Architectural Reasoning Using Conceptual Modeling

by Gerrit Muller

University of South-Eastern Norway-NISE

Abstract

Multi-view architecting connects the system design to customer context and life cycle context. We teach an architecting method based on many views and fast iteration of the views. Visual models, functional models, and mathematical models in all views are the means to communicate about the system, to discuss specification and design choices, to reason about consequences, and to make decisions.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.3

Module 30, Architectural Reasoning Introduction

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module introduces Architectural Reasoning using Conceptual Modeling.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 1.3

SEMA System Modeling and Analysis Course

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The SEMA course System Modeling and Analysis is a 5 day course. Core of the course is Architectural Reasoning Using Conceptual Modeling. This course uses the CAFCR+ model with 6 views. Qualities connect all views. Threads-of-reasoning capture the architectural reasoning across views and qualities. Conceptual models visualize and capture the context, the system and its design. Quantification is a means to make problem and solution space tangible.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.5

Course Program

day 1	introduction to modeling	exploring the case
day 2	sample customer space	functions and parts
day 3	customer space analysis	quantification and concepts
day 4	business and life cycle	integration and reasoning
day 5	modeling	wrap-up

Preparation for the Course

During the SEMA course you work in teams of about 3 persons. Smaller teams (even single persons) are acceptable as well.

Every team preferably works on a real part of a system with some real development that goes on.

We start to model the status quo of the system and then we will model and analyze a change or addition that is being considered.

As preparation for the course I ask you the following:

- Look if the other participants are working on similar systems, such that you can work as team.
- Pick as team a system/component/function/project you will use during the course.
- For this system/component/function/project collect information about: who is the
 customer, what does the customer need, how is the system used, what technologies
 are used in the system, what are the main technological challenges et cetera. You do
 not have to be an expert when you come to the course, but you need to have some
 feeling for the system you will be working on during the course and presumably also in
 the 10 week project.
- If you are preparing your master project, then the master project case is probably a good option. This will boost your master project.

Assignments during the Course

1. elevator Customer Realization unctional Conceptual **A**pplication **+** Life cycle objectives 2. exploring the case 3. story telling 5. dynamic behavior 4. use case 6. block diagram 7. context and workflow 9. budget based design 8 customer key driver graph 11. business plan 10. concept selection 12. change analysis 13. line of reasoning 14. thread of reasoning 15. quantified chain of models 16. credibility and accuracy

Course Material Introduction

core

SEMA System Modeling and Analysis Course

http://www.gaudisite.nl/info/SEMAcourse.info.html

SEMA Basic Philosophy

http://www.gaudisite.nl/info/SEMAbasics.info.html

Physical Models of an Elevator

http://www.gaudisite.nl/info/ElevatorPhysicalModel.info.html

optional

Teaching conceptual modeling at multiple system levels using multiple views

http://www.gaudisite.nl/CIRP2014_Muller_TeachingConceptualModeling.pdf

Understanding the human factor by making understandable visualizations

http://www.gaudisite.nl/info/UnderstandingHumanFactorVisualizations.info.html

Dynamic Range of Abstraction Levels in Architecting

http://www.gaudisite.nl/info/DynamicRangeAbstractionLevels.info.html

Course Material CAFCR Scan

core

SEMA Method Overview

http://www.gaudisite.nl/info/SEMAmethodOverviewSlides.pdf

Short introduction to basic "CAFCR" model

http://www.gaudisite.nl/info/BasicCAFCR.info.html

InitialCAFCRscan

http://www.gaudisite.nl/info/InitialCAFCRscan.info.html

optional

Architectural Reasoning Explained

http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf

Architectural Reasoning

http://www.gaudisite.nl/ArchitecturalReasoning.html

Iteration How To

http://www.gaudisite.nl/info/IterationHowTo.info.html

Modeling and Analysis: Iteration and Time-boxing

http://www.gaudisite.nl/info/MAiterationAndTimeboxing.info.html

Course Material Sample CA

core

Story How To

http://www.gaudisite.nl/info/StoryHowTo.info.html

Use Case How To

http://www.gaudisite.nl/info/UseCases.info.html

optional

Story Telling in Medical Imaging

http://www.gaudisite.nl/info/MIstories.info.html

Course Material Design Fundamentals

core

System Partitioning Fundamentals

http://www.gaudisite.nl/info/SystemPartitioningFundamentals.info.html

optional

Basic Working Methods of a System Architect

http://www.gaudisite.nl/info/BasicWorkingMethodArchitect.info.html

SubSea Modeling Example

http://www.gaudisite.nl/SubSeaModelingExampleSlides.pdf

Course Material Customer Space Analysis

core

Methods to Explore the Customer Perspective

http://www.gaudisite.nl/info/MethodsToExploreTheCustomerPerspective.info.html

Key Drivers How To

http://www.gaudisite.nl/info/KeyDriversHowTo.info.html

optional

Medical Imaging Workstation: CAF Views

http://www.gaudisite.nl/info/MlviewsCAF.info.html

Course Material Conceptual Design

core

Modeling and Analysis: Budgeting

http://www.gaudisite.nl/info/MAbudgeting.info.html

Concept Selection, Set Based Design and Late Decision Making

http://www.gaudisite.nl/info/ConceptSelectionSetBased.info.html

optional

The Tool Box of the System Architect

http://www.gaudisite.nl/info/ToolBoxSystemArchitect.info.html

Gerrit Muller

Course Material Business and Life Cycle

core

Simplistic Financial Computations for System Architects.

http://www.gaudisite.nl/info/SimplisticFinancialComputations.info.html

Modeling and Analysis: Life Cycle Models

http://www.gaudisite.nl/info/MAlifeCycle.info.html

optional

How to present architecture issues to higher management

http://www.gaudisite.nl/info/ArchitectManagementInteraction.info.html

Course Material Integration and Reasoning

core

Qualities as Integrating Needles

http://www.gaudisite.nl/info/QualityNeedles.info.html

Threads of Reasoning

http://www.gaudisite.nl/info/ThreadsOfReasoning.info.html

Threads of reasoning illustrated by medical imaging case

http://www.gaudisite.nl/PresentationMITORSlides.pdf

Course Material Modeling

core

Modeling and Analysis: Reasoning Approach

http://www.gaudisite.nl/info/MAreasoningApproach.info.html

Modeling and Analysis: Analysis

http://www.gaudisite.nl/info/MAanalysis.info.html

optional

Modeling and Analysis: Measuring

http://www.gaudisite.nl/info/MAmeasuring.info.html

ASP Python Exercise

http://www.gaudisite.nl/info/ASPpythonExercise.info.html

Course Material Wrap-up

core

Consolidating Architecture Overviews

http://www.gaudisite.nl/info/ConsolidatingArchitectureOverviewsSlides.pdf

SEMA Homework Assignment

http://www.gaudisite.nl/info/SEMAhomeworkAssigmentSlides.pdf

optional

Guidelines for Visualization

http://www.gaudisite.nl/info/VisualizationGuidelines.info.html

Granularity of Documentation

http://www.gaudisite.nl/info/DocumentationGranularity.info.html

Light Weight Review Process

http://www.gaudisite.nl/info/LightWeightReview.info.html

Cookbook A3 Architecture Overview by Daniel Borches

http://www.gaudisite.nl/BorchesCookbookA3architectureOverview.pdf

How to Create an Architecture Overview

http://www.gaudisite.nl/info/OverviewHowTo.info.html

SEMA Basic Philosophy

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation explains the basic philosophy behind the SEMA course. The SEMA course in the first place is a course that provides an approach to architectural reasoning. Core to architectural reasoning is the ability to make conceptual models and to use them in conjunction. The course discusses how to make conceptual mdoels, how to get input, and how to use them for analysis. Modeling is put in broader perspective, such as model evolution, simuation, and validation.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.3

You will mostly be working!

One Case during the course and the home work assigment

Work in teams if possible

Select a case close to your day-to-day practice

Learning by Doing

Some theory, apply on case

Case = System of interest + developing organization + some innovative change

Choice of case is critical!

Our Primary Interest

developing organization

architect

system of interest

Context, Zoom-out and Zoom-in

customer organization

developing organization

architect

supplier organization

super system

system of interest

subsystems

Adding the Time Dimension

past current future

based on TRIZ

past current future

From Theory to Practice

Recommendations as Common Thread

Final Delivery: Presentation to Top Management

Project Overview How To

by Gerrit Muller USN-SE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

A project overview shows the overview of a project on a single slide or sheet. The overview helps the team to share the same understanding of scope, objectives, and timeline.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.2

Project Overview Canvas

Project Title

meta information, e.g. version, date author, owner

Project Goals

specific and quantified

system context

- visualization (drawing, block diagram, 3D model, or photo) of the system context
- indication of changes in the context

system of interest

- visualization (drawing, block diagram, 3D model, or photo) of the system
- indication of changes in the system of interest

Key Performance Parameters

specific and quantified

project master plan with timeline

- timeline with 5 to 10 milestones, especially deliverables
- specific and quantified

optional information, e.g.

