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse; Archi-
tecture, Process and Organization for Business Success. ACM Press, New
York, 1997.

Klaus Kronléf, editor. Method Integration; Concepts and Case Studies. John
Wiley, Chichester, England, 1993. A useful introduction is given in Chapter
1, The Concept of Method Integration.

http://www.sticky-marketing.net/articles/pricing-for-channels.htm
http://www.sticky-marketing.net/articles/pricing-for-channels.htm
http://www.bredemeyer.com/pdf_files/role.pdf
http://www.bredemeyer.com/pdf_files/role.pdf

[11] Philip Kruchten. The software architect- and the software architecture team.
In Software Architecture; TC2 First Working IFIP Conference on Software
Architecture (WICSAI), pages 565-583. IFIP, 1999. This article describes
required skills for architect and architecture team; traps and pitfalls; Person-
ality profile based on Myers-Briggs Type Indicator.

[12] Gerrit Muller. CTT course SARCH. http://www.gaudisite.nl/
SARCHcoursePaper.pdf, 1999.

[13] Gerrit Muller. Product families and generic aspects. http://www.
gaudisite.nl/GenericDevelopmentsPaper.pdf, 1999,

[14] Gerrit Muller. Requirements capturing by the system architect. http://
www.gaudisite.nl/RequirementsPaper.pdf, 1999.

[15] Gerrit Muller. Roadmapping. http://www.gaudisite.nl/
RoadmappingPaper.pdf, 1999.

[16] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[17] Gerrit Muller. The role and task of the system architect. http://www.
gaudisite.nl/RoleSystemArchitectPaper.pdf, 2000.

[18] Gerrit Muller. Architectural reasoning explained. http://www.
gaudisite.nl/ArchitecturalReasoningBook.pdf, 2002.

[19] Gerrit Muller. CAFCR: A multi-view method for embedded systems archi-
tecting: Balancing genericity and specificity. http://www.gaudisite.
nl/ThesisBook.pdf, 2004.

[20] Henk Obbink, Jiirgen Miiller, Pierre America, and Rob van Ommering.
COPA: A component-oriented platform architecting method for
families of software-intensive electronic products. http://www.
hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf, 2000.

[21] Eberhardt Rechtin and Mark W. Maier. The Art of Systems Architecting. CRC
Press, Boca Raton, Florida, 1997.

[22] Carnegie Mellon Software Engineering Institute SEI. Software engineering
management practices. http://www.seil.cmu.edu/managing/
managing.html, 2000.

History

Gerrit Muller University of South-Eastern Norway-NISE

System Architecting page: 209
November 18, 2023 version: 0.1

http://www.gaudisite.nl/SARCHcoursePaper.pdf
http://www.gaudisite.nl/SARCHcoursePaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/RequirementsPaper.pdf
http://www.gaudisite.nl/RequirementsPaper.pdf
http://www.gaudisite.nl/RoadmappingPaper.pdf
http://www.gaudisite.nl/RoadmappingPaper.pdf
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/RoleSystemArchitectPaper.pdf
http://www.gaudisite.nl/RoleSystemArchitectPaper.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ThesisBook.pdf
http://www.gaudisite.nl/ThesisBook.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html

Version: 1.8, date: July 28, 2010 changed by: Gerrit Muller
o added ToolBoxSystemArchitect, ChangeManagementIntoducingSystems

Version: 1.7, date: July 10, 2010 changed by: Gerrit Muller

e added BusinessStrategyMethodsModels
Version: 1.6, date: July 7, 2010 changed by: Gerrit Muller

e added Dynamic Range of Abstraction Levels in Architecting
Version: 1.5, date: June 30, 2010 changed by: Gerrit Muller

e refactored chapter requirements into: CAFCR introduction, Fundamentals of Requirements Engineering, Key Driver How to, Requirements

Elicitation and Selection.

