
Reliability of Software Intensive Systems
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The amount of software in many systems increases exponentially. This increase
impacts the reliability of these systems. In the source code of software many
hidden faults are present. These hidden faults can transform into errors during
the system life cycle, due to changes in the system itself or in the context of the
system.
We will discuss the current trends and potential directions for future solutions of
an increasing reliability problem.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 6, 2020
status: draft
version: 0.2

reduce functionality

reduce code

more procedures

more/longer testing

improve way-of-

working

more formality

more automation

shared

understanding

improve robustness

improve detection
tolerant interfaces

robust patterns

improve recovery
more feedback

improve reliability

within cost&time

without performance

penalty

with increasing

requirements

increasing #suppliers

#sites, et cetera

more standardization

early integration

Boderc

Tangram

Ideals

Tangram

Tangram

Trader

Trader

Trader

Figure of ContentTM

Introduction

+ ESI

+ Speaker

Exploration

+ trends

+ consequences for reliability

+ potential solutions

Research Projects

+ Trader

+ Tangram

+ Ideals

+ Boderc

conclusion

Reliability of Software Intensive Systems
2 Gerrit Muller

version: 0.2
September 6, 2020

RSIScontent

Embedded Systems Institute (ESI)

Mission

To advance industrial innovation and academic excellence in

embedded systems engineering (ESE).

Vision

ESI and its partners create and apply world-class ESE methods.

7 Founders:

Industry (Philips, ASML, Océ)

Universities (Twente, Delft, Eindhoven)

Knowledge Institutes (TNO)

television

printer

wafersteppercardio X-ray system

GSM

Reliability of Software Intensive Systems
3 Gerrit Muller

version: 0.2
September 6, 2020

RSISwhatIsESI

ESI Research Agenda

Embedded Systems Engineering

evolvability

performance

reliability

in relation to all other system qualities:

security, power, cost, size, et cetera

Reliability of Software Intensive Systems
4 Gerrit Muller

version: 0.2
September 6, 2020

RSISresearchAgenda

Industry as Laboratory

research

industry

apply new
engineering

methods
hypothesis

evaluate
observe
results

improve

challenging

problems

application

playground

source of

inspiration

Reliability of Software Intensive Systems
5 Gerrit Muller

version: 0.2
September 6, 2020

IALAindustryAsLaboratory

Who is Gerrit Muller?

CT

OSS

NM

X-ray

MR EasyVision

m
a

n
a

g
e

r
s
y
s
te

m

e
n

g
in

e
e

ri
n

g

Gaudí

1980 1990 2000

Philips Medical ASML
Philips
NatLab

ESI

industrial experience research
time pressure

cost constraints

pragmatics

products

sales reflection

evidence

exposure
lots of people

education

B
u

s
k
e

ru
d

Reliability of Software Intensive Systems
6 Gerrit Muller

version: 0.2
September 6, 2020
FIESAwhoIsGerrit

Gaudi Systems Architecting

www.gaudisite.nl
deze lezing:
www.gaudisite.nl/ReliabilityOfSoftwareIntensiveSystemsSlides.

pdf

Reliability of Software Intensive Systems
7 Gerrit Muller

version: 0.2
September 6, 2020

www.gaudisite.nl
www.gaudisite.nl/ReliabilityOfSoftwareIntensiveSystemsSlides.pdf
www.gaudisite.nl/ReliabilityOfSoftwareIntensiveSystemsSlides.pdf

Exploration of Reliability

Introduction

+ ESI

+ Speaker

Exploration

+ trends

+ consequences for reliability

+ potential solutions

Research Projects

+ Trader

+ Tangram

+ Ideals

+ Boderc

conclusion

Reliability of Software Intensive Systems
8 Gerrit Muller

version: 0.2
September 6, 2020

RSIScontentExploration

Trends in Embedded Systems

How to survive in

innovative

domains?

fast moving market

fast moving technologyc
o

m
p

le
x
 v

a
lu

e
 c

h
a

in
s

in
c
re

a
s
e

d
 i
n

te
g

ra
ti
o

n

Reliability of Software Intensive Systems
9 Gerrit Muller

version: 0.2
September 6, 2020

ECMAproblem

Increased Team Size

1000

100

10

hist
oric

 tr
end

our challenge

re
q

u
ir
e

d
 t
e

a
m

 s
iz

e

year

1995 2000 2005 2010

Reliability of Software Intensive Systems
10 Gerrit Muller

version: 0.2
September 6, 2020

DYOFteamsize

Number of Faults Propertional With Code Size

1000

10Mloc

100

1 Mloc

10

100 kloc

m
a

n
y
e

a
rs

 a
n

d
 L

O
C

(l
in

e
s
 o

f
c
o

d
e
)

p
e

r
p

ro
d

u
c
t

1990 1995 2000 2005

1000

10k

ty
p

ic
a

l
a

m
o

u
n

t
o

f

e
rr

o
rs

 p
e

r
p

ro
d

u
c
t

Based on average

3 errors/kloc

Reliability of Software Intensive Systems
11 Gerrit Muller

version: 0.2
September 6, 2020

ASMLproblem

The Hard Reset Syndrome: Power Down Needed!