- enabling systems
- stakeholders
- external or internal interfaces
- constraints, e.g. applicable legislation

Example Project Overview

Project overview Metal Printer R2

version 2.0. January 22, 2023 author: Gerrit Muller

Project Goals
support production of node 1C
process development Q2 2022
volume production Q2 2023
productivity 30,000 W/m

yield 95%

floor vibration class

Key Performance Parametersmin. line width100 nmoverlay30 nmthroughput100 WPHMTBF2000 hrwafer size300 mmpower5 kWclean room classC

D

changing enabling systems conditioned transport calibration wafers calibration metrology

Project Overview Canvas

Project Title

meta information, e.g. version, date author, owner

Work Breakdown Structure

- visualization
- builds upon the Product Breakdown Structure

Project Master Plan

PERT plan with major milestones

project organization

- allocation of roles
- specific additions or deviations

Example Project Overview

 Metal Printer
 version 0.1, 2023-02-11

 author: Gerrit Muller

 Work Breakdown Structure
 Project Master Plan

project organization

Project Leader: P.L. Eader

Product Manager: P.M. Anager

Architect: Archie Tect

Case Selection

Determine the system of interest

Define your organization

Determine an innovative change to be architected

Sketch the System-of-Interest

Sketch the System-of-Interest in its context

- Show some of the internals of the system-of-interest
- Indicate the boundary of the system-of-interest

Physical Models of an Elevator

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

An elevator is used as a simple system to model a few physical aspects. We will show simple kinematic models and we will consider energy consumption. These low level models are used to understand (physical) design considerations. Elsewhere we discuss higher level models, such as use cases and throughput, which complement these low level models.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0.4

Learning Goals

To understand the need for

- various views, e.g. physical, functional, performance
- mathematical models
- quantified understanding
- assumptions (when input data is unavailable yet) and later validation
- various visualizations, e.g. graphs
- understand and hence model at multiple levels of abstraction
- starting simple and expanding in detail, views, and solutions gradually, based on increased insight

To see the value and the limitations of these conceptual models

To appreciate the complementarity of conceptual models to other forms of modeling, e.g. problem specific models (e.g. structural or thermal analysis), SysML models, or simulations

warning

This presentation starts with a trivial problem.

Have patience!

Extensions to the trivial problem are used to illustrate many different modeling aspects.

Feedback on correctness and validity is appreciated

The Elevator in the Building

building

inhabitants want to reach their destination fast and comfortable

building owner and service operator have economic constraints: space, cost, energy, ...

Elementary Kinematic Formulas

$$S_t$$
 = position at time t

$$v = \frac{dS}{dt}$$

 v_t = velocity at time t

 a_t = acceleration at time t

 j_t = jerk at time t

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

Initial Expectations

building

What values do you expect or prefer for these quantities? Why?

 $t_{top\ floor} = time\ to\ reach\ top\ floor$

 v_{max} = maximum velocity

 $a_{max} = maximum acceleration$

 $j_{max} = maximum jerk$

Initial Estimates via Googling

building

Google "elevator" and "jerk":

$$t_{top floor} \sim = 16 s$$

 $v_{max} \sim = 2.5 \text{ m/s}$

relates to motor design and energy consumption

12% of gravity; weight goes up

$$a_{max} \sim = 1.2 \text{ m/s}^2 \text{ (up)}$$

 $j_{max} \sim = 2.5 \text{ m/s}^3$ —— relates to control design

humans feel changes of forces high jerk values are uncomfortable

numbers from: http://www.sensor123.com/vm_eva625.htm CEP Instruments Pte Ltd Singapore

Exercise Time to Reach Top Floor Kinematic

input data

$$S_0 = 0m$$
 $S_t = 40m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$i_{max} = 2.5 \text{ m/s}^3$$

elementary formulas

$$v =$$
 $\frac{dS}{dt}$ $a =$ $\frac{dv}{dt}$ $j =$ $\frac{da}{dt}$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

exercises

 $t_{top\ floor}$ is time needed to reach top floor without stopping

Make a model for t_{top floor} and calculate its value

Make 0^e order model, based on constant velocity

Make 1^e order model, based on constant acceleration

What do you conclude from these models?

Models for Time to Reach Top Floor

input data

$$S_0 = 0m$$
 $S_{top floor} = 40m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

elementary formulas

$$v = \frac{dS}{dt}$$

$$a = \frac{dv}{dt}$$

$$j = \frac{da}{dt}$$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

$$S_{top floor} = v_{max} * t_{top floor}$$

$$t_{top floor} = S_{top floor} / v_{max}$$

$$t_{top\ floor} = 40/2.5 = 16s$$

$$t_a \sim 2.5/1.2 \sim 2s$$

$$S(t_a) \sim = 0.5 * 1.2 * 2^2$$

$$S(t_a) \sim = 2.4 m$$

$$t_{v} \sim = (40-2*2.4)/2.5$$

$$t_{top floor} \sim = 2 + 14 + 2$$

$$t_{top\ floor} \sim = 18s$$

$$t_{top floor} = t_a + t_v + t_a$$
 $S_{linear} = S_{top floor} - 2 * S(t_a)$

$$t_a = v_{max} / a_{max}$$

$$S(t_a) = \frac{1}{2} * a_{max} * t_a$$

$$t_v = S_{linear} / v_{max}$$

Conclusions Move to Top Floor

Conclusions

v_{max} dominates traveling time

The model for the large height traveling time can be simplified into:

$$t_{travel} = S_{travel}/v_{max} + (t_a + t_j)$$

Exercise Time to Travel One Floor

input data

$$S_0 = 0m$$
 $S_{top floor} = 40m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

elementary formulas

$$v = -\frac{dS}{dt}$$
 $a = -\frac{dv}{dt}$ $j = -\frac{da}{dt}$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

exercise

Make a model for tone floor and calculate it

What do you conclude from this model?

2nd Order Model Moving One Floor

$$S_0 = 0m$$

$$S_{one floor} = 3m$$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

$$t_{one floor} = 2 t_a + 4 t_j$$

$$t_j = a_{max} / j_{max}$$

$$S_1 = 1/6 * j_{max} t_j^3$$

$$v_1 = 0.5 j_{max} t_j^2$$

$$S_2 = S_1 + v_1 t_a + 0.5 a_{max} t_a^2$$

$$V_2 = V_1 + a_{\text{max}} t_a$$

$$S_3 = S_2 + v_2 t_j + 0.5 a_{max} t_j^2 - 1/6 j_{max} t_j^3$$

$$S_3 = 0.5 S_t$$

$$t_i \sim 1.2/2.5 \sim 0.5$$
s

$$S_1 \sim 1/6 * 2.5 * 0.5^3 \sim 0.05 m$$

$$v_1 \sim 0.5 * 2.5 * 0.5^2 \sim 0.3 m/s$$

et cetera

1st Order Model Moving One Floor

$$S(t_a) = \frac{1}{2} * a_{max} * t_a^2$$

$$t_a = \sqrt{(S(t_a)/(0.5^*a_{max}))}$$

$$t_{one floor} = 2 t_a = 2\sqrt{(S(t_a)/(0.5*a_{max}))}$$

$$V(t_a) = a_m t_a$$
 $V(t_a) \sim 1.2 \cdot 1.6 \sim 1.9 \text{ m/s}$

input data

$$S_0 = 0m$$
 $S_{one floor} = 3m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

tone floor ~=
$$2\sqrt{(1.5/(0.5*1.2))}$$
 ~= $2*1.6s$ ~= **3s**

coarse 2nd order correction

$$t_{one floor} = 2 t_a + 2 t_j$$

$$t_i \sim = 0.5s$$

$$t_{one floor} \sim 2*1.6 + 2*0.5 \sim 4$$

Conclusions

a_{max} dominates travel time

The model for small height traveling time can be simplified into:

$$t_{travel} = 2 \sqrt{(S_{travel}/0.5 a_{max}) + t_j}$$

Exercise Elevator Performance

exercise

Make a model for t_{top floor}

Take door opening and docking into account

What do you conclude from this model?

Elevator Performance Model

performance model

$$t_{top floor} = t_{close} + t_{undock} + t_{move} + t_{dock} + t_{open}$$

assumptions

$$t_{close} \sim = t_{open} \sim = 2s$$

$$t_{undock} \sim = 1s$$

$$t_{dock} \sim = 2s$$

$$t_{\text{move}} \sim = 18s$$

outcome

$$t_{top floor} \sim = 2 + 1 + 18 + 2 + 2$$

$$t_{top floor} \sim = 25s$$

Conclusions Performance Model Top Floor

Conclusions

The time to move is dominating the traveling time.

Docking and door handling is significant part of the traveling time.

$$t_{top\ floor} = t_{travel} + t_{elevator\ overhead}$$

Measured Elevator Acceleration

Theory versus Practice

What did we ignore or forget?

acceleration: up <> down 1.2 m/s² vs 1.0 m/s²

slack, elasticity, damping et cetera of cables, motors....

controller impact

.

Exercise Time to Travel One Floor

exercise

Make a model for tone floor

Take door opening and docking into account

What do you conclude from this model?

Elevator Performance Model

performance model one floor (3m)

$$t_{\text{one floor}} = t_{\text{close}} + t_{\text{undock}} + t_{\text{move}} + t_{\text{dock}} + t_{\text{open}}$$

assumptions

$$t_{close} \sim = t_{open} \sim = 2s$$

$$t_{undock} \sim = 1s$$

$$t_{dock} \sim = 2s$$

$$t_{\text{move}} \sim = 4s$$

outcome

$$t_{one floor} \sim = 2 + 1 + 4 + 2 + 2$$

$$t_{one floor} \sim = 11 S$$

Conclusions Performance Model One Floor

Conclusions

Overhead of docking and opening and closing doors is dominating traveling time.

