
Software Reuse; Caught between strategic
importance and practical feasibility

-

features

performance

expectations

number of

products

release cycle time
years months

feature

interaction

complexity

amount of

software

new methods

new tools

new standards
integration

effort

hardware

performance

reuse
openness

interoperability
reliability

trends consequences solutions

new software

technology

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Worldwide the belief is shared that software reuse is needed to cope with the ever
increasing amount of software. Software reuse is one part of addressing the amount
of software, which is often overhyped and underestimated. Reuse of software is
discussed via 8 statements, addressing: the need for reuse, the technical and organi-
zational challenges, integration issues, evolution, reuse of know how, focus on the
bussiness and customer and validation.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.0 status: concept August 21, 2020

1 Introduction

Many good reasons exists to deploy a reuse strategy for product creation, see
figure 1. This list, the result of a brainstorm, can be extended with more objec-
tives, but this list is already sufficiently attractive to consider a reuse strategy.

+ reduced time to market

+ reduced cost per function

+ improved quality

+ improved reliability

+ easier diversity management

+ employees only have to understand one base system

+ improved predictability

+ larger purchasing power

+ means to consolidate knowledge

+ increase added value

+ enables parallel developments of multiple products

+ free feature propagation

Figure 1: Why reuse: many valid objectives

Reuse is deployed already in many product development centers. Brainstorming
with architects involved in such developements about their experiences gives a very
mixed picture, see figure 2 for the bad versus the good experiences.

good
reduced time to market

reduced investment

reduced (shared) maintenance cost

improved quality

improved reliability

easier diversity management

understanding of one base system

improved predictability

larger purchasing power

means to consolidate knowledge

increase added value

enables parallel developments

free feature propagation

bad
longer time to market

high investments

lots of maintenance

poor quality

poor reliability

diversity is opposed

lot of know how required

predictable too late

dependability

knowledge dilution

lack of market focus

interference

but integration required

Figure 2: Experiences with reuse, from counterproductive to effective

Analysis of the positive experiences show that successful applications of a

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 1

reuse strategy share one or more of the following characteristics: homogeneous
domain, hardware dominated or limited scope. Figure 3 shows a number of examples.

homogeneous domain

hardware dominated

limited scope

cath lab

MRI

television

waferstepper

car

airplane

shaver

television

audio codec

compression library

streaming library

Figure 3: Succesful examples of reuse

Reuse strategies can work successfully for a long time and then suddenly run
into problems. Figure 4 shows the limitations of successful reuse strategies.

poor/slow response on paradigm shifts

TV: LCD screens

cath lab: image based acquisition control

struggle with integration/convergence with other domains

TV: digital networks and media

cath lab: US imaging, MRI

software maintenance, configurations, integration, release

MRI: integration and test

wafersteppers: number of configurations

how
 to innovate?

Figure 4: Limits of successful reuse

The main problem with successful reuse strategies is that they work efficient as
long as the external conditions evolve slowly. However breakthrough events don’t
fit well in the ongoing work which results in a poor response.

About half of this article reuses previous Gaudí articles by copy, paste and
sometimes modify. Articles used are: [6] [5] [7] [1] [9] [4]

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 2

2 Statements about reuse

Reuse of software is a mixture of believe, hype, hope and solution of a set of
problems. To stimulate the discussion about reuse a set of statements is postulated
in figure 5 and 6 about reuse.

customer diversity

market dynamics
product diversity

reuse shared

proven functionality

1 Reuse of software modules is needed

2 The technical and

reuse

sharing

conflicting

interests

overdesign or

under performance

complicated

supplier customer

relationships

3 organizational challenge

 are underestimated

integrating concepts: performance, resource management, exception handling, etcetera

4 Components are the easy part, integration is difficult

Figure 5: Reuse statements

5 Reuse of know how or people instead of

implementation is more effective

6 The platform must evolve continuously

7 Focus on business bottomline and customer

not on reuse

8. Use before reuse

dynamic market

changing applications
served by

up to date

products
based

on

evolving

platform

rapid changing

technology

(Moore!)

