
Reliability of Software Intensive Systems
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The amount of software in many systems increases exponentially. This increase
impacts the reliability of these systems. In the source code of software many
hidden faults are present. These hidden faults can transform into errors during
the system life cycle, due to changes in the system itself or in the context of the
system.
We will discuss the current trends and potential directions for future solutions of
an increasing reliability problem.
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Embedded Systems Institute (ESI)

Mission

To advance industrial innovation and academic excellence in 

embedded systems engineering (ESE). 

Vision

ESI and its partners create and apply world-class ESE methods. 

7 Founders:

Industry (Philips, ASML, Océ)

Universities (Twente, Delft, Eindhoven)

Knowledge Institutes (TNO)
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ESI Research Agenda

Embedded Systems Engineering

evolvability

performance

reliability

in relation to all other system qualities:

security, power, cost, size, et cetera
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Gaudi Systems Architecting

www.gaudisite.nl
deze lezing:
www.gaudisite.nl/ReliabilityOfSoftwareIntensiveSystemsSlides.
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Trends in Embedded Systems
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Increased Team Size
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Number of Faults Propertional With Code Size
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The Hard Reset Syndrome: Power Down Needed!

Hard Reset Required:

Cell Phone

Television

PC

Beamer

Car

Coffee Machine

DVD player

Airbus

Pilot announces a flight delay,

due to computer problems.

A complete reset is required.

The flight entertainment system

also show a reset:

a complete Linux boot.

This reboot hangs:

server xxx not found
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How to Make SW Intensive Systems Reliable
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Example Trader Project

Trader Television Related Architecture and

Design to Enhance Reliability

Objective: Develop method & tools to ensure 

reliable consumer electronics products

Research

agenda: System Reliability

Domain: Digital TV

CIP: Philips Semiconductors

Partners: Philips CE, Tass, and Research

DTI, IMEC, TUD, TU/e, UL, UT, ESI

Timeline: 9/2004 – 9/2008, 22 Fte

Overview

Poor reliability has severe business impact

Industrial Relevance

• Customer expectation of TV reliability is high
– Little tolerance for technical problems

• 100% fault-free design is not achievable

• High volume market implies high risks if 

reliability problems occur

– Low product margin leaves no buffer for service costs 

– Service center costs multiplied by number of complaints

– Market share reduction likely, i.e. customers buy 

another brand

• (On) Time to market is critical

– Missing fixed shipping gates costs millions of dollars

Poor reliability has severe business impact

Industrial Relevance

• Customer expectation of TV reliability is high
– Little tolerance for technical problems

• 100% fault-free design is not achievable

• High volume market implies high risks if 

reliability problems occur

– Low product margin leaves no buffer for service costs 

– Service center costs multiplied by number of complaints

– Market share reduction likely, i.e. customers buy 

another brand

• (On) Time to market is critical

– Missing fixed shipping gates costs millions of dollars

User Perceived ReliabilityTrader Domain Trends Trader Domain Trends 

TV complexity increase follows the PC world

from “Display movies over antenna”
to “Display anything  over everything”

Connectivity
Cameras, JPEG, flash 

cards, HDD, MP3, Web 

browser, Ethernet, USB, 

etc…

Broadcast

ATSC, DVB, ISDB, 

Analog

Terrestrial, 

Satellite, Cable

• Objective
– Determine the user-perceived severity of a product failure mode

• Methodology
– Create a model considering 

relevant factors
• User-perceived loss-of-functionality

• User-perceived reproducibility 

• Failure-frequency

• Work-around difficulty

• User-group characteristics

• Failure characteristics

• ….

– Validate model 

– Evaluate and suggest system failure recovery strategies
• The recovery strategy may not annoy the user even more!

0160576Total:

……

054Loss of Function / 

time / Behavior

523Solvability

543Reproducibility

514Frequency

544Function 

importance

3 

(JPEG)

21Aspects (all 

depends on user)
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Increasing Code Size in Televisions
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Research: System Awareness to Improve Reliability

monitor
customer expectations
system failure model

awareness

system

correction

user input system output
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Research: Code Analysis to Improve Reliability
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Quality Degradation Caused by Shit Propagation

needed code

repair code

needed code

bad code
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Example of Shit Propagation

Class Old:

    capacity = startCapacity

    values = int(capacity)

    size = 0

    def insert(val):

        values[size]=val

        size+=1

        if size>capacity:

            capacity*=2

            relocate(values,

                    capacity)

Class New:

    capacity = 1

    values = int(capacity)

    size = 0

    def insert(val):

        values[size]=val

        size+=1

        capacity+=1

        relocate(values,

                    capacity)

        

Class DoubleNew:

    capacity = 1

    values = int(capacity)

    size = 0

    def insert(val):

        values[size]=val

        size+=1

        capacity+=1

        relocate(values,

                    capacity)

    def insertBlock(v,len):

        for i=1 to len:

            insert(v[i])

copy 
paste

copy 
paste
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Example Tangram Project

Integration & Test
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Moore’s Law
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Challenge: Exponential Increase
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Research: Test Strategy
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Balancing functionality, quality and time/cost
(over 20 % reduction of integration & test time)

Dynamic simulation of integration & test approach:
1. Create model (modules, interfaces, faults, tests)

2. Execute model at any time

3. Balancing based on  time, cost and remaining risk.
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Example Ideals Project

code size cross cutting concerns
reduce by 

refactoring
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Example Boderc Project
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Boderc Goal

A specific methodology

to predict

system performance

within industrial constraints and restricted design space

and analyze,

discuss, document,

and communicate

throughput, quality

power

computing

response time

people, process,

project duration,

and cost

multi-

disciplinary

Boderc goal = based on

modeling
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Shared Understanding by Modeling
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Many Models Needed to Understand System
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Coverage of Reliability by ESI Projects
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Applications depend on chain of systems

users

Network
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Interoperability: systems get connected at all levels

world
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Multi dimensional interoperability

applications
cilinical analysis

clinical support

administrative

financial

workflow

vendors
Philips

GE

Siemens

releases
R5

R6.2

R7.1

standards
Dicom

HL7

XML

media, networks
DVD+RW

memory stick

memory cards

bluetooth

11a/b/g

UTMS

languages

cultures
USA, UK,

China, India,

Japan, Korea

France, Germany

Italy, Mexico

based on multiple

delivered by multipleintegrating multiple in multiple

and multiple and multiple
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Interopearbility Trends and Research Challenges

trends

market dynamics globalization

hype waves

Moore's law

reliability complexity

heterogeneity

dynamics

#engineers involved

interoperability emerging behavior

future vs legacy

heterogeneous vendors

dynamics (continually changing)

(partial) solutions

standards economical interests

latency due to slow process

most fundamental solution

design patterns in system feedback

human-in-the-loop feedback

semantic understanding

containment

gateway

....

new research challenges!
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Conclusion
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