Fast docking and fast door handling has significant impact on traveling time.

$$t_{\text{one floor}} = t_{\text{travel}} + t_{\text{elevator overhead}}$$

Exercise Time Line

Exercise

Make a time line of people using the elevator.

Estimate the time needed to travel to the top floor.

Estimate the time needed to travel one floor.

What do you conclude?

Time Line; Humans Using the Elevator

assumptions human dependent data

 $t_{wait for elevator} = [0..2 minutes]$ depends heavily on use

 $t_{wait for leaving people} = [0..20 seconds] idem$

 $t_{\text{walk in}} \sim = t_{\text{walk out}} \sim = 2 \text{ s}$

 $t_{\text{select floor}} \sim = 2 \text{ s}$

assumptions additional elevator data

t_{minimal waiting time} ~= 8s

t_{travel top floor} ~= 25s

 $t_{\text{travel one floor}} \sim = 11s$

outcome

$$t_{\text{top floor}} = t_{\text{minimal waiting time}} + \\ t_{\text{walk out}} + t_{\text{travel top floor}} + t_{\text{wait}}$$

$$t_{\text{one floor}} \sim = 8 + 2 + 11 + t_{\text{wait}}$$

 $\sim = 21 \text{ S} + t_{\text{wait}}$

$$t_{top floor} \sim = 8 + 2 + 25 + t_{wait}$$

 $\sim = 35 \text{ S} + t_{wait}$

Overview of Results for One Elevator

Conclusions

The human related activities have significant impact on the end-to-end time.

The waiting times have significant impact on the end-to-end time and may vary quite a lot.

$$t_{end-to-end} = t_{human \ activities} + t_{wait} + t_{elevator \ travel}$$

Exercise Energy and Power

Exercise

Estimate the energy consumption and the average and peak power needed to travel to the top floor.

What do you conclude?

Energy and Power Model

input data	
$S_0 = 0m$	$S_t = 40 \text{m}$
$v_{max} = 2.5 \text{ m/s}$	$m_{elevator} = 1000 \text{ Kg (incl counter weight)}$
$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$	m _{passenger} = 100 Kg
$j_{max} = 2.5 \text{ m/s}^3$	1 passenger going up
$g = 10 \text{ m/s}^2$	

Energy and Power Conclusions

Conclusions

E_{pot} dominates energy balance

W_{pot} is dominated by v_{max}

W_{kin} causes peaks in power consumption and absorption

Wkin is dominated by vmax and amax

 $E_{kin max} = 1/2 \text{ m } v_{max}^{2}$ $\sim = 0.5 * 1100 * 2.5^{2}$ $\sim = 3.4 \text{ kJ}$ $W_{kin max} = \text{m } v_{max} a_{max}$ $\sim = 1100 * 2.5 * 1.2$ $\sim = 3.3 \text{ kW}$ $E_{pot} = \text{mgh}$ $\sim = 100 * 10 * 40$ $\sim = 40 \text{ kJ}$ $W_{pot max} \sim = E_{pot}/t_{v}$ $\sim = 40/16$

 $\sim = 2.5 \text{ kW}$

Exercise Qualities and Design Considerations

Exercise

What other qualities and design considerations relate to the kinematic models?

Conclusions Qualities and Design Considerations

Examples of other qualities and design considerations safety V_{max} V_{max} , a_{max} , i_{max} acoustic noise cage obstacles cause mechanical vibrations V_{max}, a_{max}, j_{max} vibrations air flow operating life, maintenance duty cycle,?

applicability in other domains

kinematic modeling can be applied in a wide range of domains:

transportation systems (trains, busses, cars, containers, ...)

wafer stepper stages

health care equipment patient handling

material handling (printers, inserters, ...)

MRI scanners gradient generation

. . .

Exercise Multiple Users

Exercise

Assume that a group of people enters the elevator at the ground floor. On every floor one person leaves the elevator.

What is the end-to-end time for someone traveling to the top floor?

What is the desired end-to-end time?

What are potential solutions to achieve this?

What are the main parameters of the design space?

Multiple Users Model

tend-to-end

elevator data

$$t_{min \ wait} \sim = 8s$$

$$t_{one floor} \sim = 11s$$

$$t_{\text{walk out}} \sim = 2s$$

$$n_{floors} = 40 \text{ div } 3 + 1 = 14$$

$$n_{stops} = n_{floors} - 1 = 13$$

outcome

$$t_{\text{end-to-end}} = n_{\text{stops}} \left(t_{\text{min wait}} + t_{\text{one floor}} \right) + t_{\text{walk out}} + t_{\text{wait}}$$

$$\sim = 13 * (8 + 11) + 2 + t_{\text{wait}}$$

$$\sim = 249 \text{ s} + t_{\text{wait}}$$

$$t_{\text{non-stop}} \sim = 35 \text{ S+ } t_{\text{wait}}$$

Multiple Users Desired Performance

Considerations

desired time to travel to top floor ~< 1 minute

note that $t_{wait next} = t_{travel up} + t_{travel down}$

if someone just misses the elevator then the waiting time is

missed return trip trip down up

 $t_{end-to-end} \sim = 249 + 35 + 249 = 533s \sim = 9 \text{ minutes!}$

desired waiting time ~< 1 minute

Design of Elevators System

Design of a system with multiple elevator requires a different kind of models: oriented towards logistics

Exceptional Cases

Exceptional Cases

non-functioning elevator

maintenance, cleaning of elevator

elevator used by people moving household

rush hour

special events (e.g. party, new years eve)

special floors (e.g. restaurant)

many elderly or handicapped people

playing children

Wrap-up Exercise

Make a list of all *visualizations* and representations that we used during the exercises

Summary of Visualizations and Representations

$$S_{t} = S_{0} + v_{0}t + \frac{1}{2} a_{0}t^{2}$$

$$t_{top floor} = t_{close} + t_{undock} + t_{move} + t_{dock} + t_{open}$$

$$mathematical \ formulas$$

Architecting Scope and Challenges

Scope

Challenges

Recommendations

Final Top-Down Delivery

Introduction Conceptual Modeling

Zooming Out

intentionally left blank

Complementary Visualizations and Representations

intentionally left blank

Module 31, Architectural Reasoning Case Exploration

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module introduces the case exploration used in the course Architectural Reasoning using Conceptual Modeling.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.0

SEMA Methods Overview

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation provides an overview of the SEMA course: Architectural Reasoning Using Conceptual Modeling. This course uses the CAFCR+ model with 6 views. Qualities connect all views. Threads-of-reasoning capture the architectural reasoning across views and qualities. Conceptual models visualize and capture the context, the system and its design. Quantification is a means to make problem and solution space tangible.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status:

preliminary

draft

version: 0

From vague notions to articulate and structured

Overview of architecting method

method outline method visualization Customer Realization Functional Conceptual **A**pplication framework objectives key drivers stakeholders construction submethods + value chain and concerns commercial, logistics decomposition + benchmarking + business models + context diagram decompositions - functional + performance + supplier map + entity relationship mapping technical decomposition information mode + safety analysis dynamic models and several more and many more and many more integration via qualities a priori solution know-how explore market vision detailed use story specific details analyse analyse design case design design reasoning standard workstation

Purpose of Modeling

What to Model?

Overview of Modeling Approach

collect input data

model and analyse relevant issues

for different stakeholders& concerns

integration and reasoning

Short introduction to basic "CAFCR" model

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The basic "CAFCR" reference model is described, which is used to describe a system in relation to its context. The main stakeholder in the context is the customer. The question "Who is the customer?" is addressed.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.4

The "CAFCR" model

Integrating CAFCR

What does Customer need in Product and Why? **Product** How Customer Customer **Product** What What How Functional Realization Customer Conceptual **A**pplication objectives objective context intention understanding driven constraint/knowledge opportunities based awareness

CAFCR can be applied recursively

Market segmentation

segmentation axis	examples
geographical	USA, UK, Germany, Japan, China
business model	profit, non profit
economics	high end versus cost constrained
consumers	youth, elderly
outlet	retailer, provider, OEM, consumer direct

Example of a small buying organization

CAFCR+ model; Life Cycle View

Customer objectives

Application

Functional

Conceptual

Realization

operations maintenance upgrades

Life cycle

development manufacturing installation

sales, service, logistics, production, R&D

Initial CAFCR scan

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation guides a team through a quick CAFCR scan. Such quick scan with typically 15 minutes per view helps to build an initial overview of the problem and solution space.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0.4

make a bottom-up analysis of your product:

1. realization

2. conceptual

3. functional

4. application

5. customer objectives

6. qualities

use time boxes of 15 minutes per view

show the most dominant decomposition of that view, as diagram or as
list, some more guidance will be given per step.

Exercise Bottom-up Scan CAFCR

make a bottom-up analysis of your product:

- 1. realization
- 2. conceptual
- 3. functional
- 4. application
- 5. customer objectives
- 6. qualities

use time boxes of 15 minutes per view

show the most dominant decomposition of that view, as diagram or as a list; some more guidance will be given per step.

