
Lecture slides course Architecting System Performance
by Gerrit Muller

USN-SE

Abstract

The course Architecting System Performance provides an approach to design
performance for software intensive systems. Core to the approach is the combi-
nation of measuring and modeling. Models are used for reasoning and analysis
of performance, scalability, sensitivity and robustness. The course emphasis is
on practice, not on theory. For example patterns and pitfalls from practice are
provided.

The complete course ASPTM is owned by TNO-ESI. To
teach this course a license from TNO-ESI is required.
This material is preliminary course material.

March 6, 2021
status: draft
version: 0.3

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

Introduction to System Performance Design
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

What is System Performance? Why should a software engineer have knowledge
of the other parts of the system, such as the Hardware, the Operating System and
the Middleware? The applications that he/she writes are self-contained, so how
can other parts have any influence? This introduction sketches the problem and
shows that at least a high level understanding of the system is very useful in order
to get optimal performance.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

March 6, 2021
status: preliminary
draft
version: 0.5

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Content of Problem Introduction

content of this presentation

Example of problem

Problem statements

Introduction to System Performance Design
3 Gerrit Muller

version: 0.5
March 6, 2021

PINTROcontent

Image Retrieval Performance

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images

instanteneous
design

design

or

Introduction to System Performance Design
4 Gerrit Muller

version: 0.5
March 6, 2021

PINTROsampleCode

Straight Forward Read and Display

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Introduction to System Performance Design
5 Gerrit Muller

version: 0.5
March 6, 2021

PINTROwhatIf1

More Process Communication

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Introduction to System Performance Design
6 Gerrit Muller

version: 0.5
March 6, 2021

PINTROwhatIf2

Meta Information Realization Overhead

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Introduction to System Performance Design
7 Gerrit Muller

version: 0.5
March 6, 2021

PINTROwhatIf3

I/O overhead

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Introduction to System Performance Design
8 Gerrit Muller

version: 0.5
March 6, 2021

PINTROwhatIf4

Non Functional Requirements Require System View

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Introduction to System Performance Design
9 Gerrit Muller

version: 0.5
March 6, 2021

PINTROconclusionWhatIf

Function in System Context

usage context

HW HW HW

OS OS OS

MW MW MW MW

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

Functions &

Services

Middleware

Operating systems

Hardware

performance and behavior of a function

depend on realizations of used layers,

functions in the same context,

and the usage context

Introduction to System Performance Design
10 Gerrit Muller

version: 0.5
March 6, 2021

PINTROconclusion

Challenge

HW HW HW

OS OS OS

MW MW MW MW

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

Functions & Services

Middleware

Operating systems

Hardware

Performance = Function (F&S, other F&S, MW, OS, HW)

MW, OS, HW >> 100 Manyear : very complex

Challenge: How to understand MW, OS, HW

with only a few parameters

Introduction to System Performance Design
11 Gerrit Muller

version: 0.5
March 6, 2021

PINTROproblemStatement

Summary of Problem Introduction

Summary of Introduction to Problem

Resulting System Characteristics cannot be deduced from local code.

Underlying platform, neighboring applications and user context:

have a big impact on system characteristics

are big and complex

Models require decomposition, relations and representations to analyse.

Introduction to System Performance Design
12 Gerrit Muller

version: 0.5
March 6, 2021

PINTROsummary

From Synchronous to Asynchronous Design
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The most simple real time programming paradigm is a synchronous loop. This
is an effective approach for simple systems, but at a certain level of concurrent
activities an asynchronous design, based on scheduling tasks, becomes more
effective. We will use a conventional television as case to show real time
design strategies, starting with a straightforward analog television based on a
synchronous design and incrementally extending the television to become a full-
fledged digital TV with many concurrent functions.

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: preliminary
draft
version: 0

Hard Real Time Design

hard real time

disastrous

failure
dissatisfaction

irritation

human

safety

device

safety

loss of

information

loss of

functionality or

(image) quality

limited

throughput

loss of

eye hand

coordination

waiting

time

soft real time

failure

From Synchronous to Asynchronous Design
14 Gerrit Muller

version: 0
March 6, 2021

PHRTpositioning

Case Simple Analog TV

Simple Analog TV

Multiple views on system

Fundamentals of periodic or streaming Hard Real-Time applications

System performance characterisation: Performance model

Synchronous design concept

From Synchronous to Asynchronous Design
15 Gerrit Muller

version: 0
March 6, 2021
PHRTatvIntro

Functional Flow Simple Analog Television

Tuner
de-

mux
Audio

processing

Video

signal

de-mux

Teletext

processing

Picture

processing

Control

Video

signal

mux

User Interface

~100 ms

User Interface

~100 ms

~1.8ms / bit

Line demux:

~ 60µs

Bit detection

~ 150 ns

Audio / video

sync ~ 20ms

User i/f

graphics

generation

Teletext

overlay

generation

User Interface

~100 ms

From Synchronous to Asynchronous Design
16 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionArchitectureSimple

SW Construction Diagram

UI Control

User

input
Txt

Audio

proc.