using

specification

design

implementation

validation

verification

people

know how

Figure 6: Reuse statements continued

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 3

3 Software reuse is needed

The trends in the market are towards more products, each with more feature and
higher performance expectations. Products are expected to work seamlessly with
other products, even with new products and formats which did not yet exist when
the product was conceived: openness and interoperability is required. All of these
expectations have to be fulfilled in less and less time, product creation life cycles
have decreased from years to months.

features

performance

expectations

number of

products

release cycle time
years months

feature

interaction

complexity

amount of

software

new methods

new tools

new standards
integration

effort

hardware

performance

reuse
openness

interoperability
reliability

trends consequences solutions

new software

technology

Figure 7: Reuse is needed ... as part of the solution

Figure 7 show these trends in the market in the left hand column, where the
length of the arrow indicate the relative increase or decrease.

The consequence of the market trends for product creation are that more and
more features start to interact and that the complexity increases. This is reflected
in a string growth in the amount of software in products. The integration effort
increases also. The combination of these factors threaten the reliability, products
which simply cease operating have become a fact of life.

To accomodate these trend multiple solutions need to be applied concurrently,
as shown in the right hand column. New methods and tools are needed, which
fit in this fast evolving, connected world. The fast developments of the hardware
(Moore’s law) help significantly in following the expectations in the market. New
software technology, increasing the abstraction level used by programmers, increases
the productivity and reduces complexity. New standards reduce the interoperability
issues.

Reuse of software modules potentially decreases the creation effort, enables
focus on the required feautures and increases the quality if the modules have been
proven.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 4

4 The technical challenge

How to determine which functionality is generic and which functionality must be
implemented specific? Practical experience learns that this is a crucial question.
Most attempts to create a platform of reusable components fail due to the creation
of overgeneric components.

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Figure 8: The danger of being generic: bloating

Figure 8 show an actual example of part of the Medical Imaging system [3],
which used a platform based reuse strategy. The first implementation of a ”Tool”
class was overgeneric. It contained lots of if-then-else, configuration options, stubs
for application specific extensions, and lots of best guess defaults. As a conse-
quence the client code based on this generic class contained lots of configuration
settins and overrides of predefined functions.

The programmers were challenged to write the same functionality specific,
which resulted in significantly less code. In the 3 specific instances of this function-
ality the shared functionality became visible. This shared functionality was factored
out, decreasing maintenance and supporting new applications.

Bloating is one of the main causes of the software crisis. Bloating is the unnec-
essary growth of code. The really needed amount of code to solve a problem is
often an order of magnitude less than the actual solution is using. Figure 9 shows
a number of causes for bloating.

One of the bloating problems is that bloating causes more bloating, as shown
in figure 10. Software engineering principles force us to decompose large modules
in smaller modules. ”Good” modules are somewhere between 100 and 1000 lines
of code. So where unbloated functionality fits in one module, the bloated version
is too large and needs to be decomposed in smaller modules. This decomposition
adds some interfacing overhead. Unfortunately the same causes of overhead also

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 5

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Figure 9: Exploring bloating

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Figure 10: Bloating causes more bloating

apply to this decomposition overhead, which means again additional code.
All this additional code does not only cost additional development, test and

maintenance effort, it also has run time costs: CPU and memory usage. In other
words the system performance degrades, in some cases also with an order of magnitude.
When the resulting system performance is unacceptable then repair actions are
needed. The most common repair actions involve the creation of even more code:
memory pools, caches, and shortcuts for critical functions.

The overall aspects of bloating are devastating: increased development, test
and maintenance costs, degraded performance, increased harware costs, loss of
overview, et cetera.

Reuse should not trigger such a bloating process, because the bloating will
undo all the reuse benefits.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 6

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Figure 11: causes even more bloating...