Do and Don't

Do	Do not	Because
 start sketching/drawing as soon as possible 	write long texts.	 sketches stimulate sharing and discussion
 use shared large sheets of paper (e.g. flip-over) 	immediately capture electronic	 sharing and discussion help to explore faster
 number the flip-overs and add a title 		 remembering the order gets challenging
 annotate (add notes) during discussions 	 have nice but volatile discussions 	 information and insight is quickly lost
 use yellow note stickers and flip-over markers 	write with pen or pencil	 stickers are easily (re)moved
be open for ideas and surprises	Do not stick to the first solution	 you hopefully discover a lot; increased insight will change problem and solution

Step 1: Realization View

Step 2: Conceptual View

Step 3: Functional View; Top level Spec

Step 4: Application View

Chose 1 or 2 items from below government financial dir. insurance inspection cost of care cash flow cost of care quality hospital reception clinical insurance patient cost of op. clients portal portal general ref. physician HIS radiologist physician nurse workstation (hospital) practitioner diagnosis diagnosis patient schedule / patient info reimburstment patient treatment ease of work status report RIS LIS administration legend patient (radiology) (laboratory) patient id comfort patient info other IS administrative invoice schedule clinical status operator Xray imaging ease of use images patient radiology **PACS** support workstation (Picture Archiving and Communciation) IT dep. facility man. maintainer cleaner conformance space accessibility accessibility IT infrastructure (communication, gateways, servers, storage, ...) security service supp. safety safety stakeholders and concerns (who) system context accessory 1 meter functional flow cabinet magnet | patient table diagnosis by radiologist neurologist cabinets console technical dressina room control room room rest room waiting room — days → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 corridor work flow & time line (what, when) 2D map (where)

Step 5: Customer Objectives View; Value Network

Step 6: Qualities

Determine the 5 most relevant qualities from the checklist

- Make the chosen qualities as specific as possible
- Explain for each quality why it is relevant

Step 6: Qualities Checklist

usable
usability
attractiveness
responsiveness
image quality
wearability
storability
transportability
dependable
safety
security
reliability
robustness

availability effective throughput or productivity

integrity

interoperable

connectivity

3rd party extendible

liable

liability testability traceability standards compliance

efficient

resource utilization cost of ownership

consistent

reproducibility predictability

serviceable

serviceability configurability installability

future proof

evolvability portability upgradeability extendibility maintainability

logistics friendly

manufacturability logistics flexibility lead time

ecological

ecological footprint contamination noise disposability

down to earth attributes

cost price
power consumption
consumption rate
(water, air,
chemicals,
et cetera)
size, weight
accuracy

Presentation

Present the results top-down

Use two to three flip charts of the six that have been created.

Explain in five minutes the needs of the customer, the system, and the major design choices.

Method Overview

Architecting Method Overview

Modeling Method Overview

Modeling Scope

intentionally left blank

CAFCR

CAFCR views

Integrate and Iterate

Plus Life Cycle view

Sketch on Flips, Use Note stickers

Do	Do not	Because
start sketching/drawing as soon as possible	write long texts .	sketches stimulate sharing and discussion
use shared large sheets of paper (e.g. flip-over)	immediately capture electronic	sharing and discussion help to explore faster
number the flip-overs and add a title		remembering the order gets challenging
annotate (add notes) during discussions	 have nice but volatile discussions 	information and insight is quickly lost
use yellow note stickers and flip-over markers	write with pen or pencil	stickers are easily (re)moved
be open for ideas and surprises	Do not stick to the first solution	you hopefully discover a lot; increased insight will change problem and solution

Module 32, Architectural Reasoning Customer Space Sampling

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module introduces Customer Space Sampling as part of the course Architectural Reasoning using Conceptual Modeling.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status:

preliminary

draft

version: 1.1

Story How To

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

A story is an easily accessible story or narrative to make an application live. A good story is highly specific and articulated entirely in the problem domain: the native world of the users. An important function of a story is to enable specific (quantified, relevant, explicit) discussions.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: concept version: 1.2

From story to design

Example story layout

ca. half a page of plain English text

A day in the life of Bob

bla blah bla, rabarber music bla bla composer bla bla qwwwety30 zeps.

nja nja njet njippie est quo vadis? Pjotr jaleski bla bla bla brree fgfg gsg hgrg

mjmm bas engel heeft een interressant excuus, lex stelt voor om vanavond door te werken.

In the middle of the night he is awake and decides to change the world forever.

The next hour the great event takes place:

draft or sketch of some essential appliance

This brilliant invention will change the world foreverbecause it is so unique and valuable that nobody beliefs the feasibility. It is great and WOW at the same time, highly exciting.

Vtables are seen as the soltution for an indirection problem. The invention of Bob will obsolete all of this in one incredibke move, which will make him famous forever.

He opens his PDA, logs in and enters his provate secure unqiue non trivial password, followed by a thorough authentication. The PDA asks for the fingerprint of this little left toe and to pronounce the word shit. After passing this test Bob can continue.

Points of attention

purpose

What do you need to know for specification and design?

scope

"umbrella" or specific event?

Define your stakeholder and viewpoint

viewpoint, stakeholders
f.i. user, maintainer, installer

visualization

Sketches or cartoon Helps to share and communicate ideas

• size (max 1 A4)

Can be read or told in few minutes

recursive decomposition, refinement

Criteria for a good story

Customer objectives

Application

accessible, understandable

"Do you see it in front of you?"

valuable, appealing

attractive, important "Are customers queuing up for this?"

critical, challenging

"What is difficult in the realization?"
"What do you learn w.r.t. the design?"

frequent, no exceptional niche

"Does it add significantly to the bottom line?"

Functional

specific

names, ages, amounts, durations, titles, ...

Gerrit Muller

Example of a story

Betty is a 70-year-old woman who lives in Eindhoven. Three years ago her husband passed away and since then she lives in a home for the elderly. Her 2 children, Angela and Robert, come and visit her every weekend, often with Betty's grandchildren Ashley and Christopher. As so many women of her age, Betty is reluctant to touch anything that has a technical appearance. She knows how to operate her television, but a VCR or even a DVD player is way to complex.

When Betty turned 60, she stopped working in a sewing studio. Her work in this noisy environment made her hard-of-hearing with a hearing-loss of 70dB around 2kHz. The rest of the frequency spectrum shows a loss of about 45dB. This is why she had problems understanding her grandchildren and why her children urged her to apply for hearing aids two years ago. Her technophobia (and her first hints or arthritis) inhibit her to change her hearing aids' batteries. Fortunately her children can do this every weekend.

This Wednesday Betty visits the weekly Bingo afternoon in the meetingplace of the old-folk's home. It's summer now and the tables are outside. With all those people there it's a lot of chatter and babble. Two years ago Betty would never go to the bingo: "I cannot hear a thing when everyone babbles and clatters with the coffee cups. How can I hear the winning numbers?!". Now that she has her new digital hearing instruments, even in the bingo cacophony, she can understand everyone she looks at. Her social life has improved a lot and she even won the bingo a few times.

That same night, together with her friend Janet, she attends Mozart's opera The Magic Flute. Two years earlier this would have been one big low rumbly mess, but now she even hears the sparkling high piccolos. Her other friend Carol never joins their visits to the theaters. Carol also has hearing aids, however hers only "work well" in normal conversations. "When I hear music it's as if a butcher's knife cuts through my head. It's way too sharp!". So Carol prefers to take her hearing aids out, missing most of the fun. Betty is so happy that her hearing instruments simply know where they are and adapt to their environment.

source: Roland Mathijssen Embedded Systems Institute Eindhoven

Value and Challenges in this story

Value proposition in this story:

quality of life:

active participation in different social settings

usability for nontechnical elderly people:

"intelligent" system is simple to use

loading of batteries

Challenges in this story:

Intelligent hearing instrument

Battery life — at least 1 week

No buttons or other fancy user interface on the hearing instrument, other than a robust On/Off method

The user does not want a technical device but a solution for a problem

Instrument can be adapted to the hearing loss of the user

Directional sensitivity (to prevent the so-called cocktail party effect)

Recognition of sound environments and automatic adaptation (adaptive filtering)

source: Roland Mathijssen, Embedded Systems Institute, Eindhoven

Exercise StoryTelling

Create a story

as text + sketch or as cartoon

Use the criteria

be highly specific!

envision the future value proposition

Enjoy!

Use Case How To

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Use cases are frequently used in Software Engineering. Use cases support specification and facilitate design, analysis, verification and testing. Many designers, unfortunately, apply use cases in a rather limited way. This presentation provides recommendations for effective use cases.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: planned version: 0.1

Why Use Cases?