Version: 1.4, date: June 26, 2010 changed by: Gerrit Muller

o added chapter “Product, Projects, and Services”

e added chapter “Systems Titles and Roles”
Version: 1.3, date: June 3, 2004 changed by: Gerrit Muller

e added chapter *“Simplistic Financial Computations”
Version: 1.2, date: May 28, 2004 changed by: Gerrit Muller

e divided the book in Parts

e removed the chapter about Medical Imaging
Version: 1.1, date: March 29, 2004 changed by: Gerrit Muller

e added “Architecting Styles”
Version: 1.0, date: June 12, 2003 changed by: Gerrit Muller

o added "How to appraise or assess an architect?"

e added refactoring notice to the abstract and introduction
Version: 0.9, date: January 21, 2003 changed by: Gerrit Muller

e minor changes
Version: 0.8, date: November 1, 2002 changed by: Gerrit Muller

e Added chapter "How to present architecture issues to higher management”
Version: 0.7, date: October 3, 2002 changed by: Gerrit Muller

e Added chapter “The role of roadmapping in the strategy process”

e added chapter "Market Product lifecycle consequences for architecting™

e changed order of chapters "Roadmapping” and "Requirements”
Version: 0.6, date: August 5, 2002 changed by: Gerrit Muller

e Changed title to ”System Architecting”
Version: 0.5, date: June 22, 2001 changed by: Gerrit Muller

e corrected part of missing or wrong references and citations
Version: 0.4, date: February 6, 2001 changed by: Gerrit Muller

o Added chapter "Function Profiles; The sheep with 7 legs”
Version: 0.3, date: November 1, 2000 changed by: Gerrit Muller

e Added chapter "Role and Task of the System Architect”

o Added chapter "Role of Software in Complex Systems”
Version: 0.2, date: March 29, 2000 changed by: Gerrit Muller

o Added chapter "Product Families Business Analysis and Family Definition™
Version: 0.1, date: March 24, 2000 changed by: Gerrit Muller

e Added Preface; System Architecture: The Golden Bullet?
Version: 0, date: March 21, 2000 changed by: Gerrit Muller

e Created very preliminary bookstructure from available Gaudi articles and intermezzo’s, no changelog yet

Gerrit Muller
System Architecting
November 18, 2023 version: 0.1

University of South-Eastern Norway-NISE

page: 210

	Introduction
	System Architecture: The Silver Bullet?
	Introduction
	Why System Architecture?
	The Quest for Certainty
	Disclaimer; Setting the Expectations to a realistic level

	How: Critical Success Factors
	Know-How
	Common Sense
	Pragmatics
	Critical attitude
	Drive
	Vision

	Summary
	Acknowledgements

	I Processes
	Process Decomposition of a Business
	Introduction
	Process Decomposition
	Process versus Organization
	Value Chain and Feedback
	Decomposition of the Customer Oriented Process
	Extended Process Decomposition; Generic Developments
	Acknowledgements

	What is a Process?
	Introduction
	What is a process
	The relation between Processes and Organizations
	Process Improvement
	Acknowledgements

	The Product Creation Process
	Introduction
	The Context of the Product Creation Process
	Phases of the Product Creation Process
	Evolutionary models for Product Creation
	Milestones and Decisions
	Organization of the Product Creation Process
	Hierarchical decomposition
	Further decomposition of the Product Creation Process
	Design Control
	Operational Management
	Marketing
	Product Creation Teams

	Acknowledgements

	The Importance of Feedback for Architecture
	Introduction
	Why Feedback?
	Control
	Learning
	Applicability

	Theory versus Practice
	Conclusions

	The System Architecture Process
	Introduction
	System Architecture in the Business Context
	Purpose of the System Architecting Process
	The System Architect as Process Owner
	System Architecting in Product Creation Context
	Acknowledgements

	Products, Projects, and Services; similarities and differences in architecting
	Introduction
	Products and Projects
	Services
	System of Systems

	II The System Architect as a Person
	The Awakening of a System Architect
	Introduction
	The Development of a System Architect
	Generalist versus Specialist
	Acknowledgements

	Systems Titles and Roles
	Introduction
	Cultural differences in terms
	Title versus skills and actual job
	Systems roles and titles

	The Role and Task of the System Architect
	Introduction
	Deliverables of the System Architect
	System Architect Responsibilities
	What does the System Architect do?
	Task versus Role
	Acknowledgements

	Function Profiles; The Sheep with Seven Legs
	Introduction
	Systems Architect Profile
	Most discriminating characteristics

	Test Engineer Profile
	Developer Profile
	Operational Leader Profile
	Line Manager Profile
	Commercial Manager Profile
	Definition of Characteristics
	Interpersonal skills
	Know-how
	Reasoning Power
	Executing Skills
	Process Skills
	Project Management Skills
	Commercial Skills
	Human Resource Management Skills