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 7

5 The organizational challenge

The operational organization of the product creation process for a portfolio or
family of products used to be a simple hierarchy: portfolio, product family, product,
subsystem, module. The 3 main product creation roles are operational (project
management), technical (architecture) and commercial (marketing, product management).
These 3 roles are present at the different hierarchical levels, although the commercial
role is often not needed for the internal subsystems and modules. Figure 12

subsystem

single
product

product
family

entire
portfolio

 developersmodule

portfolio

operational

manager

family

operational

manager

(single product)

project

leader

subsystem

project

leader

operational

portfolio

architect

family

architect

product

architect

subsystem

architect

technical

portfolio

marketing

manager

family

marketing

manager

product

manager

commercial

Figure 12: Conventional operational organization

The introduction of reuse has a big impact on this hierarchy in the operational
organziation of the PCP. Figure 13 shows the organization after the addition of a
shared platform of shared components. The platform project leader reports directly
to the operational manager of the product family. His other core team members also
report directly to the family counter part: platform architect to family architect,
platform manager to family marketing manager. The supplier relationship is that
the platform delivers to the product, in other words the product creation is the
customer of the platform creation.

Figure 14 focuses on the tension which created by the sharing of a single
platform creation by multiple product creations. Conflicting interests with respect
to platform functionality or performance cannot be solved by the individual product
creation teams, but is propagated to the family level. At family level the policy is
set, which is executed by the platform creation. The platform team has to disap-
point one or more of its customers in favor of another customer.

The same problems happens with external suppliers, where the supplier has to
satisfy multiple customers. The main difference is that in such a supplier customer
relationship economic rules apply, where a dissatisfied customer will change from
supplier. The threshold to change from supplier in platform driven organizations is

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 8

subsystem

developers

entire

portfolio

product

family

single

product

sub-

system

module

project

leader
platform

component

project

leader

component

developers

platform

architect

component

architect

platform

manager

component

manager

platform

component

portfolio

operational

manager

family

operational

manager

single product

project

leader

subsystem

project

leader

operational

portfolio

architect

family

architect

product

architect

subsystem

architect

technical

portfolio

marketing

manager

family

marketing

manager

product

manager

commercial

Figure 13: Modified operational organization

very high, disrupting the normal economic control system.
The ultimate consequence is less commitment and satisfaction in product creation

(receiving the blame, without being in control) plus a lot of political hassle where
people try to achieve their objectives despite the organization.

Figure 13 contains a few other pecularities. First of all commercial roles appear
for internal products. At the moment that the organization complexity increases
with internal suppliers and customers also internal ”commercial” functions appear,
such as account managers. They act at the interfaces between the groups, inventa-
rizing requirements and promoting solutions.

Another pecularity is the existence of both a family architect as well as platform
architect. The family architect has a wider scope than the platform architect,
with more application content. The platform architect is more focused at the
technology/solution side: how to provide the required infrastructure. Note that
both architects must have a lot of overlap: the platform architect must understand
the application context, the family architect must understand the solution space.

One of the frequent occuring mistakes is the inversion of control, where the
platform team starts to determine the family policy. The platform creation must
enable the family policy, but should not determine this policy.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 9

product

creation

family

creation

product

creation

platform

creation

policies

priorities

deliverables

budgets

constraints

deliverables

customer

customer

conflicting

interests

Figure 14: Conflicting interests of customers escalate to family level, have impact
on platform, product creation teams benefit or suffer from the top down induced
policy

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 10

6 Integration

Many people expect the architect to decompose, as mentioned in the explanation of
”guiding how”, while integration is severely underestimated, see figure 15. In most
development projects the integration is a traumatic experience. It is a challenge for
the architect to make a design which enables a smooth integration.

Decomposition

is "easy"

Integration is

difficult

Figure 15: Decomposition is easy, integration is difficult

Projects run without (visible) problems during the decomposition phases. All
components builders are happily designing, making and testing their component.
When the integration begins problems become visible. Figure 16 visualizes this
process. The invisible problems cause a significant delay1.

Combining existing software packages is mostly difficult due to ”architectural
mismatches”. Different design approaches with respect to exception handling,
resource management, control hierarchy, configuration management et cetera, which
prohibit straightforward merging. The solution is adding lots of code, in the form
of wrappers, translators and so on, while this additional code adds complexity, it
does not add any end-user value.

