
The realization view
-

complex

compression

simple

compression

100

200

150

250

1.5 2.0 2.51.00.50.0
10020 40 60 80 120

50

$

s
o
u
rc

e
:

h
tt
p

:/
/w

w
w

.m
p
c
o
m

p
.c

o
m

/

S
e
p
te

m
b
e
r

5
,
2
0
0
2

GHz
GByte

performance

effort needed

to obtain required

storage capacity

effort needed

to obtain required

processing performance

no compression

m
an
-y
ea
r

5

10

15

20

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

pentium4

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The realization view looks at the actual technologies used and the actual implemen-
tation. Methods used here are logarithmic views, micro-benchmarks and budgets.
Analysis methods with respect to safety, reliability and security provide a link back
to the functional and conceptual views.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.1 status: preliminary draft June 21, 2020

1 Budgets

The implementation can be guided by making budgets for the most important
resource constraints, such as memory size, response time, or positioning accuracy.
The budget serves multiple purposes:

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicit

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

Figure 1: Budget based design flow

Figure 1 shows a budget based design flow. The starting point of a budget is
a model of the system, from the conceptual view. An existing system is used to
get a first guidance to fill the budget. In general the budget of a new system is
equal to the budget of the old system, with a number of explicit improvements.
The improvements must be substantiated with design estimates and simulations
of the new design. Of course the new budget must fulfill the specification of the
new system, sufficient improvements must be designed to achieve the required
improvement.

Early measurements in the integration are required to obtain feedback once the
budget has been made. This feedback will result in design changes and could even

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 1

result in specification changes.

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Figure 2: Example of a memory budget

Figure 2 shows an example of an actual memory budget. This budget decom-
poses the memory in three different types of memory use: code (”read only”
memory with the program), object data (all small data allocations for control and
bookkeeping purposes) and bulk data (large data sets, such as images, which is
explicitly managed to fit the allocated amount and to prevent fragmentation). The
difference in behavior is an important reason to separate in different budget entries.
At the other hand the operating system and the system infrastructure provide means
to measure these 3 types at any moment, which helps for the initial definition, for
the integration and the verification.

The second decomposition direction is the process. The number of processes
is manageable, processes are related to specific development teams and again the
operating system and system infrastructure support measurement at process level.

2 Logarithmic views

A logarithmic positioning of requirements and implementation alternatives helps
to put these alternatives in perspective. In most designs we have to make design
choices which cover a very large dynamic range, for instance from nanoseconds
up to hours, days or even years. Figure 3 shows an example of requirements and
technologies on a logarithmic time axis.

”Fast” technologies can serve many slow requirements, but often slower technologies
offer other benefits, which offset their slowness. ”Slow” technologies offer more
flexibility and power, at the cost of performance. For instance real time executive
interrupt response time are very short, while reacting in a user task is slower,
but can access much more user level data and can interact more easy with other

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 2

D
is
k
se

ek

hu
m

an
 1
st ir

rit
at

io
n

th
re

sh
ol
d

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 2
nd ir

rit
at

io
n

th
re

sh
ol
d

ey
e-

ha
nd

 c
o-

or
di
na

tio
n

1
pa

ck
ag

e
tra

ns
fe

r

fa
st
 e

th
er

ne
t

(ps)

10
-12

(ns)

10
-9

(s)

10
-6

(ms)

10
-3

(s)

1

cy
cl
e

2
G
H
z
C
P
U

pu
re

 c
on

te
xt
 s
w
itc

h

D
R
A
M

 la
te

nc
y

1
by

te
 tr

an
sf
er

fa
st
 e

th
er

ne
t

ze
ro

 m
es

sa
ge

 tr
an

sf
er

ap
pl
 le

ve
l n

et
w
or

k

m
es

sa
ge

 e
xc

ha
ng

e

ap
pl
 le

ve
l m

es
sa

ge

ex
ch

an
ge

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 re

ac
tio

n
tim

e

hu
m

an
 e

ye

FO
4

in
ve

rte
r d

el
ay

D
R
A
M

 c
yc

le
 ti
m

e

10
0

H
z
TV

fra
m

e

10
0H

z
vi
de

o

pi
xe

l t
im

e

10
0H

z
vi
de

o
lin

e

from

low level to high level

processing times

from low to high level

storage/network

application

needs

light

travels

1 cm

Figure 3: Actual timing represented on a logarithmic scale

application level functions. Going from real time executive to a ”fat” operating
system slows down the interrupt response, with a wealth of other operating system
functionality (networking, storage, et cetera) in return. Again at user process
level the response needed is again bigger, with a large amount of application level
functionality in return (distribution, data management, UI management, et cetera).