Video

proc.

Txt

displ

Check

status

Background

task

HRT

From Synchronous to Asynchronous Design
17 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionSWconstruction

Video Timing

Scan line even

Scan line odd

Retrace even

Retrace odd

Vertical retrace

Hidden lines

(can contain data)

Hidden lines

(can contain data)

For PAL-625:

Line Frequency: 15.625 kHz

Scanning Lines: 625

Field Frequency: 50 Hz

From Synchronous to Asynchronous Design
18 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionScanLines

Audio-Video Synchronization Requirement

Latency

Sound and vision must be lip-sync or better

Maximum latency ~ +/- 100 msec

Time

Images:

Discrete in time

Sound:

Continuous in time

0 ms 40 ms 80 ms

From Synchronous to Asynchronous Design
19 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionImageSoundTiming

Synchronous Control Software

Capture

teletext

Initiate

video

proc.

Initiate

audio

proc.

Check

user

input

Do User

Interface

Check

status

(HW)

Display

teletext

(when active)

Frame

interrupt

Frame

interrupt

20 msec

Synchronous design

From Synchronous to Asynchronous Design
20 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionSynchrDesign

HW Diagram

Mem CPU

Control bus

Tuner
Audio
proc.

Video
proc.

D/A D/A

Frame
buffer

Speaker CRT

gfx rendering

From Synchronous to Asynchronous Design
21 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionHWdiagram

Exercise

Synchronous design questions

Estimate processing time on a 100 MHz ARM core

Assuming that all processing and acquisition is done in HW

Graphics rendering (user interface + teletext display) is done in SW

Where do you expect variation?

How feasible and how reliable is this design?

From Synchronous to Asynchronous Design
22 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionSynchrDesignExercise

Low Priority Work in the Background

20 msec

Design with multiple parallel tasks

Frame

interrupt

image

processing

Parallel /

background

tasks

Frame

interrupt

image

processing

Parallel /

background

tasks

Frame

interrupt

image

processing

D
o

 U
s
e

r

In
te

rf
a

c
e

C
h

e
c
k

s
ta

tu
s

(H
W

)

D
is

p
la

y

te
le

te
x
t

(w
h

e
n

a
c
ti
v
e

)

D
o

 U
s
e

r

In
te

rf
a

c
e

C
h

e
c
k

s
ta

tu
s

(H
W

)

D
is

p
la

y

te
le

te
x
t

(w
h

e
n

a
c
ti
v
e

)

20 msec

From Synchronous to Asynchronous Design
23 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionSynchrDesignPlusBG

Synchronous or Asynchronous?

A-Synchronous

Synchronous

=> Map on Highest frequency

Constraints:

- Processing frequency must be a whole (integer) multiple

 of the lower frequencies

- Each process must be completed within the period of the

 highest frequency, together with the high-frequency process

=> Concurrent processes

From Synchronous to Asynchronous Design
24 Gerrit Muller

version: 0
March 6, 2021

PSRTDesignOpstionsSynchronousAsynchronous

Multiple Periods in a Simple TV

Input signal

Processing

User Interface

Power and Housekeeping

Output

50 Hz

100 Hz

20 Hz

0.5 Hz

50, 100 Hz

From Synchronous to Asynchronous Design
25 Gerrit Muller

version: 0
March 6, 2021

PSRTsimpleVideoMultiplePeriods

Summary Case Simple Analog TV

Simple Analog TV

Performance model requires:

identification of processing steps

their relation

critical parameters and values

Synchronous design sufficient for periodic applications with one

dominant frequency

Multiple views on system:

HW diagram

SW construction diagram

Functional flow

Time-line

From Synchronous to Asynchronous Design
26 Gerrit Muller

version: 0
March 6, 2021

PHRTatvSummary

Case Digital Television

From Analog TV to Digital TV

Adding more input formats and output devices

Multiple heterogenous periods: asynchronous design with concurrent

tasks.

From Synchronous to Asynchronous Design
27 Gerrit Muller

version: 0
March 6, 2021

PHRTfromATVtoDTVintro

Digital Television

Many video variants (see table)

Many audio variants (quality, number of speakers, ...)

Input

Output

Processing

Many frequencies

Video & Audio variable timing

Many frequencies

Variable

From Synchronous to Asynchronous Design
28 Gerrit Muller

version: 0
March 6, 2021
PSRTdigitalTV

Simple Video Processing Pipeline

Image

improve-

ment

de-

interlace

multi task design complex TV

CRT

LCD

PLA

Signal

enhance-

ment

Other

In modern television the format of the image can change (e.g. widescreen)

The user can set the refresh rate to higher values (e.g. 100Hz anti-flicker)

Different displays (CRT, LCD, Plasma) can be attached

 that need the image in different formats

(interlaced, non-interlaced, different refresh rates)

Non interlaced images need special filtering of the image

 to prevent ragged images

Interlaced 100Hz

non-Interlaced

 50Hz??