Hard Reset Required:

Cell Phone

Television

PC

Beamer

Car

Coffee Machine

DVD player

Airbus

Pilot announces a flight delay,

due to computer problems.

A complete reset is required.

The flight entertainment system

also show a reset:

a complete Linux boot.

This reboot hangs:

server xxx not found

Reliability of Software Intensive Systems
12 Gerrit Muller

version: 0.2
September 6, 2020

RSIShardReset

How to Make SW Intensive Systems Reliable

reduce functionality

reduce code

more procedures

more/longer testing

improve way-of-

working

more formality

more automation

shared

understanding

improve robustness

improve detection
tolerant interfaces

robust patterns

improve recovery
more feedback

improve reliability

within cost&time

without performance

penalty

with increasing

requirements

increasing #suppliers

#sites, et cetera

more standardization

early integration

Reliability of Software Intensive Systems
13 Gerrit Muller

version: 0.2
September 6, 2020

RSISsolutions

Reliability Research

Introduction

+ ESI

+ Speaker

Exploration

+ trends

+ consequences for reliability

+ potential solutions

Research Projects

+ Trader

+ Tangram

+ Ideals

+ Boderc

conclusion

Reliability of Software Intensive Systems
14 Gerrit Muller

version: 0.2
September 6, 2020

RSIScontentResearch

Example Trader Project

Trader Television Related Architecture and

Design to Enhance Reliability

Objective: Develop method & tools to ensure

reliable consumer electronics products

Research

agenda: System Reliability

Domain: Digital TV

CIP: Philips Semiconductors

Partners: Philips CE, Tass, and Research

DTI, IMEC, TUD, TU/e, UL, UT, ESI

Timeline: 9/2004 – 9/2008, 22 Fte

Overview

Poor reliability has severe business impact

Industrial Relevance

• Customer expectation of TV reliability is high
– Little tolerance for technical problems

• 100% fault-free design is not achievable

• High volume market implies high risks if

reliability problems occur

– Low product margin leaves no buffer for service costs

– Service center costs multiplied by number of complaints

– Market share reduction likely, i.e. customers buy

another brand

• (On) Time to market is critical

– Missing fixed shipping gates costs millions of dollars

Poor reliability has severe business impact

Industrial Relevance

• Customer expectation of TV reliability is high
– Little tolerance for technical problems

• 100% fault-free design is not achievable

• High volume market implies high risks if

reliability problems occur

– Low product margin leaves no buffer for service costs

– Service center costs multiplied by number of complaints

– Market share reduction likely, i.e. customers buy

another brand

• (On) Time to market is critical

– Missing fixed shipping gates costs millions of dollars

User Perceived ReliabilityTrader Domain Trends Trader Domain Trends

TV complexity increase follows the PC world

from “Display movies over antenna”
to “Display anything over everything”

Connectivity
Cameras, JPEG, flash

cards, HDD, MP3, Web

browser, Ethernet, USB,

etc…

Broadcast

ATSC, DVB, ISDB,

Analog

Terrestrial,

Satellite, Cable

• Objective
– Determine the user-perceived severity of a product failure mode

• Methodology
– Create a model considering

relevant factors
• User-perceived loss-of-functionality

• User-perceived reproducibility

• Failure-frequency

• Work-around difficulty

• User-group characteristics

• Failure characteristics

• ….

– Validate model

– Evaluate and suggest system failure recovery strategies
• The recovery strategy may not annoy the user even more!

