Abstract

The master study Systems Engineering is completed by performing a master project. This document describes objectives and guidelines for the project and the resulting paper or report.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

June 21, 2020
status: concept
version: 1.8
Apply SE methods, techniques, and concepts in practice and reflect on its application, while providing value to the industrial sponsor.
The goals of the Final Project are:

- the students have to show their professional competence and the acquired command of the systems engineering discipline by applying it to a selected problem.
- the selected problem has to be relevant in the context of the company in which the student works.
- competence is truly put into practice.
- to facilitate the students to make the step from “just applying” to “critical reflection”.
- to verify that students are capable to operate at academic level.
Stakeholders of the Master Project

- Academic supervisor
- Coaching
- Quality
- Grading

- Company supervisor
- Coaching
- Industrial case

- Student
- Research
- Paper

- Industrial company sponsor
 - Industrial context
 - Usable results

- Academic
- Industrial

Academic supervisor → master project → student research paper → industrial context → usable results

Academic → master project → industrial context → usable results

Industrial context → usable results
Scoping is Crucial

What methods, techniques, tools, concepts	Systems Engineering
What (sub)systems, releases, functions, qualities, aspects, disciplines, technologies	industrial
What timing of activities and deliverables	planning
What resources (student time, means, advisors)	planning
What approach, criteria	research
Case Positioning

organizational and operational context

System 1
sub-system component component component

System n
sub-system component component component

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7
number of details

system requirements
design decisions
parts connections lines of code

cases

cases

Systems Engineering Master Project
6 Gerrit Muller

version: 1.8
June 21, 2020
SETPcasePositioning
Depth, Breadth and Reflection

SE body of Knowledge

reflection

organizational and operation context
user needs and system requirements

design and realization

connect

depth

case

number of details

10^0
10^1
10^2
10^3
10^4
10^5
10^6
10^7

system requirements
design decisions
parts connections lines of code

organizational and operational context

Systems Engineering Master Project

version: 1.8
June 21, 2020
SETPcaseT
Process of Master Project

<table>
<thead>
<tr>
<th>Step</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick subject</td>
<td></td>
</tr>
<tr>
<td>Secure supervisors (NISE, industry)</td>
<td></td>
</tr>
<tr>
<td>Write proposal, project plan; for paper write abstract</td>
<td></td>
</tr>
<tr>
<td>Perform project; involve supervisors regularly</td>
<td></td>
</tr>
<tr>
<td>Write paper and iterate with supervisors</td>
<td></td>
</tr>
<tr>
<td>Present master project</td>
<td></td>
</tr>
<tr>
<td>Grading by academic and external assessors</td>
<td></td>
</tr>
<tr>
<td>Graduation</td>
<td></td>
</tr>
<tr>
<td>Publication in journal or conference</td>
<td></td>
</tr>
</tbody>
</table>
Timeline of the Master Project

- **Think & explore**
 - Jun
 - Jul
 - Aug
 - Sep

- **Prepare with coordinator**
 - Oct
 - Nov
 - Dec

- **Prepare with academic supervisor**
 - Jan
 - Feb
 - Mar

- **Execute project**
 - Apr
 - May
 - Jun

Proposal
- system
- SE need
- company

Abstract
- academic
- approach & contribution

Book plan introduction
- check
- structure, style

Final paper/report presentation
SEMP Workshops

- **anticipating** in RP how to apply
- **approach** searching a topic
- **research methods** prepare academic
- **project execution**
- **academic writing**

August → June → August → September → February

tentative dates for milestones for IM students
Master Project Milestones

- **September**
 - *proposal*
 - system
 - SE need company
 - *abstract*
 - academic contribution

- **November**
 - *book plan*
 - introduction
 - check structure, style
 - *final paper/report presentation*

- **February**

- **May**

tentative dates for milestones for IM students
Plan: Simple PERT Diagram

control system architecture and design
incremental build mathematical models, simulate various inputs
analysis and simulation
"simple" context model, analyze system impact and adapt requirements
write draft paper and include findings
finalize paper
report layout
write phase report
verify system performance
analyze stakeholders, requirements, analyze system concepts and context
"meta" reflection and consolidation

legend
- case (depth) 70%
- system and context (breadth) 20%
- "meta" reflection and consolidation 10%

70%-1.5wks 1 wk ~2 wks 70%-6wks ~4 wks 50%-5wks
20%-5wks
10%-1wks 10%-1wks 10%-10wks 60%-2wks
20%-2wks 20%-11wks 20%-1wks

70%-5wks
"A good abstract should answer three questions:

What did I do,
what did I learn,
and why is that important?