Performance and resource usage are most often far from optimal after a merger.
Amazingly many people start worrying about duplication of functionality when

merging, while this is the least of a problem in practice. This concern is the cause
of reuse initiatives, which address the wrong (non-existing) problem: duplication,
while the serious architectural problems are not addressed.

Creating the solution is a collective effort of many designers and engineers.
The architect is mostly guiding the implementation, the actual work is done by the

1This is also known as the 95% ready syndrome, when the project members declare to at 95%,
then actually more than half of the work still needs to be done.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 11

component 1

component 4

component 3

component 2

integration and test

scheduled

closing date

delay

Do you have any design

issues for the design meeting?

The default answer is: No.

realized

closing date

During integration numerous

problems become visible

Figure 16: Integration problems show up late during the project, as a complete
surprise

designers and engineers. Guiding the implementation is done by providing guide-
lines and high level designs for many different viewpoints. Figure 18 shows some
of the frequently occurring viewpoints for guiding the implementation. Note that
many people think that the major task of the architect is to define the decompo-
sition and to define and manage the interfaces of this decomposition. Figure 18
shows that architecting involves many more aspects and especially the integrating
concepts are crucial to get working products.

The deliverables of a platform development can range from requirement speci-
fications, to designs to complete implementations. Figure 19 shows a blueprint of
a full blown platform.

The blueprint shows a superset of what can be part of the platform. Figure 19
shows different variants, subsets, which can be used as a platform.

The type A platform consists of concepts and small building blocks. The
integration of all blocks has to be done by the product creators.

Type B platforms deliver the generic parts, for instance the computing infras-
tructure. Note that this includes the infrastructure related parts of the architecture
guidelines.

Type C is an application oriented platform. This type of platform is much more
pre-integrated and pre-tested.

At the bottom-right the platforms are positioned in the integration space, see [1].

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 12

tuner
tuner

MPEG MPEG

Duplication

Architectural mismatch:

wrappers, translators, conflicting controls

Poor performance;
additional resource usage

additional code

and complexity,

no added value

UI UI

non problem Problems Architecture Reuse

Figure 17: Integration of components from different sources is difficult due to the
architectural mismatch

resource

usage
perfor-

mance

exception

handling

device

abstraction

pipeline

start up

shut down

persistence

IQ

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view play browse

storage

acquisition compress encoding

display
de-

compress
decoding

2. construction

decomposition

3. allocation

1. functional

decomposition

4. infrastructure

5. choice of

integrating

concepts

safety

security

Figure 18: Integrating concepts

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 13

Architecture

guidelines

Base Product

Hardware Abstraction Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Hardware

Figure 19: Platform block diagram

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Hardware Abstraction

Hardware

Hardware Abstraction

Hardware

Hardware Abstraction

Hardware

integration level

system

component

p
re

p
ar

at
io

n
 le

ve
l

subsystem

"platform"

module

s
y
s
te

m

c
o

m
p

o
n

e
n

t

s
u

b
s
y
s
te

m

"p
la

tf
o

rm
"

m
o

d
u

le

"Delegated" integration

Shared integration

A

B

C

A B

C

Figure 20: Platform types

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 14

7 Evolution

A common pitfall is that managers as well as engineers expect a platform to be
stable; once the platform is created only a limited maintenance is needed. Figure 21
explains why this is a myth. A platform is build using technology that itself is
changing very fast (Moore’s law again). At the other hand a platform serves a
dynamic fast changing market, see for example [6]. In other worls it is a miracle if
a platform is stable, when both the supplying as well as the consuming side are not
stable at all.

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 21: The outside world is dynamic

The evolution of a platform is illustrated in figure 22 by showing the change in
the Easyvision [3] platform in the period 1991-1996. It is clearly visible that every
generation doubles the amount of code, while at the same time half of the existing
code base is touched by changes.

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 22: Platform evolution (Easyvision 1991-1996)

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 15

8 Reuse of know how

The CAFCR model [8] uses 5 views to look at an architecture. Most discus-
sions about reuse are concerned about the reuse of implementation, working code.
Implementation is part of the realization view. However reuse of the other views is
more easy and can be quite beneficial.