Format

adaptation

(aspect

ratio)

Clock

Adaptation

Device

specific

processing

From Synchronous to Asynchronous Design
29 Gerrit Muller

version: 0
March 6, 2021

PHRTtelevisionProcessingSimple

Table with ATSC Video Formats

spec Vertical

pixels

Aspect

ratio

Monitor

interface

Format

name

Frames

per sec

Fields

per sec

Transmitted

interlaced

1080i60 30 60 yes

1080 16:09 1080i 1080p30 30 30 no

1080p24 24 24 no

720p60 60 60 no

720 16:09 720p 720p30 30 30 no

720p24 24 24 no

480p 480p60 60 60 no

480 16:09 480i60 30 60 yes

480i 480p30 30 30 no

ATSC 480p24 24 24 no

480p 480p60 60 60 no

480 04:03 480i60 30 60 yes

480i 480p30 30 30 no

480p24 24 24 no

480p 480p60 60 60 no

480 04:03 480i60 30 60 yes

480i 480p30 30 30 no

480p24 24 24 no

NTSC »640 04:03 Note 1 Note 1 30 60 yes

Note 1: Some people refer to NTSC as 480i.

Horizontal pixels

1920

1280

704

704

640

483

640

Source: http://www.hdtvprimer.com/ISSUES/what_is_ATSC.html

From Synchronous to Asynchronous Design
30 Gerrit Muller

version: 0
March 6, 2021

PHRTatscTable

Data Packets in Digital TV

Data
Compr.

Audio

Compressed

Video
Data

Compr.

Audio

Compr.

Video
Data

P
acket

Reference

Frame Frame Frame Frame Frame Frame

Reference

Frame

From Synchronous to Asynchronous Design
31 Gerrit Muller

version: 0
March 6, 2021

PSRTdataInDigitalTV

Summary Case Digital Television

From Analog TV to Digital TV

Real-life applications rapidly introduce all kinds of variations

Concurrent tasks cope with different periods

From Synchronous to Asynchronous Design
32 Gerrit Muller

version: 0
March 6, 2021

PHRTfromATVtoDTVsummary

ASP Python Exercise
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

A simple measurement exercise is described. Purpose of this exercise is to build
up experience in measuring and its many pitfalls. The programming language
Python is used as platform, because of its availability and low threshold for use.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

March 6, 2021
status: preliminary
draft
version: 0

logo
TBD

Case for Exercise

Select a programming environment,

where loop overhead and file open

can be measured in 30 minutes.

If this environment is not available,

then use Python.

ASP Python Exercise
34 Gerrit Muller

version: 0
March 6, 2021
MMAFTcases

Python download and information

Active State Python (Freeware distribution, runs directly)

http://www.activestate.com/Products/ActivePython/

Python Language Website

http://www.python.org/

Python Reference Card

http://admin.oreillynet.com/python/excerpt/PythonPocketRef/examples/python.pdf

ASP Python Exercise
35 Gerrit Muller

version: 0
March 6, 2021
MMAFTpython

Python example

import time

for n in (1,10,100,1000,10000,100000,1000000):

 a = 0

 tstart = time.time()

 for i in xrange(n):

 a = a+1

 tend=time.time()

 print n, tend-tstart, (tend-tstart)/n

def example_filehandling():

 f = open("c:\\temp\\test.txt")

 for line in f.readlines():

 print line

 f.close()

tstart = time.time()

example_filehandling()

tend=time.time()

print "file open, read & print, close: ",tend-tstart,"s"

>>>

1 0.0 0.0

10 0.0 0.0

100 0.0 0.0

1000 0.0 0.0

10000 0.00999999046326 9.99999046326e-007

100000 0.039999961853 3.9999961853e-007

1000000 0.44000005722 4.4000005722e-007

test line 1

line 2

line 3

file open, read, close: 0.039999961853 s

ASP Python Exercise
36 Gerrit Muller

version: 0
March 6, 2021

MMAFTpythonExample

Exercise

• Perform the following measurements
1. loop overhead

2. file open

• Determine for every measurement:

What is the expected result?

What is the measurement error?

What is the result?

What is the credibility of the result?

Explain the result.

(optional) What is the variation? Explain the variation.