The key is to identify something or things that can be reused in the future."

Prof. Michael Pennotti, Stevens Institute of Technology
"fast forward" yourself into the future what do you expect to be the project outcome?

Students write an initial abstract at the start to think through what can happen. At the end of writing the paper, you write the real abstract. The academic supervisor has to accept the initial abstract before starting the project.
Project Execution

<table>
<thead>
<tr>
<th>maintain a project log</th>
<th>data, findings, documents, references</th>
</tr>
</thead>
<tbody>
<tr>
<td>keep supervisors involved</td>
<td>regular presentations, regular meetings</td>
</tr>
<tr>
<td>time box and iterate</td>
<td>case, system and context, reflection and consolidation</td>
</tr>
<tr>
<td>early feedback on paper</td>
<td>start writing early, elicit feedback early, work incremental</td>
</tr>
</tbody>
</table>
1. Explanation of the subject; what is the goal of the project?

2. Positioning of the subject in the academic context and literature; what does this paper add to the Body of Knowledge?

3. How is the project performed, what has been done.

4. Evaluation of the project, reflection on the results and the project itself.

5. Paper should be submittable to a refereed conference or to a journal; the academic supervisor may accept a report as well.
1. Clearly introduce the problem that the manuscript is discussing/addressing,

2. Discuss the problem background. That is, discuss the research that has been previously conducted by you or others in the field (or related fields) to solve/address the same or similar problem,

3. Develop a succinct argument for the methods or ideas proposed in your manuscript,

4. Present a clear and understandable justification of why the proposed methods or ideas contribute to a superior or different solution to the problem. A clear statement of your contributions is often crucial to reviewers. Clear specify this when possible. And finally,

5. Discuss the likely future directions of the research being conducted by you (your group).

Final Presentation at the end of the project

- student presentation of master project
 - ~30 minutes presentation
 - ~20 minutes questioning by examinators
 - ~10 minutes examinators conclude

committee:
- academic supervisor
- at least one other academic staff member of SE
- external assessor
- (optional) company supervisor or representative
- at least 3 people
<table>
<thead>
<tr>
<th>Publication Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company screens paper for sensitive or confidential issues, see http://www.gaudisite.nl/BuskerudSEpublicationProcedureSlides.pdf</td>
</tr>
<tr>
<td>Select target journal or conference, typical choices are:</td>
</tr>
<tr>
<td>INCOSE symposium, CSER, Journal of SE</td>
</tr>
<tr>
<td>Transform the paper into the prescribed format or template</td>
</tr>
<tr>
<td>Review of the paper by NISE and Company, adapt paper</td>
</tr>
<tr>
<td>Submit paper to journal or conference</td>
</tr>
<tr>
<td>Process journal or conference feedback</td>
</tr>
<tr>
<td>Final review by company</td>
</tr>
<tr>
<td>Submit final version</td>
</tr>
<tr>
<td>Visit conference and present paper</td>
</tr>
</tbody>
</table>
If a third party is involved, e.g. a customer or supplier, then ask the third party to agree with publication procedure:

and ask who will be reviewer for the third party.
Submission instructions

use for all preparation deliverables the following conventions:
filename: SEMP <your name> <subject>.<version>.<extension>
 e.g. SEMP John Student abstract.2.doc
where subject = {proposal | abstract | plan | presentation | paper | ...}

email to: <gerrit • muller@ gmail • com>

subject: SEMP <subject>

"standard" file types preferred, e.g. pdf, jpg, doc, xls, ppt
workshop 1 in June
workshop 2 in August
workshop 3 in September
 Master Project; Writing an Abstract: http://www.gaudisite.nl/MasterProjectWritingAnAbstract.pdf
 Master Project; Execution Phase: http://www.gaudisite.nl/MasterProjectProjectExecution.pdf
Validation of Systems Engineering Methods and Techniques in Industry
Systems Engineering Research Methods (paper)
Published Master Project papers: http://www.gaudisite.nl/MasterProjectPapers.html
Workshop Academic Writing http://www.gaudisite.nl/RPacademicWritingSlides.pdf