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

rate of

change

Understanding spec design implemen-

tation

"easy" reuse
costly

reuse

Figure 23: Reuse in CAFCR perspective

Figure 23 shows the CAFCR model at the top. Below the rate of change is
shown for the different views. The rate of change in the implementation view is
very high. All changes from the other views accumulate here, and on top of that
the fast change of the technology is added.

Reusing an implementation is like shooting for a fast moving target. The actual
benefits might never be harvested, due to obsolescence of the used implementation.
The understanding of the customer is a quite valuable resource. Due to the conser-
vative nature of most humans the half-life of this know how is quite long.

The understanding of the customer is translated into specifications. These
specifications have a shorter half-life, due to the competition and the technology
developments. Nevertheless reuse of specifications, especially the generic parts,
can be very rewarding.

The conceptual view contains the more stable insights of the design. The
CAFCR model on purpose factors out the concepts, because concepts are reused
by nature.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 16

9 Focus on business bottomline and customer

One of the big risks of reuse is that the focus of the organization and the people
shifts from solutions and value for the customer to the internals of the product
design, the technology used in the generic components.

This change of focus can be understood by the following simplified model
of a business. The business process for an organization which creates and builds
systems consisting of hardware and software is decomposed in 4 main processes
as shown in figure 24.

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

Figure 24: Simplified decomposition of the business in 4 main processes

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cashflow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cashflow tomorrow
as well.

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

Policy and Planning Process This process is future oriented, not constrained by
short term goals, it is defining the future direction of the company by means
of roadmaps. These roadmaps give direction to the Product Creation Process
and the People and Technology Management Process. For the medium term
these roadmaps are transformed in budgets and plans, which are committal
for all stakeholders.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 17

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

Figure 25: Modified Process Decomposition

The simplified process description given in figure 24 assumes that product
creation processes for multiple products are more or less independent. When
generic developments are factored out for strategic reasons an additional process
is required to visualize this. Figure 25 shows the modified process decomposition
(still simplified of course) including this additional process "Generic Something
Creation Process".

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

management

tomorrow's cashflow

strategic asset

generation

assets

cashflow generation

Figure 26: Financial Viewpoint on Process Decomposition

Figure 26 shows these processes from the financial point of view. From financial
point of view the purpose of this additional process is the generation of strategic
assets. These assets are used by the product generation process to enable tomorrow’s
cashflow.

The consequence of this additional process is an lengthening of the value chain

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 18

policy and

planning

Philips business

va
lu
e

people and technology management process

create generic components

PCP

fe
e
d
-

b
a
ck

customer

customer oriented process
(sales, service, production)

Figure 27: Feedback flow: loss of customer understanding!

and consequently a longer feedback chain as well. This is shown in figure 27. The
increased length of the feedback chain is a significant threat for generic develop-
ments.

Many different models for the development of generic things are in use. An
important differentiating characteristic is the driving force, which often directly
relates to the de facto organization structure. The main flavors of driving forces are
shown in figure 28.

lead customer

carrier product

platform

technology push

good
direct feedback

too specific?

generic?

no feedback

bad

advanced

demanding

innovate for specific customer

refactor to extract generics

innovate for specific product

refactor to extract generics

innovate in generic platform

integrate in products

innovate in research laboratory

transfer to product development

Figure 28: Models for SW reuse

9.1 Lead Customer

The lead customer as driving force guarantees a direct feedback path from an actual
customer. Due to the importance of feedback this is a very significant advantage.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 19

The main disadvantages of this approach are that the outcome of such a devel-
opment often needs a lot of work to make it reusable as a generic product. The
focus is on the functionality and performance, while many of the quality aspects
are secondary in the beginning. Also the requirements of this lead customer can be
rather customer specific, with a low value for other customer.

9.2 Carrier Product

The combination of a generic development with one of the product developments
also shortens the feedback cycle, although it is not as direct as with the lead
customer. Combination with a normal product development will result in a better
balance between performance and functionality focus and quality aspects. Disad-
vantage can be that the operational team takes full ownership for the product (which
is good!), while giving the generic development second priority, which from family
point of view is unwanted.