Supports or is part of specification

by providing specific data in user perspective

Facilitates analysis and design

Facilitates verification and testing

Example Time Shift recording

Construction limits intrude in User Experience

- number of tuners
- number of simultaneous streams (recording and playing)
- amount of available storage
- management strategy of storage space

20:00 21:00 22:00 23:00

Content of a Use Case

Example personal video recorder use case contents

typical use case(s)

interaction flow (functional aspects)
select movie via directory
start movie
be able to pause or stop
be able to skip forward or backward
set recording quality

performance and other qualities
(non-functional aspects)
response times for start / stop
response times for directory browsing
end-of-movie behaviour
relation recording quality and storage

worst case, exceptional, or change use case(s)

functional

multiple inputs at the same time extreme long movie directory behaviour in case of extreme many short movies

non-functional

response time with multiple inputs image quality with multiple inputs insufficient free space response time with many directory entries replay quality while HQ recording

Example of Quantification of Typical Use Case

examination room: average 4 interleaved examinations / hour

image production: 20 1024² 8 bit images per examination

film production: 3 films of 4k*5k pixels each

high quality output (bi-cubic interpolation)

Timing of this Use Case

Recommendations for working with use cases

- + combine related functions in one use case
- do not make a separate use case for every function
- + include non-functional requirements in the use cases

- + minimise the amount of required worst case and exceptional use cases
- excessive amounts of use cases propagate to excessive implementation efforts
- + reduce the amount of these use cases in steps
- a few well chosen worst case use cases simplifies the design

Use Case Exercise

Make specification overview with ~10 **SMART** Key Performance Parameters (or functions or interfaces)

determine at least one use case

- Specific quantified
- Measurable verifiable
- Achievable (Attainable, Action oriented, Acceptable, Agreed-upon, Accountable)
- Realistic (Relevant, Result-Oriented)
- Time-bounded (Timely, Tangible, Traceable)

Story and Use Case Summary

Customer Language

Accesible and Specific to Learn

Use Cases include Quantification

Typical and Worst case

Module 33, Architectural Reasoning Design Fundamentals

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module discusses fundamental design methods and techniques, especially partitioning, interface, behavior, and quantified performance design.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.2

System Partitioning Fundamentals

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The fundamental concepts and approach system partitioning are explained. We look at physical decomposition and functional decomposition in relation to supply chain, lifecycle support, project management, and system specification and design.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0.2

Parts, Dynamics, Characteristics

Engineering

Example Physical Decomposition

Partitioning is Applied Recursively

Software plus Hardware Decomposition

Guidelines for Partitioning

the part is cohesive

functionality and technology belongs together

the coupling with other parts is minimal minimize interfaces

the part is selfsustained for production and qualification can be in conflict with cost or space requirements

clear ownership of part

e.g. one department or supplier

How much self-sustained?

control SW

application SW

HMI SW

control electronics

control interface

cooling

EMC shielding

main function qualification support

adjustment support

power stabilization

power conversion

power distribution production support

mechanical package

How self sustained should a part be? trade-off:

cost/speed/space optimization

logistics/lifecycle/production flexibility clarity

Decoupling via Interfaces

The Ideal Modularity

System is composed

by using standard interfaces

limited catalogue of variants (e.g. cost performance points)

System Creation

Simplistic Functional SubSea Example

Functional Decomposition

How does the system work and operate? Functions describe what rather than how. Functions are verbs. Input-Process-Output paradigm. Multiple kinds of flows: physical (e.g. hydrocarbons) information (e.g. measurements) control

At lower level one part ~= one function

pump pumps, compressor compresses, controller controls

At higher level functions are complex interplay of physical parts e.g. regulating constant flow, pressure and temperature

Quantification

Size	2.4m *	0.7m	* 1.3m
0.20			

Weight 1450 Kg

Cost 30000 NoK

Reliability MTBF 4000 hr

Throughput 3000 l/hr

Response time 0.1 s

Accuracy +/- 0.1%

many characteristics of a system, function or part can be quantified

Note that quantities have a **unit**

How about the <characteristic> of the <component> when performing <function>?

Example Technical Budget

Example of A3 overview

Visualizing Dynamic Behavior

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Dynamic behavior manifests itself in many ways. Architects need multiple complementary visualizations to capture dynamic behavior effectively. Examples are capturing information, material, or energy flow, state, time, interaction, or communication.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0

Overview of Visualizations of Dynamic Behavior

Example Functional Model of Information Flow

"Cartoon" Workflow

Workflow as Functional Model

Workflow as Timeline

Swimming Lane Example

Example Signal Waveforms

Example Time Line with Functional Model

Information Centric Processing Diagram

Example State Diagram

Flow of Light (Physics)

Dynamic Behavior is Multi-Dimensional

How does the system work and operate?

Functions describe what rather than how.

Functions are verbs.

Input-Process-Output paradigm.

Multiple kinds of flows:

physical (e.g. hydrocarbons, goods, energy)

information (e.g. measurements, signals)

control

Time, events, cause and effect

Concurrency, synchronization, communication

multi-dimensional information and dynamic behavior

Exercise Dynamic Behavior

Capture the **dynamic behavior** of the **internals** of your system in **multiple** diagrams.

Diagrams that capture dynamic behavior are among others:

- Functional flow (of control or information, material or goods, or energy)
- Activity or sequence diagrams (e.g. with "swimming lanes")
- State diagrams

Exercise Block Diagram

Make a set of **block diagrams** capturing the **static parts** and **interfaces**.

Ensure coverage of the entire system, e.g. including service, training, production, etc.

Show both **hardware** and **software**

Good block diagrams have in the order of 10 to 20 blocks

Design Fundamentals

Parts, Dynamics, Characteristics

Decoupling via Interfaces

Dynamic Behavior

Question Generator

How about the **<characteristic>**of the **<component>**when performing **<function>**?

Module 34, Architectural Reasoning Customer Space Analysis

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module provides methods and techniques to analyze the customer space.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status:

preliminary

draft

version: 1.1

Methods to Explore the Customer Perspective

by Gerrit Muller University of South-Eastern Norway

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation provides a set of techniques to explore the customer perspective. The main purpose is for an organization to understand its customer sufficiently. Architects need this level of understanding to guide specification and design.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.1

Overview of methods

story telling, scenario what http://www.gaudisite.nl/info/StoryHowTo.info.html

humans autonomous behavior stakeholders and concerns

who organizations emotions

system context diagram human-made artifacts

how

workflow

when timeline from seconds to years

where from nanometers to kilometers map

why customer key driver graph

> http://www.gaudisite.nl/info/KeyDriversHowTo.info.html productivity model

financial cost of ownership model

money flow

Various Perspectives on Context

Scenario: Patient George

- Patient George has continuous headache.
- His family doctor has send him to the Neurologist.
- The Neurologist wants to exclude the possibility of a tumor and requests an MRI examination.
- The Radiologists does not see any indication for a tumor.
- The Radiologist sends his report to the Neurologist.
- The Neurologist discusses his findings with the patient and sends a report to the family doctor.

From Complaint to Diagnosis

Stakeholders and concerns MRI scanner

government cost of care

financial dir. cash flow cost of op. insurance cost of care

administration patient id invoice

general practitioner patient

ref. physician diagnosis treatment

radiologist diagnosis reimburstment nurse patient ease of work

patient comfort health

family support

No control of the con

inspection *quality*

operator ease of use

IT dep. conformance security facility man. space service supp.

maintainer accessibility safety

cleaner accessibility safety legend

administrative

clinical

patient

support

Context of MRI

Workflow

Clinical Information Flow

weeks view: from Complaint to Diagnosis

Room Layout

half hour view: Examination

5 minute view: Patient Preparation (1 operator)

functional procedure		
walk from dressing room to table		
position patient on table		
move table upwards		
position coils and connect		
move table and patient into magnet		
make plan scan		

Patient Preparation Work Flow

Productivity and Cost models

Cost Of Ownership model

The financial context of the radiology department

Make a context diagram, showing the systems and their relations in the customer space typically, tens of systems are relevant for customers Capture one or a few main workflows in the customer space

Key Drivers How To

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The notion of "business key drivers" is introduced and a method is described to link these key drivers to the product specification.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.2

Example Motorway Management Analysis

Note: the graph is only partially elaborated for application drivers and requirements

Method to create Key Driver Graph

• Define the scope specific.	in terms of stakeh	nolder or market segments
• Acquire and analyze facts extract facts from the product specification and ask why questions about the specification of existing products.		
 Build a graph of relations between drivers and requirements by means of brainstorming and discussions 		where requirements may have multiple drivers
Obtain feedback	discuss with customers, observe their reactions	
Iterate many times	increased understanding often triggers the move of issues from driver to requirement or vice versa and rephrasing	

Recommendation for the Definition of Key Drivers

• Limit the number of key-drivers

- minimal 3, maximal 6
- Don't leave out the obvious key-drivers for instance the well-known main function of the product
- Use short names, recognized by the customer.
- Use market-/customer- specific names, no generic names for instance replace "ease of use" by "minimal number of actions for experienced users", or "efficiency" by "integral cost per patient"
- Do not worry about the exact boundary between Customer Objective and Application

create clear goal means relations

Transformation of Key Drivers into Requirements

Customer What

Customer objectives

Customer How

Application

Product What

Functional

Key (Customer) **Drivers**

Derived Application - Requirements **Drivers**

goal

means may be skipped or articulated by several intermediate steps

functions interfaces performance figures

Exercise Customer Key Driver Graph

Make a customer key driver graph Use yellow note stickers Start at the right hand side why why 5 m/s <200Kg 5 hrs

Analysis Methods and Techniques

Stakeholders and Concerns (Who)

Context Diagram (what sytems)

Workflow (what dynamics)

Information Flow

More Analysis Methods and Techniques

Timeline (when, what, who)

2D or 3D map (where)

Annotated map (where, what)

Cost Models

Customer Key Driver Graph

Focus on Customer World

Note: the graph is only partially elaborated for application drivers and requirements

Specific Scope, Fact Based

Define the scope specific.	in terms of stak	eholder or market segments		
Acquire and analyze facts	and ask why questions about the specification of existing production			
Build a graph of relations be by means of brainstorming a	where requirements may have multiple drivers			
Obtain feedback	discuss with Custor	mers, observe their reactions		
Iterate many times	•	g often triggers the move of issues ent or vice versa and rephrasing		

3 to 6 Key driver, Capture Tensions

Limit the number of key-drivers	minimal 3, maximal 6
Don't leave out the obvious key-drivers	instance the well-known main function of the product
Use short names, recognized by the custome	r.
Use market-/customer- specific names, no get	neric names for instance replace "ease of use" by "minimal number of actions for experienced users", or "efficiency" by "integral cost per patient"
Do not worry about the exact boundary betwee Customer Objective and Application	create clear goal means relations

intentionally left blank

Module 31, Architectural Reasoning Conceptual Design

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module conceptual design methods, such as budgeting and concept selection.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.1

Modeling and Analysis: Budgeting

by Gerrit Muller TNO-ESI, HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation addresses the fundamentals of budgeting: What is a budget, how to create and use a budget, what types of budgets are there. What is the relation with modeling and measuring.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.0

Budgeting

content of this presentation

What and why of a budget

How to create a budget (decomposition, granularity, inputs)

How to use a budget

A **budget** is

a quantified instantation of a conceptual model

A **budget** can

prescribe or describe the contributions

by parts of the solution

to the system quality under consideration

Why Budgets?