0160576Total:

……

054Loss of Function /

time / Behavior

523Solvability

543Reproducibility

514Frequency

544Function

importance

3

(JPEG)

21Aspects (all

depends on user)

Reliability of Software Intensive Systems
15 Gerrit Muller

version: 0.2
September 6, 2020

RSIStrader

Increasing Code Size in Televisions

1965 1979

2000 1990

1 kB

64 kB2 MB

Moore's law

F
ro

m
:
C

O
P

A
 t
u

to
ri
a

l,
 R

o
b

 v
a

n
 O

m
m

e
ri
n

g

Reliability of Software Intensive Systems
16 Gerrit Muller

version: 0.2
September 6, 2020

LWAmooresLawRvO

Research: System Awareness to Improve Reliability

monitor
customer expectations
system failure model

awareness

system

correction

user input system output

Reliability of Software Intensive Systems
17 Gerrit Muller

version: 0.2
September 6, 2020

RSIStraderAwareness

Research: Code Analysis to Improve Reliability

Reliability of Software Intensive Systems
18 Gerrit Muller

version: 0.2
September 6, 2020

RSIStraderCodeAnalysis

Quality Degradation Caused by Shit Propagation

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Reliability of Software Intensive Systems
19 Gerrit Muller

version: 0.2
September 6, 2020

BLOATshitPropagation

Example of Shit Propagation

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Reliability of Software Intensive Systems
20 Gerrit Muller

version: 0.2
September 6, 2020

BLOATshitPropagationExample

Example Tangram Project

Integration & Test

Reliability of Software Intensive Systems
21 Gerrit Muller

version: 0.2
September 6, 2020

RSIStangram

Moore’s Law

250
180

130
100

70
50

1997 1999 2001 2003 2005 2007

lin
e

w
id

th
in

 n
m

100

1000

10

Reliability of Software Intensive Systems
22 Gerrit Muller

version: 0.2
September 6, 2020

ASMLmooresLaw

Challenge: Exponential Increase

performance

feedback and

adjustments

hw and sw

components

imaging

overlay

productivity

complexity
reliability

robustness

innovation

Reliability of Software Intensive Systems
23 Gerrit Muller

version: 0.2
September 6, 2020
ASMLproblemIRC

4 Views on a Waferstepper

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..

uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

laser

light source

illuminator

beam

shaping

lens

projection

reticle stage

positioning

wafer stage

positioning

m
e

a
s
u

re
m

e
n

t

a
lig

n
m

e
n

t,
 l
e

v
e

lli
n

g

reticle

handler

input/output

wafer

handler

input/output

C&T

contanimation,

temperature

system

control

coordination

light

reticles

wafers

laser
illumi-

nator
lens

reticle

stage

wafer

stage

measure-

ment

reticle

handler

wafer

handler
C&T

system

control

coordination

vertic

al

motio

n

hori-

zontal

motio

n

vertic

al

motio

n

hori-

zontal

motio

n

ethernet

VMEVME

250

mm/s

wafer

reticle

slit

v
y

t

v
x

e
x
p

o
s
e

e
x
p

o
s
e

s
te

p

dynamic exposure through slit

subsystems control hierarchy

kinematic

physics/optics

Reliability of Software Intensive Systems
24 Gerrit Muller

version: 0.2
September 6, 2020

EBMIsystemDiagrams

Research: Test Strategy

2

0

1

0

1

1

Test

t4

2

1

0

1

1

0

Test

t5

1113C

10%0001

Fault

state 5

10%0001

Fault

state 4

10%1001

Fault

state 3

10%0101

Fault

state 2

10%0011

Fault

state1

P

Test

t3

Test

t2

Test

t1

Test

0S \ T

2

0

1

0

1

1

Test

t4

2

1

0

1

1

0

Test

t5

1113C

10%0001

Fault

state 5

10%0001

Fault

state 4

10%1001

Fault

state 3

10%0101

Fault

state 2

10%0011

Fault

state1

P

Test

t3

Test

t2

Test

t1

Test

0S \ T

Balancing functionality, quality and time/cost
(over 20 % reduction of integration & test time)

Dynamic simulation of integration & test approach:
1. Create model (modules, interfaces, faults, tests)

2. Execute model at any time

3. Balancing based on time, cost and remaining risk.

Reliability of Software Intensive Systems
25 Gerrit Muller

version: 0.2
September 6, 2020

RSIStangramTestStrategy

Example Ideals Project

code size cross cutting concerns
reduce by

refactoring

Reliability of Software Intensive Systems
26 Gerrit Muller

version: 0.2
September 6, 2020

RSISideals

Example Boderc Project

31x5E 2050 2090

Reliability of Software Intensive Systems
27 Gerrit Muller

version: 0.2
September 6, 2020

IALAdomain

Boderc Goal

A specific methodology

to predict

system performance

within industrial constraints and restricted design space

and analyze,

discuss, document,

and communicate

throughput, quality

power

computing

response time

people, process,

project duration,

and cost

multi-

disciplinary

Boderc goal = based on

modeling

Reliability of Software Intensive Systems
28 Gerrit Muller

version: 0.2
September 6, 2020

BS06bodercGoal

Shared Understanding by Modeling

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

system

multi-disciplinary

mono-disciplinary

n
u

m
b

e
r

o
f

d
e

ta
ils

back-of-the-
envelop

formula
based

executable

Reliability of Software Intensive Systems
29 Gerrit Muller

version: 0.2
September 6, 2020

ESICpyramidModels

Many Models Needed to Understand System

7. Thermo

modeling

8. Control

architecture

9. Virtual

printer models

10. Stepper

motors

small, simple, goal-driven models

shorter cycle time, less cyclesn
u

m
b

e
r

o
f

d
e

ta
ils

10
0

10
1

10
6

10
5

10
4

10
3

10
2

10
7

6

3

2

5

4

6'