In larger product families the different charters of the product teams creates a
political tension. Especially in immature or power oriented cultures this can lead
to horrible counterproductive political games.

Lead customer driven product development, where the product is at the same
time the carrier for the platform combines the benefits of the lead customer and
the carrier product approach. In my experience this is the most effective approach
of generic developments. A prerequisite for success is an open and result driven
culture to preempt any political game mentioned before.

9.3 Platform

In maturing product families the generic developments are often decoupled from
the product developments. In products where integration plays a major role (which
are nearly all products) the generic developments are pre-integrated into a platform
or base product, which is released to be used by the product developments.

The benefit of this approach is separation of concerns and decoupling of products
and platforms in smaller manageable units. Both benefits are also the main weakness
of such a model, as a consequence the feedback loop is stretched to a dangerous
length. At the same time the time from feature/technology to market increases, see
figure 29.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 20

feature 1

feature 2

Platform integration

test

Re
le
as
e

Product integration

product feature 1

product feature 2

test

Re
le
as
e

Figure 29: The introduction of a new feature as part of a platform causes an
additional latency in the introduction to the market.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 21

10 Use before reuse

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 30: Feedback (3)

Understanding of the problem as well as the solution is key to being effective.
Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 30 for a visualization of the
influence of feedback frequency on project elapsed time.

Does it satisfy the needs?

Does it fit in the constraints?

Does it fit in the design?

Is the quality sufficient? multiplication of problems

or multiplication of benefits

architectural match

no bloating

cost price

effort

performance

functionality

user interface

Figure 31: Use of software modules enables validation before Reuse

References

[1] Gerrit Muller. Product families and generic aspects. http://www.
gaudisite.nl/GenericDevelopmentsPaper.pdf, 1999.

[2] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 22

http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

[3] Gerrit Muller. Case study: Medical imaging; from toolbox to product to
platform. http://www.gaudisite.nl/MedicalImagingPaper.
pdf, 2000.

[4] Gerrit Muller. Process decomposition of a business. http://www.
gaudisite.nl/ProcessDecompositionOfBusinessPaper.
pdf, 2000.

[5] Gerrit Muller. From legacy to state-of-the-art; archi-
tectural refactoring. http://www.gaudisite.nl/
ArchitecturalRefactoringPaper.pdf, 2001.

[6] Gerrit Muller. Light weight architectures; the way of the future? http:
//www.gaudisite.nl/info/LightWeightArchitecting.
info.html, 2001.

[7] Gerrit Muller. The system architect; meddler or savior? http://www.
gaudisite.nl/MeddlerOrSaviorPaper.pdf, 2001.

[8] Gerrit Muller. Architectural reasoning explained. http://www.
gaudisite.nl/ArchitecturalReasoningBook.pdf, 2002.

[9] Gerrit Muller. The importance of system architecting
for development. http://www.gaudisite.nl/
ImportanceOfSAforDevelopmentPaper.pdf, 2002.

History
Version: 1.0, date: March 19, 2003 changed by: Gerrit Muller

• added 2 figures about platform types and integration
• changed status to concept

Version: 0, date: March 4, 2003 changed by: Gerrit Muller
• Created, no changelog yet
• About half of this article reuses previous Gaudí articles by copy, paste and

sometimes modify.

Gerrit Muller
Software Reuse; Caught between strategic importance and practical feasibility
August 21, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 23

http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ArchitecturalRefactoringPaper.pdf
http://www.gaudisite.nl/ArchitecturalRefactoringPaper.pdf
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/MeddlerOrSaviorPaper.pdf
http://www.gaudisite.nl/MeddlerOrSaviorPaper.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ImportanceOfSAforDevelopmentPaper.pdf
http://www.gaudisite.nl/ImportanceOfSAforDevelopmentPaper.pdf

	Introduction
	Statements about reuse
	Software reuse is needed
	The technical challenge
	The organizational challenge
	Integration
	Evolution
	Reuse of know how
	Focus on business bottomline and customer
	Lead Customer
	Carrier Product
	Platform

	Use before reuse