- to make the design explicit
- to provide a baseline to take decisions
- to specify the requirements for the detailed designs
- to have guidance during integration
- to provide a baseline for verification
- to manage the design margins explicitly

Visualization of Budget Based Design Flow

Stepwise Budget Based Design Flow

step example

1A measure old systems	micro-benchmarks, aggregated functions, appli				
1B model the performance starting with old	systems	flow model and analytical model			
1C determine requirements for new system	1	response time or throughput			
2 make a design for the new system		explore design space, estimate and simulate			
3 make a budget for the new system:	measur	models provide the structure ements and estimates provide initial numbers specification provides bottom line			
4 measure prototypes and new system	micro-be	nchmarks, aggregated functions, applications profiles, traces			
5 Iterate steps 1B to 4					

Budgets Applied on Waferstepper Overlay

Budgets Applied on Medical Workstation Memory Use

memory budget in Mbytes	code	obj data b	ulk data	total
shared code User Interface process database server print server optical storage server communication server UNIX commands compute server	11.0 0.3 0.3 0.3 0.3 0.3 0.3	3.0 3.2 1.2 2.0 2.0 0.2 0.5	12.0 3.0 9.0 1.0 4.0 0 6.0	11.0 15.3 6.5 10.5 3.3 6.3 0.5 6.8
application SW total	0.3 13.4	0.5 12.6	35.0	0.8 61.0
UNIX Solaris 2.x file cache				10.0
total				74.0

Power Budget Visualization for Document Handler

Alternative Power Visualization

Evolution of Budget over Time

fact finding through details
aggregate to end-to-end performance
search for appropriate abstraction level(s)

from coarse guesstimate

to reliable prediction

from typical case

to boundaries of requirement space

from static understanding

to dynamic understanding

from steady state

to initialization, state change and shut down

from old system

to prototype

to actual implementation

time —

start

later

only if needed

Potential Applications of Budget based design

- resource use (CPU, memory, disk, bus, network)
- timing (response, latency, start up, shutdown)
- productivity (throughput, reliability)
- Image Quality parameters (contrast, SNR, deformation, overlay, DOF)
- cost, space, time

What kind of budget is required?

static	dynamic
typical case	worst case
global	detailed
approximate	accurate

is the budget based on wish, empirical data, extrapolation, educated guess, or expectation?

Summary of Budgeting

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and measurements

Budgets are based on models and estimations

Budget visualization is critical for communication

Budgeting requires an incremental process

Many types of budgets can be made; start simple!

Colophon

The Boderc project contributed to Budget Based Design. Especially the work of

Hennie Freriks, Peter van den Bosch (Océ),

Heico Sandee and Maurice Heemels (TU/e, ESI)

has been valuable.

Exercise Budget

Make a **technical budget** for one of the **key performance parameters**.

- a good budget has 20 to 30 contributing elements
- elements should be balanced (remove or combine insignificant contributions)
- use the previously defined parts and dynamic behavior

Concept Selection, Set Based Design and Late Decision Making

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

We discuss a systems design approach where several design options are maintained concurrently. In LEAN Product Development this is called set-based design. Concentioanl systems engineering also promotes the concurrent evaluation of multiple concepts, the so-called concept selection. Finally, LEAN product development advocates to keep options open as long as feasible; the so-called late decision making.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: planned version: 0

Problem Solving Approach

Examples of Pugh Matrix Application

Swivel concept selection

evaluation criteria	weight	C	BV	cl	amp	dy	namio
Maturity Development level	10	5	50	2	20	2	50
Cost Hardware cost Development cost	20	4 5	80 100	2 2	40 40	5 2	100 40
Design robustness Design life swivel cycles pressure cycles Pressure range internal external Temperature range	25	5 5 4 2 4	125 125 100 50 100	3 4 4 5 4	75 100 100 125 100	3 5 4 2 4	75 125 100 50 100
Installation Initial installatio/retrieva Connection/disconnecti		2	40 40	3 4	60 80	4 5	80 100
Operation Swivel resistance Spool Length Short Spool Length Long Hub loads	25	1 1 3 2	25 25 75 50	4 4 5 4	100 100 125 100	5 5 5 5	125 125 125 125
\(\sum_{\text{points}} \)			985	1	165	1	290

from master paper Halvard Bjørnsen, 2009

EDP-LRP connection

		Concepts			
Evaluation Criteria	Score	1	2	3	4
Time to connect					
Need for ROV		-	+	+	+
Design		-	+	+	+
Robustness					
Connector design		-	S	S	+
Number of parts		-	-	+	+
Handle roll-off		+	-	S	+
Influence other		+	S	-	S
Redundancy					
Design		+	-	-	S
Interchangeability		+	-	-	-
Cost					
HW cost		-	-	-	-
Manufacturing cost		S	S	-	S
Engineering cost		+	-	S	•
Service cost		-	+	+	+
Maturity		-	-	S	+
	Σ-	7	7	5	3
	Σ- Σs Σ+	1	3	4	3
	Σ+	5	3	4	7
	Pos.	3	4	2	1

from master paper Dag Jostein Klever, 2009

Evolution of Design Options

Conclusions

Evolving multiple concepts increases insight and understanding (LEAN product development: set-based design, SE: Pugh matrix)

Articulation of criteria sharpens evaluation

The discussion about the Pugh matrix is more valuable than final bottomline summation

Delaying decisions may help to keep options (Lean Product Development: late decision making, finance: real options)

Exercise Concept Selection

Make a decision matrix for one of the concept selections.

- define at least 3 concepts
- define 7 to 10 criteria for selection
- score the concepts against the criteria, for example using a scale from 1 to 5: 1 = very poor, 5 = very good
- recommend a concept with a rationale

	concept 1	concept 2	concept 3
criterion 1	1	3	5
criterion n	4	4	2
			best, because

Budgeting

Budget: Decomposition of Contributions

Tens of (Measurable) Numbers

memory budget in Mbytes	code	obj data I	oulk data	total
shared code User Interface process database server print server optical storage server communication server UNIX commands compute server	11.0 0.3 0.3 0.3 0.3 0.3 0.3	3.0 3.2 1.2 2.0 2.0 0.2 0.5	12.0 3.0 9.0 1.0 4.0 0	11.0 15.3 6.5 10.5 3.3 6.3 0.5 6.8
system monitor	13.4	0.5	35.0	0.8
application SW total UNIX Solaris 2.x file cache	13.4	12.0	35.0	10.0 3.0
total				74.0

plus Models, Measurements, Estimates

intentionally left blank

Concept Selection and Evolution

Understand Problem, Analyze, Decide, Monitor

Evolution of design Options

Concept Selection: Pugh Matrix

intentionally left blank

Module 36, Architectural Reasoning Business and Life Cycle

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module provides methods and techniques to analyze the business and lifecycle context.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.2

Simplistic Financial Computations for System Architects.

by Gerrit Muller USN-SE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This document explains how simple financial estimates can be made by system architects. These simplistic estimates are useful for an architect to perform sanity checks on proposals and to obtain understanding of the financial impact of proposals. Note that architects will never have full fledged financial controller know how and skills. These estimates are zero order models, but real business decisions will have to be founded on more substantial financial proposals.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.3

Product Margin = Sales Price - Cost

Margin per product.
The margin over the sales volume,
must cover the fixed costs, and generate profit

transportation, insurance, royalties per product, ...

Cost per product, excluding fixed costs

purchase price of components may cover development cost of supplier

Profit as function of sales volume

Investments, more than R&D

financing

marketing, sales

training sales&service

NRE: outsourcing, royalties

research and development

business dependent: pharmaceutics industry sales cost >> R&D cost

strategic choice: NRE or per product

including:
staff, training, tools, housing
materials, prototypes
overhead
certification

often a standard staffing rate is used that covers most costs above:

R&D investment = Effort * rate

Income, more than product sales only

other recurring income

services

options, accessories

products

income_{service}

sales price_{option} * volume_{option}
options

sales price_{product} * volume _{product}

license fees pay per movie

content, portal updates maintenance

The Time Dimension

	Y1 Q1	Y1 Q2	Y1 Q3	Y1 Q4	Y2 Q1	Y2 Q2	Y2 Q3
investments	100k\$	400k\$	500k\$	100k\$	100k\$	60k\$	20k\$
sales volume (units)	-	-	2	10	20	30	30
material & labour costs	-	-	40k\$	200k\$	400k\$	600k\$	600k\$
income	-	-	100k\$	500k\$	1000k\$	1500k\$	1500k\$
quarter profit (loss)	(100k\$)	(400k\$)	(440k\$)	200k\$	500k\$	840k\$	880k\$
cumulative profit	(100k\$)	(500k\$)	(940k\$)	(740k\$)	(240k\$)	600k\$	1480k\$

cost price / unit = 20k\$ sales price / unit = 50k\$ variable cost = sales volume * cost price / unit
income = sales volume * sales price / unit
quarter profit = income - (investments + variable costs)

The "Hockey" Stick

Stacking Multiple Developments

Fashionable financial yardsticks

Return On Investments (ROI)

Net Present Value

Return On Net Assets (RONA) leasing reduces assets, improves RONA

turnover / fte outsourcing reduces headcount, improves this ratio

market ranking (share, growth) "only numbers 1, 2 and 3 will be profitable"

R&D investment / sales in high tech segments 10% or more

cash-flow fast growing companies combine profits with negative cash-flow, risk of bankruptcy

Exercise Business Plan

Make a **business plan** for the mid to long-term future.

