Positioning the CAFCR Method in the World

SAAM SE practices NCOSE | Systems
ATAM 1071 e engineering o
Systems rechin

architecting Majer

» TRIZ Alshuller
Hi

441 Kuchten

CAFCR and threads.

Soni
4views of reasoning

ZIFA zachman
9126 150
VAP Bredemeyer

mult-disciplinary methods also
software architecting | systems architecting | addressing process | very generic
methods and organization methods

mono-disciplinary engineering methods

Gerrit Muller
University of South-Eastern Norway-NISE
Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This chapter positions the CAFCR architecting methods realtive to other methods.
The other methods originate in software architecting, system architecting and
system engineering, and more general systems science. Some background is given
of the IEEE 1471 standard that has proven to be to be a useful fundament for the
CAFCR method.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudi documents are available at:
http://www.gaudisite.nl/

version: 1.5 status: finished September 3, 2020

1 Introduction

This chapter positions the “architectural reasoning” architecting method relative to
other engineering and architecting methods.

Section 2] describes work that is related to the research of architecting methods.
Section[3|articulates explicitly the specific contribution of this thesis. The IEEE 1471
is explained further in section] because its contents is highly relevant in this
context.

2 Related Work

Conventional disciplines, such as mechanical engineering, electronic engineering,
et cetera have a clear set of methods and tools. Students can learn the discipline by
attending universities and following their curriculums.

This is not the case for systems architecting. Only a few universities teach
systems architecting. There are multiple reasons for the fact that teaching systems
architecting methods at universities is difficult. First of all, sufficient depth of
engineering know-how is needed to be able to work in the architecting area. In
other words, a conventional discipline is a prerequisite to become an architect.

SAAM SE practices INCOSE
oy, Sy_stenjs varin | TRIZ AlltsITuI]er
1471 |EEE engineering Hitchins
4+1 Kruchten Systems Rechtin GST Heylighen
AVEDS Suif CAFCR and threads y > ! Maier (General System Theory)
of reasoning architecting
ZIFA Zachman
9126 ISO
VAP Bred o
redemeyer multi-disciplinary methods also
software architecting | systems architecting | addressing process very generic
methods methods and organization methods

mono-disciplinary engineering methods

Figure 1: Classification of architecting methods

Secondly, architecting is done for problems with a wider scope than conven-
tional engineering problems. The larger the scope, the more ill-defined a problem
becomes. The methods range from flexible for ill-defined problems to rigid for
well-defined problemsﬂ

'Of course this is an oversimplification. Sometimes agile methods are highly effective in well-
defined problems. Sometimes rigid methods can perform wonders in an ill-defined problem. In
general, mature methods are available for well-defined problems, while the uncertainty in ill-defined
methods requires more flexibility.

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 1
September 3, 2020 version: 1.5

Figure [I] shows a classification of architecting methods, with the scope of
the method as differentiating factor. The software architecting methods have the
smallest scope. System architecting methods widen the scope to system level. This
thesis addresses the multi-disciplinary systems architecting methods. The scope
can be further increased to include processes and organizational issues. The widest
scope pertains to very generic methods, which claim to be domain agnostic and
to create value by cross-fertilization across domains. At the bottom of the classi-
fication we find the mono-disciplinary methods, which are the fundamentals on
which all methods build.

2.1 Software Architecting Methods

A whole class of methods originate in the Information Technology (IT) world and
address software architecting. The software architecting methods do not address
the system level problems, such as hardware/software trade-offs.

The Software Engineering Institute at Carnegie Mellon University, [18] and [19],
increases the problem scope and puts a lot of emphasis on processes, and restricts
itself to software architecture. Examples of methods developed here are Software
Architecture Analysis Method (SAAM) [13]] and Architecture Trade Off Analysis
Method (ATAM) [[12].

Zachman provides a framework for enterprise architectures, see [20]. This
framework defines two dimensions with six aspects each, creating a space with 36
different views. Bredemeyer describes a nice visual method “The Visual Archi-
tecting Process” [4]. The Bredemeyer method provides context views and a path
from context views to design views. Both Zachman and Bredemeyer are software
oriented.

Well known multi-view software architecting methods are Soni [8]], and the
4+1 method from Kruchten [14]. These two methods use multiple views. The
scope of Soni methods, however, is completely limited to the technical solution
domain. Kruchten is also focused on the technical solution domain, but he makes
a small step into the problem domain by use cases in the fifth view.

ISO 9126 [[11] is a standard that consolidates a quality framework. The framework
addresses the same type of qualities that are discussed in chapter ??. Unfortunately
ISO 9126 limits itself to software only.