Requirements itself also span such a large dynamic range from very fast (video
processing standards determining pixel rates) to much slower (select teletext page).

For every requirement a reasonable implementation choice is needed with respect
to the speed. Faster is not always better, a balance between fast enough, cost and
flexibility and power is needed.

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 3

3 Micro Benchmarking

The actual characteristics of the technology being used must be measured and
understood in order to make a good (reliable, cost effective) design. The basic
understanding of the technology is created by performing micro benchmarks: measuring
the elementary functions of the technology in isolation. Figure 4 lists a typical
set of micro-benchmarks to be performed. The list shows infrequent and often
slow operations and frequently applied operations, which are often much faster.
This classification implies already a design rule: slow operations should not be
performed often1.

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Figure 4: Typical micro benchmarks for timing aspects

The results of micro-benchmarks should be used with great care, the measure-
ments show the performance in totally unrealistic circumstances, in other words
it is the best case performance. This best case performance is a good baseline
to understand performance, but when using the numbers the real life interference
(cache disturbance for instance) should be taken into account. Sometimes additional
measurements are needed at a slightly higher level to calibrate the performance
estimates.

The performance measured in a micro benchmark is often dependent on a
number of parameters, such as the length of a transfer. Micro benchmarks are
applied with a variation of these parameters, to obtain understanding of the perfor-
mance as a function of these parameters. Figure 5 shows an example of the transfer
rate performance as a function of the block size.

For example measuring disk transfer rates will result in this kind of curves, due
to a combination of cycle time, seek time and peek transfer rate. This data can

1This really sounds as an open door, however I have seen many violations of this entirely trivial
rule, such as setting up a connection for every message, performing I/O byte by byte et cetera.
Sometimes such a violation is offset by other benefits, especially if a slow operation is in fact not very
slow and the brute force approach is both affordable as well as extremely straightforward (simple!)
then this is better than over-optimizing for efficiency.

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 4

ti
m

e

block
size

worst case

optimal block-size

toverhead

rate
-1

Figure 5: The transfer time as function of block size

be used in different ways: the slowest speed can be used, a worst case design, or
the buffer size can be tuned to obtain the maximum transfer rate. Both choices
are defensible, the conservative choice is costly, but robust, the optimized choice is
more competitive, but also more vulnerable.

4 Performance evaluation

The performance is conceptually modelled in the conceptual view, which is used
to make budgets in the realization view. An essential question for the architect is:
Is this design good? This question can only be answered if the criteria are known
for a good design. Obvious criteria are meeting the need and fitting the constraints.
However an architect will add some criteria himself, such as balanced and future-
proof.

Figure 6 shows an example of a performance analysis. The model is shown
at the top of the figure, as discussed in the conceptual view. The measurement
below the model shows that a number of significant costs have not been included
in the original model, although these are added in the model here. The original
model focuses on processing cost, including some processing related overhead.
However in practice overhead plays a dominant role in the total system perfor-
mance. Significant overhead costs are often present in initialization, I/O, synchro-
nization, transfers, allocation and garbage collection (or freeing if explicitly managed).

5 Assessment of added value

The implementation should be monitored with respect to its quality. The most
common monitoring is problem reporting and fault analysis. The architect should

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 5

overhead

trecon = nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

tcol-overhead

tcorrections(nx ,ny)trow-overhead +tcontrol-overhead+

) +

) +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead

filter computations

read I/O

write I/O

malloc, free
transpose

bookkeeping

number
crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Figure 6: Example of performance analysis and evaluation

maintain a quality assessment, based on the implementation itself. This is done by
monitoring size and change frequency. In order to do something useful with these
metrics some kind of value indicator is also needed. The architect must build up
a reference of ”value per size” metrics, which he can use for this a priori quality
monitoring.

Figure 7 shows an example of a performance cost curve, in this example Pentium4
processors and hard disks. Performance and cost are roughly proportional. For
higher performance the price rises faster than the performance, At the low perfor-
mance side the products level out at a kind of bottom price, or that segment is not
at all populated (minimum Pentium4 performance is 1.5 GHz, the lower segment
is populated with Celerons, which again don’t go down to any frequency).