- determine business model
- determine investments, sales volume, sales price, and costs
- estimate the cash flow and accumulated profit
- include at least 3 releases or generations of systems

Modeling and Analysis: Life Cycle Models

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Products and enterprises evolve over time. This presentation explores the impact of these changes on the system and on the business by making (small and simple) models of life cycle aspects.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0.7

Product Related Life Cycles

System Life Cycle

Approach to Life Cycle Modeling

Identify potential life cycle changes and sources		
Characterize time aspect of changes	how often how fast	
Determine required effort	amount type	
Determine impact of change on system and context	performance reliability	
Analyse risks	business	

see reasoning

What May Change During the Life Cycle?

business volume

product mix

product portfolio

product attributes (e.g. price)

customers

personnel

suppliers

application, business processes

et cetera

www.homes4sale.com

www.apple.com/itunes/

www.amazon.com

www.ebay.com

www.shell.com

www.stevens.edu

www.nokia.com

stock market

insurance company

local Dutch cheese shop

Simple Model of Data Sources of Changes

Data Sources of Web Server

Example Product Portfolio Change Books

product portfolio characteristics

selection depends on business

life cycle changes determined by business characteristics

new books per year

UK (1)	206k (2005)	107k (1996)
USA(2)	172k (2005)	68k (1996)
China(3)		101k (1994)
India(21)		12k (1996)

source: http://en.wikipedia.org/wiki/Long_tail

source: http://en.wikipedia.org/wiki/Books_published_per_country_per_year

Example Customer Change

internet: broadband penetration

			growth in
	Q1 '04	Q2 '04	Q2 '04
Asia Pacific total	48M	54M	12.8%
China	15M	19M	26.1%
India	87k	189k	116.8%

http://www.apira.org/download/world_broadband_statistics_q2_2004.pdf

What is the expected growth of # customers?

What is the impact on system and infrastructure?

What is the impact on CRM (Customer Relation Management)?

What is the impact on customer, sales support staff?

Web Shop Content Update

Web Shop Content Change Effort

prepare	prepare	prepare
change 1	change 2	change n

review input select info layout&cosmetics check-in verify verify change 1

inspect source inspect result

commit changes

$$effort_{changes} = n_{changes}^*(t_{prepare} + t_{verify}) + t_{commit}$$

n _{changes} per day	10	100	1000
effort _{changes}	1 uur	10 uur	100 uur
#fte	0.1	1	12

with
$$t_{prepare} = 4 \text{ min}$$

$$t_{verify} = 2 min$$

$$t_{commit} = 1 min$$

Example of Client Level Changes

Example of Time Scale Model for Changes

Web Shop Security and Changes

Web Shop Reliability and Changes

new faults = average fault density * #changes

	severity	hit probability	detection probability
Jansen iso Janssen	low	high	low
operator iso sales repr	high	high	medium

Exercise Life Cycle

Analyze the **evolution** during the **lifecycle**.

- identify sources of change in customer context, life cycle context, and technology
- make a list of changes
- determine per change the expected rate of change and the required response time to the change
- optional: determine effort, impact, and risks per change

Simplistic Financial Computations

Product Margin = Sales Price - Cost

Profit as function of sales volume

Hockey stick and scenarios

intentionally left blank

Life Cycle

Multiple Life Cycles

System Life Cycle

Analyze Frequency, Response Need, and Impact

Logarithmic Axis of Change Frequency

Module 37, Architectural Reasoning Threads and Integration

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module provides methods and techniques to integrate insights across views. Lines and Threads of reasoning form the main framework.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.3

Qualities as Integrating Needles

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Many stakeholder concerns can be specified in terms of qualities. These qualities can be viewed from all 5 "CAFCR" viewpoints. In this way qualities can be used to relate the views to each other.

The meaning of qualities for the different views is described. A checklist of qualities is provided as a means for architecting. All qualities in the checklist are described briefly.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: finished version: 1.3

Quality needles as generic integrating concepts

Security as example through all views

Customer objectives

Application

Functional

Conceptual

Realization

selection classification people information authentication badges

passwords

locks / walls

administrators

quards

functions for administration authentication intrusion detection logging quantification cryptography firewall security zones authentication registry logging

specific algorithms interfaces libraries servers storage protocols

desired characteristics, specifications & mechanisms

social contacts open passwords blackmail burglary fraud

unworkable procedures

missing functionality wrong quantification

holes between concepts

bugs
buffer overflow
non encrypted
storage
poor exception
handling

threats

Quality Checklist

serviceable usable ecological interoperable usability ecological footprint serviceability connectivity attractiveness contamination 3rd party extendible configurability responsiveness installability noise image quality disposability liable wearability future proof storability liability transportability testability evolvability down to earth dependable traceability portability standards compliance safety attributes upgradeability security extendibility cost price efficient reliability maintainability power consumption robustness resource utilization consumption rate integrity cost of ownership (water, air, availability logistics friendly chemicals, effective consistent et cetera) manufacturability throughput or size, weight reproducibility logistics flexibility productivity predictability lead time accuracy

Exercise Line of Reasoning

Make a line of reasoning for one of the dominant qualities.

- in the CA views; determine what customers do to achieve their goal
- in the F view determine the specification of your system supporting this quality
- in the CR views determine the relevant concepts and technologies
- Take the reverse viewpoints as well: what threatens this quality?

Threads of Reasoning

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

A method of reasoning is described, which addresses cross-cutting issues. The basis is fast iteration in the problem and solution space.

A thread of reasoning is a set of highly relevant related issues, which are addressed by articulating the problem in terms of tension and analyzing it in the CAFCR framework.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: finished version: 2.4

Overview of the reasoning approach

1. select starting point:

! actual dominant need or problem

- 2. create insight:
 - + submethod in one of CAFCR views
 - + qualities checklist
- 3. deepen insight via facts:
 - + via tests, measurements, simulations
 - + story telling
- 4. broaden insight via questions:
 - + why
 - + what
 - + how
- 5. define and extend the thread:
 - ? what is the most important / valuable
 - ? what is the most critical / sensitive
 - ! look for the conflicts and tension

continuously

consolidate in simple models

communicate to stakeholders

refactor documentation

From starting point to insight

Creating Insight

Deepening Insight

Broadening Insight

Problem identification and articulation

Customer objectives

Application

Functional

Conceptual

Realization

Iteration during the analysis

Thread of related issues

Documentation and communication structure

Threads of reasoning illustrated by medical imaging case

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The medical imaging workstation case is introduced. An architecting method based on the CAFCR viewpoints is explained, consisting of 4 elements:

- the CAFCR viewpoints
- qualities as integrating needles
- story telling
- threads of reasoning

A thread of reasoning is build up in steps, based on this case. The underlying reasoning is explained.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0

Easyvision serving three URF examination rooms

X-ray rooms from examination to reading around 1990

X-ray rooms with Easyvision applied as printserver

Comparison screen copy versus optimized film

old: screen copy

new: SW formatting

20 to 50% less film needed

Challenges for product creation

Top level decomposition

CAFCR viewpoints

Quality needles as generic integrating concepts

From story to design

Chronology of Easyvision RF R1 development

Thread of reasoning based on efficiency-quality tension

Technology innovations

standard UNIX based workstation

full SW implementation, more flexible

object oriented design and implementation (Objective-C)

graphical User Interface, with windows, mouse etcetera

call back scheduling, fine-grained notification

data base engine, fast, reliable and robust

extensive set of toolboxes

property based configuration

multiple coordinate spaces

Thread of reasoning; introvert phase

Introvert view: cost and impact of new technologies

total measured memory usage

Solution of memory performance problem

Visualization memory use per process

Typical case URF examination

3 examination rooms connected to

1 medical imaging workstation + printer

exam room 1 room 2 room 3

examination room: average 4 interleaved examinations / hour

image production: 20 1024² 8 bit images per examination

film production: 3 films of 4k*5k pixels each

high quality output (bi-cubic interpolation)

Thread of reasoning; phase 2

How to measure memory, how much is needed? from introvert to extrovert

Radiologist workspots and activities

Diagnosis in tens of seconds

Rendered images at different destinations

Screen:
low resolution
fast response

Film:
high resolution
high throughput

SW Process structure 1991

SW layers 1991

Print server is based on banding

Server CPU load

Thread of reasoning; phase 3

Radiologists diagnose from film, throughput is important Extrovert view shows conceptual and realization gaps!