2.2 Multi-disciplinary System Architecting Methods

A further increase in scope can be found in the Systems Engineering Community,
with INCOSE[9] (International Council on Systems Engineering) as representative
organization. All stakeholders are taken into account and the full life-cycle is
emphasized. Examples of this approach can be found at the INCOSE web site [3].

Some standardization work has been done in the scope of systems, stakeholders

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 2
September 3, 2020 version: 1.5

and the full life cycle. An example is IEEE 1471, which is a framework that fits
into this scope, see section 4]

This thesis about architectural reasoning, based on the “CAFCR” method, also
addresses the scope of systems, their stakeholders, and the full life-cycle. Boundary
conditions to the methods in this thesis are structure and characteristics of the
business, the organizations, and the processes.

2.3 Methods also Addressing Process and Organization

The architect is often confronted with many more needs, worries, and complica-
tions, originating from human and business aspects. This broad working environment
is full of uncertainties. Rechtin and Maier [17] address this wider scope from
the architecting point of view. Martin [15] comes from the systems engineering
community. He provides a method that deals with all the complexity, but that has
less emphasis on the human aspects.

2.4 Very Generic Methods

Many system architecting and design methods are universally applicable. General
Systems Theory (GST), for example, addresses any kind of system, ranging from
economical, or ecological, to social, see for instance [[6] and [[7]. GST suffers from
being extremely abstract and difficult to apply, due to a broad scope and the generic
nature of the theory.

TRIZ [1] is a methodology for innovation that originates in Russia. A set of
innovation patterns is derived from studying large collections of inventions. These
patterns are transformed into innovation methods that can be applied to a very
broad range of applications. One of the starting points of TRIZ is that the way
of innovating in one domain provides inspiration for innovation in other domains.
TRIZ provides a number of useful insights.

The subtitle of this thesis, balancing genericity and specificity, indicates one
of the continuous struggles of the architect: the power and the beauty of generic
solutions versus the uniqueness of effective, individual solutions. Or in other
words, do we get carried away in generic thinking, or do we drown in the details?
In this thesis the scope will be limited to systems with embedded processors and
software. This still pertains to a very broad range of products: from wafersteppers
to televisions, and to systems on a chip).

3 What is the Unique Contribution of this Work?

This section discusses the unique contributions of the CAFCR method. Although
every single element mentioned here is present in one of the discussed methods,

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 3
September 3, 2020 version: 1.5

the uniqueness of CAFCR is the combined application of all these elements simul-
taneously.

Integral and Multi-disciplinary This work focuses on architecting methods on
the system level for embedded systems. As described in Subsection [2.1}
many methods focus only on a part of the multi-disciplinary system problem,
for instance only on the software architecture. A lot of architecting methods
provide more or less closed and complete solutions. The available methods
are partial methods from a systems viewpoint. The method described in this
thesis addresses the integration of results obtained with these more partial
methods. Also a number of multi-disciplinary system design submethods
are described in this thesis. The basis for this integration is the combined
use of CAFCR views, qualities, and threads of reasoning.

Goal-Oriented This method stresses the importance of being externally oriented.
Architecting must be goal-oriented or objective-driven. Many existing methods
do not take the goals and objectives into account.

Practical, based on Industrial Experience The method, which is based on a broad
industrial experience, addresses the real problemf] in system design. The
usability aspect can be seen in the light-weight use of formulas, and in the
association of many statements with common sense. Some of the published
methods are more academic, well thought through, but not really addressing
the problems in system design, and difficult to implement in the industrial
practice.

Flexible The wide application range of the creation of software and technology
intensive products, requires a flexible and adaptive method. The method
must provide guidance, and should not constrain the architect by forcing a
rigid harness on him. In principal the architecting method must be able to
integrate the results of any partial method.

Builds on standards The method builds on top of standards, such as ISO 9126 for
qualities and IEEE 1471. In fact the method can be viewed as an instantiation
of an IEEE 1471 method, see Section 4}

Support for short innovation cycles System engineering methods originate from
the aerospace domain, with very different reliability and safety requirements.
Such methods tend to be more rigid, resulting in very long development
cycles. This distinction of “slow but safe” domains versus “fast but less
reliable” domains disappears quickly. Cross-fertilization of these domains
can be very useful. In contrast to the aerospace domain the CAFCR method
is intended for domains with short innovation cycles.

*Many problems in system design are caused by unforeseen interactions between independent
designed functions or qualities. See for instance Chapter ?? for examples of system design problems
in the Medical Imaging case.