ASP Python Exercise
37 Gerrit Muller

version: 0
March 6, 2021

MMAFTexercise

Reflection on Exercise

+ measuring is easy

+ measuring provides data and understanding

~ result and expectation often don't match

- sensible measuring is more difficult

ASP Python Exercise
38 Gerrit Muller

version: 0
March 6, 2021

MMAFTreflection

Modeling and Analysis: Measuring
by Gerrit Muller University of South-Eastern Norway-SE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

This presentation addresses the fundamentals of measuring: What and how
to measure, impact of context and experiment on measurement, measurement
errors, validation of the result against expectations, and analysis of variation and
credibility.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

March 6, 2021
status: preliminary
draft
version: 1.2

measured
signal

noise resolution

value

measurement

error

time

va
lu

e

+ε1

calibrationoffset

characteristics

measurements have

stochastic variations and

systematic deviations

resulting in a range

rather than a single value

-ε2

+ε1
-ε2

measurement

instrument

system

under study

Presentation Content

content

What and How to measure

Impact of experiment and context on measurement

Validation of results, a.o. by comparing with expectation

Consolidation of measurement data

Analysis of variation and analysis of credibility

Modeling and Analysis: Measuring
40 Gerrit Muller

version: 1.2
March 6, 2021
MAMEcontent

Measuring Approach: What and How

how

what

1. What do we need to know?

2. Define quantity to be measured.

4A. Define the measurement circumstances fe.g. by use cases

3. Define required accuracy

5. Determine actual accuracy

4C. Define measurement set-up

4B. Determine expectation

6. Start measuring

7. Perform sanity check expectation versus actual outcome

uncertainties, measurement error

historic data or estimation

initial model

purpose

it
e

ra
te

Modeling and Analysis: Measuring
41 Gerrit Muller

version: 1.2
March 6, 2021

MAMEwhatAndHow

1. What do We Need? Example Context Switching

(computing) hardware

operating system

ARM 9

200 MHz CPU

100 MHz bus

VxWorks

test program

What:

context switch time of

VxWorks running on ARM9

estimation of total lost CPU

time due to

context switching

guidance of

concurrency design and

task granularity

Modeling and Analysis: Measuring
42 Gerrit Muller

version: 1.2
March 6, 2021

MAMEcaseARM

2. Define Quantity by Initial Model

What (original):

context switch time of

VxWorks running on ARM9

tp2tp1, before tscheduler

Process 1

Process 2

Scheduler

What (more explicit):

The amount of lost CPU time,

due to context switching on

VxWorks running on ARM9

on a heavy loaded CPU

tschedulertcontext switch = tp1, loss+

tscheduler tp1, after

tp1, no switching

tp1,losstp2,loss

p2 pre-empts p1 p1 resumes

= lost CPU time

legend

time

Modeling and Analysis: Measuring
43 Gerrit Muller

version: 1.2
March 6, 2021

MAMEdefineQuantity

3. Define Required Accuracy

estimation of total

lost CPU time

due to

context switching

guidance of

concurrency

design and task

granularity
cost of context

switch
depends on OS and HW

number of

context switches
depends on application

purpose drives required accuracy

~10%

Modeling and Analysis: Measuring
44 Gerrit Muller

version: 1.2
March 6, 2021

MAMEaccuracy

Intermezzo: How to Measure CPU Time?

CPU
HW

Timer

I/O

Logic analyzer /
Oscilloscope

High resolution (~ 10 ns)

Cope with limitations:

- Duration (16 / 32 bit

 counter)

- Requires Timer Access

High resolution (~ 10 ns)

requires

HW instrumentation
OS-

Timer

OS

Low resolution (~ µs - ms)

Easy access

Lot of instrumentation

Modeling and Analysis: Measuring
45 Gerrit Muller

version: 1.2
March 6, 2021

PHRTmeasuringTime

4A. Define the Measurement Set-up

experimental set-up

tp2tp1, before tscheduler tscheduler tp1, aftertp1,losstp2,loss

p2 pre-empts p1
p1 resumes

= lost CPU time

P1 P2

real world

many concurrent processes, with

instructions >> I-cache

data >> D-cache

pre-
empts

causes

ca
ch

e
flu

sh

no other

CPU activities

Mimick relevant real world characteristics

Modeling and Analysis: Measuring
46 Gerrit Muller

version: 1.2
March 6, 2021

MAMEdefineCircumstances

4B. Case: ARM9 Hardware Block Diagram

PCB
chip

CPU

Instruction

cache

Data

cache

memory
on-chip

bus

cache line size:

8 32-bit words

memory

bus

200 MHz 100 MHz

Modeling and Analysis: Measuring
47 Gerrit Muller

version: 1.2
March 6, 2021

PHRTarmCacheExample

Key Hardware Performance Aspect

memory

request w
o

rd
 1

w
o

rd
 7

w
o

rd
 4

w
o

rd
 3

w
o

rd
 2

w
o

rd
 8

w
o

rd
 6

w
o

rd
 5

38 cycles

memory access time in case of a cache miss

200 Mhz, 5 ns cycle: 190 ns

data

memory

response

22 cycles

Modeling and Analysis: Measuring
48 Gerrit Muller

version: 1.2
March 6, 2021

EBMImemoryTimingARM

OS Process Scheduling Concepts

New

Running

Waiting

Ready

Terminated

interrupt

create

exit

Scheduler

dispatch

IO or event

completion

Wait

(I/O / event)