Presentation pipeline for X-ray images

Image Quality expectation WYSIWYG

Safety problem

for user readability the font-size was determined "intelligently"; causing a dangerous mismatch between text and image

EV output: scaleable fonts in graphics overlay

Thread of reasoning; phase 4

from extrovert diagnostic quality, via image quality, algorithms and load, to extrovert throughput

Thread of reasoning; phase 5

cost revisited in context of clinical needs and realization constraints; note: original threads are significantly simplified

Overview of architecting method

method outline method visualization Customer Functional Conceptual Realization **A**pplication framework objectives stakeholders construction + value chain submethods and concerns commercial, logistics decomposition + benchmarking + business models + context diagram decompositions - functional + performance + supplier map + entity relationship mapping technical decomposition information mode + safety analysis and several more and many more and many more integration via qualities a priori solution know-how explore market vision detailed use story specific details analyse analyse design case design design reasoning standard workstation

Exercise Threads of Reasoning

Customer objectives

Application

Functional

Conceptual

Realization

1 select 3..5 most important needs and concerns 2 select
3..5 most
important
specification
issues

4 select 3..5 most critical life cycle and

business issues

3 select3..5 most critical design aspects

5 show relations positive negative

Life cycle and Business

6 transform into elevator pitch

"Spaghetti" after Step 5

Elevator Pitch of about 90 seconds

Integration via Qualities

Qualities Connect all Views

Many, Many Qualities

Look Positive and Negative

intentionally left blank

Threads of Reasoning

Diverge, Converge, Zoom-in, Zoom-out

Identify Most Relevant Issues

All Issues are Interrelated

Reconstruct the "Big Picture"

cost revisited in context of clinical needs and realization constraints; note: original threads are significantly simplified

Module 38, Modeling

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module discusses modeling, especially aspects such as credibility, working range, and accuracy.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status:

preliminary

draft

version: 1.2

Modeling and Analysis: Reasoning Approach

by Gerrit Muller TNO-ESI, HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

We make models to facilitate decision making. These decisions range from business decisions, such as Service Level Agreements, to requirements, and to detailed design decisions. The space of decisions is huge and heterogeneous. The proposed modeling approach is to use multiple small and simple models. In this paper we discuss how to reason by means of multiple models.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.0

Purpose of Modeling

How to use multiple models to facilitate decisions?

How to get from many fragments to integral insight?

How many models do we need?

At what quality and complexity levels?

Graph of Decisions and Models

Example Graph for Web Shop

Relations: Decisions, Models, Inputs and Assumptions

Reasoning Approach

Frequency of Assumptions, Decisions and Modeling

Life Cycle of Models

substantial models capture core domain know how; they evolve often from project to project. creation and evolution of intellectual property assets

Examples of Life Cycle of Models

Exercise Chain of Models

Identify a **chain of models** needed to support architecture development.

- models are related horizontally in the CAFCR model (across views), as well as vertically within a view
- models have various levels of detail; detailed models tend to feed/ support less detailed models
- per model
 - formulate its purpose
 - indicate the main quantities that play a role

Modeling and Analysis: Model Analysis

by Gerrit Muller TNO-ESI, USN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Models only get value when they are actively used. We will focus in this presentation on analysis aspects: accuracy, credibility, sensitivity, efficiency, robustness, reliability and scalability.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: planned version: 1.0

What Comes out of a Model

Applicability of the Model

+**ε**1 -**ε**2

input accuracy credibility measurements
abstraction
facts

model(s)

accuracy credibility working range

abstractioncredibilityworking range

abstraction
usage context
specifications
designs
realizations

model realization credibility propagation

How to Determine Applicability

try out models

be aware of accuracy, credibility and working range

simple and small models

1. Estimate accuracy of results

based on most significant inaccuracies of inputs and assumed model propagation behavior

2. Identify top 3 credibility risks

identify biggest uncertainties in inputs, abstractions and realization

3. Identify relevant working range risks

identify required (critical) working ranges and compare with model working range

substantial models

systematic analysis and documentation of accuracy, credibility and working range

Common Pitfalls

discrete events in continuous world

discretization artefacts e.g. stepwise simulations

(too) systematic input data

random data show different behavior e.g. memory fragmentation

fragile model

small model change results in large shift in results

self fulfilling prophecy

price erosions + cost increase (inflation) -> bankruptcy

Worst Case Questions

Which design assumptions have a big impact on system performance?

What are the worst cases for these assumptions?

How does the system behave in the worst case?

- a. poor performance within spec
- b. poor performance not within spec
- c. failure -> reliability issue

FMEA-like Analysis Techniques

safety hazard analysis	potential hazards	damage	measures
reliability FMEA	failure modes exceptional cases	effects	measures
security	vulnerability risks	consequences	measures
maintainability	change cases	impact, effort, time	decisions
performance	worst cases	system behavior	decisions

Brainstorming Phases

wave 1: the obvious

wave 2: more of the same

wave 3: the exotic, but potentially important

don't stop too early with brainstorming!

Different Viewpoints for Analysis

usage context

new product
e.g. WoW extension
merger
automated access

new functions new interfaces new media new standards

system

cache/memory trashing garbage collection critical sections local peak loads intermittent HW failure

power failure network failure new SW release roll back to old SW release

life cycle context

Exercise Analysis of Models

Determine for a few models their **credibility**, **accuracy**, and **working** range.

- Identify top 3 credibility risks
 - identify biggest uncertainties in inputs, abstractions and realization
- Estimate accuracy of results; quantitative, e.g. order 1% or 50%
 - based on most significant inaccuracies of inputs and assumed model propagation behavior
- Identify relevant working range risks
 - identify required (critical) working ranges and compare with model working range

Modeling

From Chaos...

Many Light Models, few Substantial Models

... to some Order

Accuracy, Credibility, Working Range

Module 39, Wrap-up

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module provides various means to consolidate architectures.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.1

Consolidating Architecture Overviews

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation provides guidelines and means to capture architecture overviews. Main challenge is to maintain the overview across multiple views. Architecture Overview A3s One support multi-view. Another challenge is to make an overview accessible for a wide range of stakeholders. The architecture description should therefor be visualized such that it fits the mental model of the audience.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0.2

Maturing an Architecture Description

fast
low threshold
changing rapidly
volatile
informal

more effort
evolving slowly
non-volatile
slightly more formal

major effort controlled change non-volatile formal

Architecture Overview A3

simplified from http://www.gaudisite.nl/BorchesCookbookA3architectureOverview.pdf

A3s to Capture Architecture Overviews

multiple related views

quantifications

one topic per A3

capture "hot" topics

digestable (size limitation)

source: PhD thesis Daniel Borches http://doc.utwente.nl/75284/

practical close to stakeholder experience

Example of A3 Architecture Overview

Example of SubSea A3 Architecture Overview

Multiple Levels of A3s

T-shape Presentation

Guidance from ArchitectingForum.org

- 1.1 One of several prerequisites for architecture creative synthesis is the definition of **5-7 specific key drivers** that are critical for success, along with the rationale behind the selection of these items
- 2.1. The essence of a system can be captured in about 10 models/views
- 2.2. A **diversity** of architecture descriptions and models is needed: languages, schemata and the degree of formalism.
- 2.3. The level of **formality** increases as we move closer to the implementation level.

from http://www.architectingforum.org/bestpractices.shtml

Exercise Wrap-Up

Capture your work done during the course, e.g. make photos of the flip charts.

Make a list of questions, assumptions, biggest uncertainties and unknowns

Make a list of lessons learned

Make a plan for the **homework**

Consolidating Architectures

Maturing, from Light to Heavy

A3 Architecture Overview

simplified from http://www.gaudisite.nl/BorchesCookbookA3architectureOverview.pdf

Subsea A3

Multiple Levels of A3s

Recommendations as Red Thread

SEMA Homework Assignment

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This document described the homework assignment for the SEMA course. The homework is made and delivered incrementally, so that the teacher can provide feedback during the assignment.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023 status: draft version: 0.3

Group Assignment

Submit each step to the teacher, and process feedback in the next step

Step 1. weeks 1..3

- Consolidate work of course in 20 slide presentation as baseline.
- Search for answers to the main questions, biggest uncertainties and unknowns, validate main assumptions.
- Elaborate most relevant models.
- Discuss your work with other stakeholders to collect more facts and figures and for erly validation

Step 2. weeks 4..6

- Transform the presentation into a T-shape presentation
- Identify gaps in the "T"
- Make simple models to eliminate the gaps

Step 3 weeks 7..9

- Identify required changes in models made so far, due to increased insight;
- Change one of the models accordingly.
- Evolve the T-shape presentation (max 20 slides); the target audience of this presentation is your management.
- Present to company management
- Identify next models to be made, measurements to be done, or fact finding to take place.
- Update the presentation with feedback from management and a list of future work.

Individual Assignment

Write an individual reflection report after finishing the group assignment, answering the following questions:

What are the main gaps in the current proposal and presentation? What 3 gaps will you address first, and why?

In retrospect, formulate a problem statement that triggered the outcoming presentation and underlying modeling effort.

What would you do differently if you would have to prepare this presentation again?

How and what are you going to apply elements of this course in practice?

Be specific and use examples.

preferred size 2 A4s, max 4 A4s.

Submission Instructions

Submission instructions

use for all deliverables the following conventions:

filename: SEMA <your name or team> <subject>.<version>.<extension>

e.g. SEMA WOSteam presentation.2.doc

or SEMA John Student individual report.1.docx

email to: <gerrit • muller@usn • no>

subject: SEMA <subject>

and submit in WiseFlow before the deadline.

"standard" file types preferred, e.g. pdf, jpg, doc, ppt, vsd, docx, xls, xlsx, ppt, pptx

