SEMA System Modeling and Analysis Course

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The SEMA course System Modeling and Analysis is a 5 day course. Core of the course is Architectural Reasoning Using Conceptual Modeling. This course uses the CAFCR+ model with 6 views. Qualities connect all views. Threads-of-reasoning capture the architectural reasoning across views and qualities. Conceptual models visualize and capture the context, the system and its design. Quantification is a means to make problem and solution space tangible.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

April 22, 2021 status: draft version: 0.5

Course Program

day 1	introduction to modeling	exploring the case
day 2	sample customer space	functions and parts
day 3	customer space analysis	quantification and concepts
day 4	business and life cycle	integration and reasoning
day 5	modeling	wrap-up

Preparation for the Course

During the SEMA course you work in teams of about 3 persons. Smaller teams (even single persons) are acceptable as well.

Every team preferably works on a real part of a system with some real development that goes on.

We start to model the status quo of the system and then we will model and analyze a change or addition that is being considered.

As preparation for the course I ask you the following:

- Look if the other participants are working on similar systems, such that you can work as team.
- Pick as team a system/component/function/project you will use during the course.
- For this system/component/function/project collect information about: who is the
 customer, what does the customer need, how is the system used, what technologies
 are used in the system, what are the main technological challenges et cetera. You do
 not have to be an expert when you come to the course, but you need to have some
 feeling for the system you will be working on during the course and presumably also in
 the 10 week project.
- If you are preparing your master project, then the master project case is probably a good option. This will boost your master project.

Assignments during the Course

1. elevator Customer Realization unctional Conceptual **A**pplication **+** Life cycle objectives 2. exploring the case 3. story telling 5. dynamic behavior 4. use case 6. block diagram 7. context and workflow 9. budget based design 8 customer key driver graph 11. business plan 10. concept selection 12. change analysis 13. line of reasoning 14. thread of reasoning 15. quantified chain of models 16. credibility and accuracy

Course Material Introduction

core

SEMA System Modeling and Analysis Course

http://www.gaudisite.nl/info/SEMAcourse.info.html

SEMA Basic Philosophy

http://www.gaudisite.nl/info/SEMAbasics.info.html

Physical Models of an Elevator

http://www.gaudisite.nl/info/ElevatorPhysicalModel.info.html

optional

Teaching conceptual modeling at multiple system levels using multiple views

http://www.gaudisite.nl/CIRP2014_Muller_TeachingConceptualModeling.pdf

Understanding the human factor by making understandable visualizations

http://www.gaudisite.nl/info/UnderstandingHumanFactorVisualizations.info.html

Dynamic Range of Abstraction Levels in Architecting

http://www.gaudisite.nl/info/DynamicRangeAbstractionLevels.info.html

Course Material CAFCR Scan

core

SEMA Method Overview

http://www.gaudisite.nl/info/SEMAmethodOverviewSlides.pdf

Short introduction to basic "CAFCR" model

http://www.gaudisite.nl/info/BasicCAFCR.info.html

InitialCAFCRscan

http://www.gaudisite.nl/info/InitialCAFCRscan.info.html

optional

Architectural Reasoning Explained

http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf

Architectural Reasoning

http://www.gaudisite.nl/ArchitecturalReasoning.html

Iteration How To

http://www.gaudisite.nl/info/IterationHowTo.info.html

Modeling and Analysis: Iteration and Time-boxing

http://www.gaudisite.nl/info/MAiterationAndTimeboxing.info.html

Course Material Sample CA

core

Story How To

http://www.gaudisite.nl/info/StoryHowTo.info.html

Use Case How To

http://www.gaudisite.nl/info/UseCases.info.html

optional

Story Telling in Medical Imaging

http://www.gaudisite.nl/info/MIstories.info.html

Course Material Design Fundamentals

core

System Partitioning Fundamentals

http://www.gaudisite.nl/info/SystemPartitioningFundamentals.info.html

optional

Basic Working Methods of a System Architect

http://www.gaudisite.nl/info/BasicWorkingMethodArchitect.info.html

SubSea Modeling Example

http://www.gaudisite.nl/SubSeaModelingExampleSlides.pdf

Course Material Customer Space Analysis

core

Methods to Explore the Customer Perspective

http://www.gaudisite.nl/info/MethodsToExploreTheCustomerPerspective.info.html

Key Drivers How To

http://www.gaudisite.nl/info/KeyDriversHowTo.info.html

optional

Medical Imaging Workstation: CAF Views

http://www.gaudisite.nl/info/MlviewsCAF.info.html

Course Material Conceptual Design

core

Modeling and Analysis: Budgeting

http://www.gaudisite.nl/info/MAbudgeting.info.html

Concept Selection, Set Based Design and Late Decision Making

http://www.gaudisite.nl/info/ConceptSelectionSetBased.info.html

optional

The Tool Box of the System Architect

http://www.gaudisite.nl/info/ToolBoxSystemArchitect.info.html

Course Material Business and Life Cycle

core

Simplistic Financial Computations for System Architects.

http://www.gaudisite.nl/info/SimplisticFinancialComputations.info.html

Modeling and Analysis: Life Cycle Models

http://www.gaudisite.nl/info/MAlifeCycle.info.html

optional

How to present architecture issues to higher management

http://www.gaudisite.nl/info/ArchitectManagementInteraction.info.html

Course Material Integration and Reasoning

core

Qualities as Integrating Needles

http://www.gaudisite.nl/info/QualityNeedles.info.html

Threads of Reasoning

http://www.gaudisite.nl/info/ThreadsOfReasoning.info.html

Threads of reasoning illustrated by medical imaging case

http://www.gaudisite.nl/PresentationMITORSlides.pdf

Course Material Modeling

core

Modeling and Analysis: Reasoning Approach

http://www.gaudisite.nl/info/MAreasoningApproach.info.html

Modeling and Analysis: Analysis

http://www.gaudisite.nl/info/MAanalysis.info.html

optional

Modeling and Analysis: Measuring

http://www.gaudisite.nl/info/MAmeasuring.info.html

ASP Python Exercise

http://www.gaudisite.nl/info/ASPpythonExercise.info.html

Course Material Wrap-up

core

Consolidating Architecture Overviews

http://www.gaudisite.nl/info/ConsolidatingArchitectureOverviewsSlides.pdf

SEMA Homework Assignment

http://www.gaudisite.nl/info/SEMAhomeworkAssigmentSlides.pdf

optional

Guidelines for Visualization

http://www.gaudisite.nl/info/VisualizationGuidelines.info.html

Granularity of Documentation

http://www.gaudisite.nl/info/DocumentationGranularity.info.html

Light Weight Review Process

http://www.gaudisite.nl/info/LightWeightReview.info.html

Cookbook A3 Architecture Overview by Daniel Borches

http://www.gaudisite.nl/BorchesCookbookA3architectureOverview.pdf

How to Create an Architecture Overview

http://www.gaudisite.nl/info/OverviewHowTo.info.html