Modeling and Analysis: Measuring
49 Gerrit Muller

version: 1.2
March 6, 2021

PSRTprocessConcepts

Determine Expectation

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch

Modeling and Analysis: Measuring
50 Gerrit Muller

version: 1.2
March 6, 2021

MAMEexpectationCS

Determine Expectation Quantified

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch

m
e

m
o

ry

a
c
c
e

s
s
e

s

in
s
tr

u
c
ti
o

n
s

110

120

110

110

250

6100

+

500 ns

1140 ns
+

1640 ns

tcontext switch = 2 µsround up (as margin) gives expected

Modeling and Analysis: Measuring
51 Gerrit Muller

version: 1.2
March 6, 2021

MAMEexpectationCSsubstituted

4C. Code to Measure Context Switch

Task 2Task 1

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch
Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Modeling and Analysis: Measuring
52 Gerrit Muller

version: 1.2
March 6, 2021

PHRTarmCacheTaskSwitchCode

Measuring Task Switch Time

Time

C
o
n
te

xt sw
itch

C
o
n
te

xt sw
itch

T
im

e
 S

ta
m

p
 B

e
g
in

T
im

e
 S

ta
m

p
 E

n
d

T
im

e
 S

ta
m

p
 B

e
g
in

T
im

e
 S

ta
m

p
 E

n
d

S
ta

rt C
a
ch

e
 F

lu
sh

S
ta

rt C
a
ch

e
 F

lu
sh

S
ch

e
d
u
le

r

S
ch

e
d
u
le

r

C
o
n
te

xt sw
itch

T
im

e
 S

ta
m

p
 B

e
g
in

Process 1

Process 2

Scheduler

Modeling and Analysis: Measuring
53 Gerrit Muller

version: 1.2
March 6, 2021

PHRTarmCacheTaskSwitchMeasuring

Understanding: Impact of Context Switch

C
lo

c
k
 c

y
c
le

s
 P

e
r

In
s
tr

u
c
ti
o

n
 (

C
P

I)

1

2

3

S
ch

e
d
u
le

r

S
ch

e
d
u
le

r

T
a
sk 1

T
a
sk 2

T
a
sk 1

Task 1 Task 2

Time

Based on figure diagram

by Ton Kostelijk

Process 1

Process 2

Scheduler

Modeling and Analysis: Measuring
54 Gerrit Muller

version: 1.2
March 6, 2021

PHRTarmCacheTaskSwitch

5. Accuracy: Measurement Error

measured
signal

noise resolution

value

measurement

error

time

va
lu

e

+ε1

calibrationoffset

characteristics

measurements have

stochastic variations and

systematic deviations

resulting in a range

rather than a single value

-ε2

+ε1
-ε2

measurement

instrument

system

under study

Modeling and Analysis: Measuring
55 Gerrit Muller

version: 1.2
March 6, 2021

MAMEmeasurementError

Accuracy 2: Be Aware of Error Propagation

tduration = tend - tstart

tend

tstart = 10 +/- 2 µs

= 14 +/- 2 µs

tduration = 4 +/- ? µs

systematic errors: add linear

stochastic errors: add quadratic

Modeling and Analysis: Measuring
56 Gerrit Muller

version: 1.2
March 6, 2021

MAMEerrorPropagation

Intermezzo Modeling Accuracy

Measurements have

stochastic variations and systematic deviations

resulting in a range rather than a single value.

The inputs of modeling,

"facts", assumptions, and measurement results,

also have stochastic variations and systematic deviations.

Stochastic variations and systematic deviations

propagate (add, amplify or cancel) through the model

resulting in an output range.

Modeling and Analysis: Measuring
57 Gerrit Muller

version: 1.2
March 6, 2021

MAMEintermezzo

6. Actual ARM Figures

ARM9 200 MHz

as function of cache use

From cache 2 µs

After cache flush 10 µs

Cache disabled 50 µs

cache setting tcontext switch

tcontext switch

Modeling and Analysis: Measuring
58 Gerrit Muller

version: 1.2
March 6, 2021

PHRTarmCacheActualFigures

7. Expectation versus Measurement

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

m
e

m
o

ry

a
c
c
e

s
s
e

s

in
s
tr

u
c
ti
o

n
s

110

120

110

110

250

6100

+

500 ns

1140 ns
+

1640 ns

tcontext switch = 2 µsexpected

tcontext switch = 10 µsmeasured

How to explain?