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 4
September 3, 2020 version: 1.5

4 IEEE 1471

System ha Architecture
ES
=
2
?
Architecture
Description
/+\ /%\ Consmtsufﬁ
has conforms .
Stakeholder B>>—<] concern |=-covers— <—1 o 7] view P—< model
? viewpoint T

Figure 2: The IEEE 1471 model for stakeholders, viewpoints and architecture
descriptions

Figure [Z] shows a somewhat simplified IEEE 1471 model. IEEE 1471 [2] is a
standard that describes a framework for architecting. The framework introduces a
number of important concepts:

Stakeholders People or organizations that have an interest in the system under
consideration.

Concerns The articulation of the needs and worries of the stakeholders.

Viewpoints The points of view used to describe part of the problem or solution.
IEEE 1471 makes a subtle difference between view and viewpoint. We ignore
this difference here.

Models Frequently used method to make problem and solution descriptions.

Architecture description The combination of stakeholders, concerns, viewpoints
and models to describe the architecture of a system.

The main contribution of IEEE 1471 is to provide a framework that covers all
of these aspects. The individual concepts have been in use by many architects for
a long time.

On top of providing the framework, IEEE 1471 also recognizes the fact that
complete consistency in the entire architectural description is an illusion. The
real world of designing complex systems is full of stakeholders with fuzzy needs,
often contradictory in itself and conflicting with needs of other stakeholders. The
insights of individual designers are also full of different and changing insights.
This notion of incomplete consistency is not an excuse for sloppy design; quite

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 5
September 3, 2020 version: 1.5

the opposite: recognizing the existence of inconsistencies is a much better starting
point for dealing with them. In the end, no important inconsistencies may be left
in the architecture description.

Architecture

Flattened \ | Architecture
into description

[—

Subset of which
architect is aware

Actually written
by architect(s)

Figure 3: The architecture description is by definition a flattened and poor repre-
sentation of an actual architecture.

IEEE 1471 makes another interesting step: it discusses the architecture description
not the architecture itself. The architecture is used here for the way the system is
experienced and perceived by the stakeholdersﬂ

This separation of architecture and architecture description provides an inter-
esting insight. The architecture is infinite, rich and intangible, denoted by a cloud
in figure[3] The architecture description, on the other hand, is the projection, and
the extraction of this rich architecture into a flattened, poor, but tangible description.
Such a description is highly useful to communicate, discuss, decide, verify, et
cetera. We should, however, always keep in mind that the description is only a
poor approximation of the architecture itself.

S Acknowledgements Positioning Architectural reasoning
in the world
Eugene Ivanov introduced TRIZ to me. He translated some of the articles and

summarized the essentials. He also showed the similarity between TRIZ ideas and
the Gaudf articles.

3Long philosophical discussions can be held about the definition of the architecture. These
discussions tend to be more entertaining than effective. Many definitions and discussions about
the definition can be found, for instance in [7]], [3]], or [[10]

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 6
September 3, 2020 version: 1.5

References

[1]

[5]

[6]

[10]

[11]

Genrich Altshuller. The Innovation Algorithm; TRIZ, systematic innovation
and technical creativity. Technical Innovation Center, Worcester, MA, 2000.
Translated, edited and annotated by Lev Shulyak and Steven Rodman.

Architecture Working Group (AWG). [EEE Recommended Practice for
Architectural Description of Software-Intensive Systems. The Institute of
Electrical and Electronics Engineers, Inc., 2000.

Dana Bredemeyer. Definitions of software architecture. |http://www.
bredemeyer.com/definiti.htm, 2002. large collection of definitions
of software architecture.

Dana Bredemeyer and Ruth Malan. The visual architecting process.
http://www.bredemeyer.com/pdf_files/WhitePapers/
VisualArchitectingProcess.PDF, 2003.

J. C. DeFoe (Editor). An identification of pragmatic principles. http://
www.incose.org/workgrps/practice/pragprin.html, 1999.

F. Heylighen and C. Joslyn. What is systems theory? http://
pespmcl.vub.ac.be/SYSTHEOR.html, 1992. Principia Cybernetica
Web (Principia Cybernetica, Brussels).

Derek K. Hitchins. Putting systems to work. http://www.hitchins.
co.uk/, 1992. Originally published by John Wiley and Sons, Chichester,
UK, in 1992.

Christine Hofmeinster, Robert Nord, and Dilip Soni. Applied Software Archi-
tecture. Addison-Wesley, 2000.

INCOSE. International council on systems engineering. |http://www.
incose.org/toc.html, 1999. INCOSE publishes many interesting
articles about systems engineering.

Carnegie Mellon Software Engineering Institute. How do you define software
architecture? http://www.sei.cmu.edu/architecture/
definitions.html), 2002. large collection of definitions of software
architecture.