7
8

9 1

01

1

6. Kinematic modeling

GUI

‘Life’ Animation
vario

shorter product creation lead time

Reliability of Software Intensive Systems
30 Gerrit Muller

version: 0.2
September 6, 2020

BS06mdModels

Coverage of Reliability by ESI Projects

reduce functionality

reduce code

more procedures

more/longer testing

improve way-of-

working

more formality

more automation

shared

understanding

improve robustness

improve detection
tolerant interfaces

robust patterns

improve recovery
more feedback

improve reliability

within cost&time

without performance

penalty

with increasing

requirements

increasing #suppliers

#sites, et cetera

more standardization

early integration

Boderc

Tangram

Ideals

Tangram

Tangram

Trader

Trader

Trader

Reliability of Software Intensive Systems
31 Gerrit Muller

version: 0.2
September 6, 2020

RSIScoverage

Towards a Conclusion, Some more Trends

Introduction

+ ESI

+ Speaker

Exploration

+ trends

+ consequences for reliability

+ potential solutions

Research Projects

+ Trader

+ Tangram

+ Ideals

+ Boderc

conclusion

Reliability of Software Intensive Systems
32 Gerrit Muller

version: 0.2
September 6, 2020

RSIScontentConclusion

Applications depend on chain of systems

users

Network

Providers

Service

Providers

Content

Providers

Home

Server

infotainment

appliance
watch video

browse photo's

calendar

and much more...

Reliability of Software Intensive Systems
33 Gerrit Muller

version: 0.2
September 6, 2020
CVCproductChain

Interoperability: systems get connected at all levels

world

hospital

radiology department

MR scanner

acquisition
recon-

struction
display

host

workstation storage printer

workstation archive

PC beamerRIS

other

examination

rooms

HIS LIS

other clinical

departments

PC security admin

clinicians at

home

patients at

home

patients

away

clinicians

away

clinical

experts
suppliers

hospital

or other

clinical

center

Reliability of Software Intensive Systems
34 Gerrit Muller

version: 0.2
September 6, 2020

DYOFscopeOfInteroperability

Multi dimensional interoperability

applications
cilinical analysis

clinical support

administrative

financial

workflow

vendors
Philips

GE

Siemens

releases
R5

R6.2

R7.1

standards
Dicom

HL7

XML

media, networks
DVD+RW

memory stick

memory cards

bluetooth

11a/b/g

UTMS

languages

cultures
USA, UK,

China, India,

Japan, Korea

France, Germany

Italy, Mexico

based on multiple

delivered by multipleintegrating multiple in multiple

and multiple and multiple

Reliability of Software Intensive Systems
35 Gerrit Muller

version: 0.2
September 6, 2020

DYOFmultiInteroperability

Interopearbility Trends and Research Challenges

trends

market dynamics globalization

hype waves

Moore's law

reliability complexity

heterogeneity

dynamics

#engineers involved

interoperability emerging behavior

future vs legacy

heterogeneous vendors

dynamics (continually changing)

(partial) solutions

standards economical interests

latency due to slow process

most fundamental solution

design patterns in system feedback

human-in-the-loop feedback

semantic understanding

containment

gateway

....

new research challenges!

Reliability of Software Intensive Systems
36 Gerrit Muller

version: 0.2
September 6, 2020

RSISinteroperability

Conclusion

ty
p

ic
a

l
a

m
o

u
n

t
o

f

e
rr

o
rs

 p
e

r
p

ro
d

u
c
t

reduce impact of

hidden faults

on system reliability

1000

10Mloc

100

1 Mloc

10

100 kloc

m
a

n
y
e

a
rs

 a
n

d
 L

O
C

(l
in

e
s
 o

f
c
o

d
e
)

p
e

r
p

ro
d

u
c
t

1990 1995 2000 2005

1000

10k

Based on average

3 errors/kloc

less code

less errors/kloc

Reliability of Software Intensive Systems
37 Gerrit Muller

version: 0.2
September 6, 2020

RSISconclusion