	Acknowledgements

	Dynamic Range of Abstraction Levels in Architecting
	Introduction
	From System-of-Interest to Context
	Architecture and Architecting
	Revisiting Design and Engineering
	Architecting and Design in Practice

	Architecting Interaction Styles
	Introduction
	Provocation
	Facilitation
	Leading
	Empathic
	Interviewing
	White-board simulation
	Judo tactics

	The Tool Box of the System Architect
	Introduction
	Overview of Systems Architecting Tools
	Human Experience Based tools
	Low-tech tools
	Facilitation tools
	Borrowed Advanced Tools
	Architecting Specific Tools
	General Purpose computer based tools
	Tools prescribed by the organization infrastructure
	Process Oriented Standards
	Concept oriented Standards
	Artifact Oriented Standards

	Human versus Computer Assisted Tools
	Flow: from Data to Overview and Understanding

	III Market, Requirements, Roadmapping
	Short introduction to basic ``CAFCR'' model
	Introduction
	The CAFCR model
	Who is the customer?
	Life Cycle view

	Fundamentals of Requirements Engineering
	Introduction
	Definition of Requirements
	System as a black box
	Stakeholders
	Requirements for Requirements

	Key Drivers How To
	Introduction
	Example Motor Way Management
	CAF-views and Key Drivers

	Requirements Elicitation and Selection
	Introduction
	Viewpoints on Needs
	Requirements Value and Selection

	Business Strategy; Methods and Models
	Introduction
	Basic Concepts
	Methods for Strategy Support
	Examples of strategic choices
	Innovation

	The role of roadmapping in the strategy process
	Process decomposition of a business
	Framework for architecting and roadmapping
	From vision to roadmap to plan and further
	Summary
	Acknowledgements

	Roadmapping
	Introduction
	What is in a roadmap?
	Why Roadmapping?
	How to create and update a roadmap
	Roadmap deployment
	Roadmap Essentials
	Selection of most important or relevant issues
	Key drivers as a means to structure the roadmap
	Nothing is certain, ambiguity is normal
	Use facts whenever possible
	Do not panic in case of impossibilities

	Acknowledgements

	Change Management; Introducing Systems Architecting Aspects
	Introduction
	Earning Credit, Work on Urgent Issues
	Example: Bootstrapping the Roadmapping Process

	Market Product Life Cycle Consequences for Architecting
	Introduction
	Observed Life Cycle Curve in Practice
	Life Cycle Model
	Acknowledgements

	IV Product Families, Generics and Software
	Product Families and Generic Aspects
	Introduction
	Why generic developments?
	Granularity Of Generic Developments
	Modified Process Decomposition
	Modified Operational Organization of Product Creation
	Models for Generic Developments
	Lead Customer
	Carrier Product
	Platform
	Alternative Generic Development Scenarios

	Common Pitfalls
	Acknowledgments

	Product Familiy Business Analysis And Definition
	Introduction
	Roadmapping
	Reference Architecture
	Business Architecture
	Application Architecture
	Functional Architecture

	''YoYo-View'' over time
	Relation with the Technical Architecture
	Requirements Capturing
	Feature Space Exploration and Value Engineering
	Scope Determination
	Acknowledgements

	The Role of Software in Systems
	Introduction
	Why is Software a Bottleneck in Product Development?
	Growth of software effort
	Roles of the disciplines in a system
	Characterization of disciplines

	System or Software Issues?
	Acknowledgments

	V Management and Architects
	The Tense Relation between Architect and Manager
	Introduction
	What is a Manager?
	Comparison of Architect and Manager
	Responsibility
	View on Solutions
	View on Changes
	Personal Characteristics
	Leadership Values
	Personal Ambition

	How to improve the relationship
	Acknowledgments

	How to present architecture issues to higher management
	Introduction
	Preparation
	The presentation material
	The Presentation
	Exercise

	Simplistic Financial Computations for System Architects.
	Introduction
	Cost and Margin
	Refining investments and income
	Adding the time dimension
	Financial yardsticks
	Acknowledgements

	How to appraise or assess an architect?
	Introduction
	When is the architect successful?
	How to assess the architect?