The choice of a solution will be based on the needs of the customer. To get
grip on these needs the performance need can be translated in the sales value.
How much is the customer willing to pay for performance? In this example the
customer is not willing to pay for a system with insufficient performance, neither
is the customer willing to pay much for additional performance (if the system does
the job, then it is OK). This is shown in figure 8, with rather non-linear sales value
curves.

Another point of view is the development effort. Over-dimensioning of processing
or storage capacity simplifies many design decisions resulting in less development
effort. In figure 9 this is shown by the effort as function of the performance.

For example for the storage capacity three effort levels can be distinguished:

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 6

100

200

150

250

1.5 2.0 2.51.00.50.0
10020 40 60 80 120

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

50

$

pentium4

s
o

u
rc

e
:

h
tt
p

:/
/w

w
w

.m
p

c
o

m
p

.c
o

m
/

S
e

p
te

m
b

e
r

5
,
2

0
0

2

GHz
GByte

performance

performance / cost

storage capacity

performance / cost

processing performance

Figure 7: Performance Cost, input data

with a low cost (small capacity) disk a lot of tricks are required to fit the application
within the storage constraint, for instancing by applying complex compression
techniques. The next level is for medium cost disks, which can be used with simple
compression techniques, while the expensive disks don’t need compression at all.

Figure 10 show that many more issues determine the final choice for the ”right”
cost/performance choice: the capabilities of the rest of the system, the constraints
and opportunities in the system context, trade-offs with the image quality. All of the
considerations are changing over time, today we might need complex compression,
next year this might be a no-brainer. The issue of effort turns out to be related with
the risk of the development (large developments are more risky) and to time to
market (large efforts often require more time).

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 7

100

200

150

250

1.5 2.0 2.51.00.50.0
10020 40 60 80 120

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

50

$

pentium4

s
o

u
rc

e
:

h
tt
p

:/
/w

w
w

.m
p

c
o

m
p

.c
o

m
/

S
e

p
te

m
b

e
r

5
,
2

0
0

2

GHz
GByte

performance

sales value

processing performance

sales value

storage capacity

Figure 8: Performance Cost, choice based on sales value

complex

compression

simple

compression

100

200

150

250

1.5 2.0 2.51.00.50.0
10020 40 60 80 120

50

$

s
o

u
rc

e
:

h
tt
p

:/
/w

w
w

.m
p

c
o

m
p

.c
o

m
/

S
e

p
te

m
b

e
r

5
,
2

0
0

2

GHz
GByte

performance

effort needed

to obtain required

storage capacity

effort needed

to obtain required

processing performance

no compression

m
an
-y
ea
r

5

10

15

20

5400 rpm

7200 rpm

7200 rpm,

8 MB buffer

pentium4

Figure 9: Performance Cost, effort consequences

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 8

costprocessing

performance

storage

capacity

image

quality

effort

time to market

user value

risk

future

evolution

1

2

3

rest of

system

system

context

2

3

Figure 10: But many many other considerations

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 9

6 Safety, Reliability and Security Analysis

Qualities such as safety, reliability and security depend strongly on the actual
implementation. Specialized engineering disciplines exists for these areas. These
disciplines have developed their own methods. One class of methods relevant for
system architects is the class of analysis methods, which start with a (systematic)
brainstorm, see figure 11.

potential hazardssafety
hazard analysis

reliability
FMEA

failure modes

security vulnerability risks

probability

severity

effects

consequences

measures

measures

measures

analysis and
assessment

(systematic)
brainstorm

improve
design

Figure 11: Analysis methods for safety, reliability and security

Walk-through is another effective assessment method. A few use cases are
taken and together with the engineers the implementation behavior is followed
for these cases. The architect will especially assess the understandability and
simplicity of the implementation. An implementation which is difficult to follow
with respect to safety, security or reliability is suspect and at least requires more
analysis.

7 Acknowledgements

William van der Sterren and Peter van den Hamer invented the nice phrase micro
benchmarking.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 10

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

Version: 0.2, date: September 3 2002 changed by: Gerrit Muller
• updated figure Time axis
• added budget based design flow
• added cost performance figures
• added a lot of text

Version: 0.1, date: July 9 2002 changed by: Gerrit Muller
• updated figure Time axis

Version: 0, date: June 21 2002 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
The realization view
June 21, 2020 version: 0.1

University of South-Eastern Norway-NISE

page: 11

	Budgets
	Logarithmic views
	Micro Benchmarking
	Performance evaluation
	Assessment of added value
	Safety, Reliability and Security Analysis
	Acknowledgements