ISO/IEC. ISO 9126: The standard of reference. http://www.cse.dcu.
ie/essiscope/sm2/9126ref.html, 1991.

[12] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture
evaluation. citeseer.nj.nec.com/kazmanOOatam.html, 2000.
Gerrit Muller University of South-Eastern Norway-NISE

Positioning the CAFCR Method in the World

page: 7

September 3, 2020 version: 1.5

http://www.bredemeyer.com/definiti.htm
http://www.bredemeyer.com/definiti.htm
http://www.bredemeyer.com/pdf_files/WhitePapers/VisualArchitectingProcess.PDF
http://www.bredemeyer.com/pdf_files/WhitePapers/VisualArchitectingProcess.PDF
http://www.incose.org/workgrps/practice/pragprin.html
http://www.incose.org/workgrps/practice/pragprin.html
http://pespmc1.vub.ac.be/SYSTHEOR.html
http://pespmc1.vub.ac.be/SYSTHEOR.html
http://www.hitchins.co.uk/
http://www.hitchins.co.uk/
http://www.incose.org/toc.html
http://www.incose.org/toc.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html
citeseer.nj.nec.com/kazman00atam.html

[13] Rick Kazman, Leonard J. Bass, Mike Webb, and Gregory D. Abowd. SAAM:
A method for analyzing the properties of software architectures. In Interna-
tional Conference on Software Engineering, pages 81-90. ICSE, 1994.

[14] Philippe B. Kruchten. The 4+1 view model of architecture. IEEE Software,
pages 42-50, November 1995.

[15] James N. Martin. Systems Engineering Guidebook. CRC Press, Boca Raton,
Florida, 1996.

[16] Gerrit Muller. The system architecture homepage. Thttp://www.
gaudisite.nl/index.html, 1999.

[17] Eberhardt Rechtin and Mark W. Maier. The Art of Systems Architecting. CRC
Press, Boca Raton, Florida, 1997.

[18] Carnegie Mellon Software Engineering Institute SEI. Software engineering
management practices. http://www.sel.cmu.edu/managing/
managing.html, 2000.

[19] Carnegie Mellon Software Engineering Institute SEI. Engineering practices.
http://www.seil.cmu.edu/engineering/engineering.
html, 2002.

[20] John Zachman. The zachman framework for enterprise architecture. http:
//www.zifa.com/, 1987.

History
Version: 1.5, date: May 24, 2004 changed by: Gerrit Muller
e added abstract

e updated the accompanying presentation
Version: 1.4, date: April 19, 2004 changed by: Gerrit Muller
o added little bit more explanation to other architecting methods
o replaced book by thesis
o added footnote to “real problems”
Version: 1.3, date: April 5, 2004 changed by: Gerrit Muller
e significant update to the Section Unique Contribution
e small text improvements
e changed status into finished
Version: 1.2, date: February 27, 2004 changed by: Gerrit Muller
e changed title to fit with the book title
e small text improvements
e changed status into concept
Version: 1.1, date: January 13, 2004 changed by: Gerrit Muller
e added the contribution of a number of multi-disciplinary system design submethods
e changed status into draft
Version: 1.0, date: November 27, 2003 changed by: Gerrit Muller
e changed "system level methods” in systems architecting methods™
e many small textual updates
e changed status into draft

Gerrit Muller University of South-Eastern Norway-NISE
Positioning the CAFCR M.ethod in the World page: 8
September 3, 2020 version: 1.5

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.zifa.com/
http://www.zifa.com/

Version: 0.5, date: September 26, 2003 changed by: Gerrit Muller
o changed the graph in a classification
o structured the text according to the classification
Version: 0.4, date: July 29, 2003 changed by: Gerrit Muller
o the entities in the graph have all been changed to method and source
o added external references, removed references to Gaud{
o added (still empty) section "What is the unique contribution of this work?”
Version: 0.3, date: March 21, 2003 changed by: Gerrit Muller
e added TRIZ to comparison
e changed status to preliminary draft
o added acknowledgements
Version: 0.2, date: November 11, 2002 changed by: Gerrit Muller
e defined logo
Version: 0.1, date: September 2, 2002 changed by: Gerrit Muller
e Created, no changelog yet

Gerrit Muller
Positioning the CAFCR Method in the World
September 3, 2020 version: 1.5

University of South-Eastern Norway-NISE
page: 9

	Introduction
	Related Work
	Software Architecting Methods
	Multi-disciplinary System Architecting Methods
	Methods also Addressing Process and Organization
	Very Generic Methods

	What is the Unique Contribution of this Work?
	IEEE 1471
	Acknowledgements Positioning Architectural reasoning in the world