potentially missing in expectation:

memory accesses due to instructions

~10 instruction memory accesses ~= 2 µs

memory management (MMU context)

complex process model (parents,

permissions)

bookkeeping, e.g performance data

layering (function calls, stack handling)

the combination of above issues

However, measurement seems to make sense

Modeling and Analysis: Measuring
59 Gerrit Muller

version: 1.2
March 6, 2021

MAMEexpectationDiscussion

Conclusion Context Switch Overhead

toverhead ncontext switch tcontext switch*=

ncontext switch

(s
-1

) toverhead
CPU load

overhead

tcontext switch = 10µs

500

5000

50000

5ms

50ms

500ms

0.5%

5%

50%

toverhead

1ms

10ms

100ms

0.1%

1%

10%

tcontext switch = 2µs

CPU load
overhead

Modeling and Analysis: Measuring
60 Gerrit Muller

version: 1.2
March 6, 2021

PSRTcontextSwitchOverhead

Summary Context Switching on ARM9

goal of measurement

Guidance of concurrency design and task granularity

Estimation of context switching overhead

Cost of context switch on given platform

examples of measurement

Needed: context switch overhead ~10% accurate

Measurement instrumentation: HW pin and small SW test program

Simple models of HW and SW layers

Measurement results for context switching on ARM9

Modeling and Analysis: Measuring
61 Gerrit Muller

version: 1.2
March 6, 2021

MAMEcaseARM9summary

Summary Measuring Approach

Conclusions

Measurements are an important source of factual data.

A measurement requires a well-designed experiment.

Measurement error, validation of the result determine the credibility.

Lots of consolidated data must be reduced to essential

understanding.

Techniques, Models, Heuristics of this module

experimentation

error analysis

estimating expectations

Modeling and Analysis: Measuring
62 Gerrit Muller

version: 1.2
March 6, 2021

MAMEsummary

Colophon

This work is derived from the EXARCH course at CTT

developed by Ton Kostelijk (Philips) and Gerrit Muller.

The Boderc project contributed to the measurement

approach. Especially the work of

Peter van den Bosch (Océ),

Oana Florescu (TU/e),

and Marcel Verhoef (Chess)

has been valuable.

Modeling and Analysis: Measuring
63 Gerrit Muller

version: 1.2
March 6, 2021

MAMEcolophon

Home work

Introductory discussion

Modeling and Analysis: Measuring
64 Gerrit Muller

version: 1.2
March 6, 2021

Formula Based Performance Design
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Performance models are mostly simple mathematical formulas. The challenge
is to model the performance at an appropriate level. In this presentation we
introduce several levels of modeling, labeled zeroth order, second order, et cetera.
AS illiustration we use the performance of MRI reconstruction.

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: draft
version: 1.0

Theory Block: n Order Formulas

0
th
 order main function

parameters

order of magnitude

relevant for main function

1
st
 order add overhead

secondary function(s)
estimation

2
nd

 order interference effects

circumstances
more accurate, understanding

main function, overhead

and/or secondary functions

Formula Based Performance Design
66 Gerrit Muller

version: 1.0
March 6, 2021

PHRTcpuLoadFormulaIntro

CPU Time Formula Zero Order

tcpu total tcpu processing=

nx tpixelny= * *

tUI+

tcpu processing

Formula Based Performance Design
67 Gerrit Muller

version: 1.0
March 6, 2021

PHRTcpuLoadFormulaZeroOrder

CPU Time Formula First Order

tcpu total tcpu processing

tcontext switch

overhead

+= tUI

+

Formula Based Performance Design
68 Gerrit Muller

version: 1.0
March 6, 2021

PHRTcpuLoadFormulaFirstOrder

CPU Time Formula Second Order

tcpu total tcpu processing tcontext switch

overhead

tstall time due to

context switching

+=

+

+

tstall time due to

cache efficiency

signal processing: high efficiency

control processing: low/medium efficiency

+tUI

Formula Based Performance Design
69 Gerrit Muller

version: 1.0
March 6, 2021

PHRTcpuLoadFormulaSecondOrder

Case MRI Reconstruction

MRI reconstruction

"Test" of performance model on another case

Scope of performance and significance of impact

Formula Based Performance Design
70 Gerrit Muller

version: 1.0
March 6, 2021

PHRTcaseMRreconstructionIntro

MR Reconstruction Context

Host

Acquisition

Storage
Viewing

&Printing

m
a

g
n

e
t

g
ra

d
ie

n
ts

R
F

A
D

C Reconstruction

control

Formula Based Performance Design
71 Gerrit Muller

version: 1.0
March 6, 2021

PHRTreconstructionMRcase

MR Reconstruction Performance Zero Order

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

Formula Based Performance Design
72 Gerrit Muller

version: 1.0
March 6, 2021

PHRTreconstructionMRzeroOrder

Zero Order Quantitative Example

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

nraw-x = 512

nraw-y = 256

ny = 256

nx = 256

using:

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

+

512 * 1.2 + 256 * 2.4

~= 1.2 s

Formula Based Performance Design
73 Gerrit Muller

version: 1.0
March 6, 2021

PHRTreconstructionMRzeroOrderQuantified

MR Reconstruction Performance First Order

trecon =

nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcorrections(nx ,ny)

Formula Based Performance Design
74 Gerrit Muller

version: 1.0
March 6, 2021

PHRTreconstructionMRfirstOrder

First Order Quantitative Example

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

Filter 1k points ~ 2 msec

(scales linearly with n)

Correction ~ 2 msec

(scales linearly with n)

Formula Based Performance Design
75 Gerrit Muller

version: 1.0
March 6, 2021

PHRTreconstructionMRfirstOrderQuantified

MR Reconstruction Performance Second Order

trecon =

nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcol-overhead

tcorrections(nx ,ny)

trow-overhead

tcontrol-overhead

+

) +

) +

Formula Based Performance Design
76 Gerrit Muller

version: 1.0
March 6, 2021

CVreconstructionPerformanceModel

Second Order Quantitative Example

Typical FFT, 1k points ~ 5 msec

(scales with 2 * n * log (n))

Filter 1k points ~ 2 msec

(scales linearly with n)

Correction ~ 2 msec

(scales linearly with n)

Control overhead = ny * trow overhead

10 .. 100 µs

Formula Based Performance Design
77 Gerrit Muller

version: 1.0
March 6, 2021

PHRTreconstructionMRsecondOrderQuantified

MR Reconstruction Performance Third Order

overhead

trecon = nraw-x * (tfft(nraw-y)

ny * (tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

tcol-overhead

tcorrections(nx ,ny)trow-overhead +tcontrol-overhead+

) +

) +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead

filter computations

read I/O

write I/O

malloc, free
transpose

bookkeeping

number
crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Formula Based Performance Design
78 Gerrit Muller

version: 1.0
March 6, 2021

RVreconstructionPerformanceAnalysis

Summary Case MRI Reconstruction

MRI reconstruction

System performance may be determined by other than standard facts

E.g. more by overhead I/O rather than optimized core processing

==> Identify & measure what is performance-critical in application

Formula Based Performance Design
79 Gerrit Muller

version: 1.0
March 6, 2021

PHRTcaseMRreconstructionSummary

Soft Real Time Design
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Soft Real Time design addresses the performance aspects of the system design,
under the assumption that the hard real time design is already well-covered. Core
decisions in soft real time design are:
• granularity

• synchronization

• prioritization

• allocation

• resource management

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: preliminary
draft
version: 0.2

Soft Real Time Design

hard real time

disastrous

failure
dissatisfaction

irritation

human

safety

device

safety

loss of

information

loss of

functionality or

(image) quality

limited

throughput

loss of

eye hand

coordination

waiting

time

soft real time

failure

Soft Real Time Design
81 Gerrit Muller

version: 0.2
March 6, 2021

PSRTpositioning

Case 1

TV zapping

Problem introduction

Approach for solving response time problems

Revised functional model

Measuring and modelling

Soft Real Time Design
82 Gerrit Muller

version: 0.2
March 6, 2021
PSRTzapIntro

Zap timing: What is the Requirement?

P+

P-

remote

control

time

zap

new

channel

total response time

visual

feedback

visual feedback time

zap

new

channel

open for next

respons

zap repetition

Soft Real Time Design
83 Gerrit Muller

version: 0.2
March 6, 2021

EACresponseTime

Approach

3) Measure the individual components

1) Measure the end-to-end time

2) Decompose the processes
based on expected outcome

use previous decomposition (2)

4) Clarify the unknown parts and make them explicit

5) Further divide the major posts

6) Aggregate the smaller posts

Soft Real Time Design
84 Gerrit Muller

version: 0.2
March 6, 2021

PSRToptimizeTimingIssues

Functional Model

Tuner de-mux

Audio

processing

Video signal

de-mux

Teletext

processing

Picture

processing

Control

Video

signal

mux

User Interface

~100 ms

User Interface

~100 ms

~1.8ms / bit

Line demux:

~ 60µs

Bit detection

~ 150 ns

Audio / video

sync ~ 20ms

User i/f

graphics

generation

Teletext

overlay

generation

User Interface

~100 ms

Blank

Mute

Soft Real Time Design
85 Gerrit Muller

version: 0.2
March 6, 2021

PSRTzappingFunctionalModel

Expectated and Measured Values

Mute : 50 ms

Blank : 40 ms

Flush AV pipeline : 160 ms

Set tuner : 200 ms

Fill AV pipeline : 160 ms

Unmute : 50 ms

Unblank : 40 ms

Expected values:

Mute : 60 ms

Blank : 120 ms

Flush AV pipeline : 0 ms

Set tuner : 180 ms

Fill AV pipeline : 40 ms

Format detection : 200 ms

Unmute : 60 ms

Unblank : 120 ms

Summing : ~ 900 ms

Total time measured: 2000 ms

Measured values:

1 frame

4 frames

4 frames

1 frame

5 frames

Soft Real Time Design
86 Gerrit Muller

version: 0.2
March 6, 2021

PSRTzappingProblemStep3

Analysis and Improvements

Zapping Problem step 4

Detection of frame size takes a long time!

+ Lots of software overhead

Analyze frame size detection and SW overhead

Somewhere 1000 ms are missing

Zapping Problem step 5

Subdivide / analyze format detection (200 ms)

Zapping Problem step 6

Ignore pipeline effects

Soft Real Time Design
87 Gerrit Muller

version: 0.2
March 6, 2021

PSRTzappingProblemAnalysis

Simple Concurrency Model (with waits)

Zap

Zap

finished

Blank Video

Mute Audio

Flush AV pipeline

Set Tuner

OSD

Fill AV pipeline

Video present Video present

Detect

Framesize

No video

Zapping tasks sequential

Blink LED

Soft Real Time Design
88 Gerrit Muller

version: 0.2
March 6, 2021

PSRTzappingSequential

Simple Concurrency Model (optimized)

Zap

Zap

finished

Blank Video

Blink LED

Mute Audio

Flush AV pipeline

Set Tuner

OSD

Fill AV pipeline

Video Video present

Detect

Framesize

No video

Zapping tasks parallel

Soft Real Time Design
89 Gerrit Muller

version: 0.2
March 6, 2021

PSRTzappingConcurrent

Case 1 Summary

TV zapping

Understanding of the problem is crucial

Iterate over modelling and measuring to build balanced

performance model

Soft Real Time Design
90 Gerrit Muller

version: 0.2
March 6, 2021

PSRTzapSummary

Case 2

EasyVision: Resource Management

Introduction to application

SW design

Memory and performance

Memory design

CPU load and Performance

Soft Real Time Design
91 Gerrit Muller

version: 0.2
March 6, 2021

PSRTeasyvisionCaseIntro

Introduction to Medical Imaging Application

Easyvision

Medical Imaging Workstation

serving 3 X-ray examination rooms

providing interactive viewing and printing on high resolution film

Challenge: interoperability and WYSIWYG over different products

Soft Real Time Design
92 Gerrit Muller

version: 0.2
March 6, 2021

PSRTeasyvisionIntro

Easyvision Serving Three URF Examination Rooms

EasyVision: Medical Imaging WorkstationURF-systems

typical clinical

image (intestines)

Soft Real Time Design
93 Gerrit Muller

version: 0.2
March 6, 2021
MSeasyVision

Image Quality Expectation WYSIWYG

what you see

at one work-spot

is

what you get

at another

work-spot

???

X-ray system

image

generation

presen-

tation

monitor

film

network,

storage

Easyvision

application

processing

presen-

tation

monitor

film

network,

storage

3
rd

 party

workstation
monitor

Soft Real Time Design
94 Gerrit Muller

version: 0.2
March 6, 2021
MICVwysiwyg

Presentation Pipeline for X-ray Images

spatial

enhancement

interpolate
Look up table

invert

contrast / brightness

graphics

merge

colour

LUT

HWSW

monitor

image

from

database

o
u
tp
u
t

input

contrast

brightness
bi-linear

bi-cubic

legend

Soft Real Time Design
95 Gerrit Muller

version: 0.2
March 6, 2021

MICVpresentationPipeline

Quadruple View-port Screen Layout

view-port 1 view-port 2

view-port 3 view-port 4

view-

port 5

UI icons, text

1152 pixels

9
6

0
 p

ix
el

s

ca
. 4

6
0

p

ix
el

s

ca
 2

0
0

p

ix
el

s

Soft Real Time Design
96 Gerrit Muller

version: 0.2
March 6, 2021

MICVquadrupleViewportLayout

Rendered Images at Different Destinations

Screen:
low resolution

fast response

Film:
high resolution

high throughput

Network:
medium resolution

high throughput

Soft Real Time Design
97 Gerrit Muller

version: 0.2
March 6, 2021

MICVdestinations

SW Design

Easyvision SW design

Concurrency design

SW layers

Soft Real Time Design
98 Gerrit Muller

version: 0.2
March 6, 2021

PSRTeasyvisionSWdesignIntro

Concurrency via Software Processes

user interfacecommunication

data base

export print
optical

storage

optical disk

drive
printerdisk drivenetwork

UI devices
system

monitor

Unix

daemons

client

process

associated

hardware

control and

data flow

remote systems

and users
user

client

user control

server

process

operational

process

legend

Soft Real Time Design
99 Gerrit Muller

version: 0.2
March 6, 2021

MICVsoftwareProcess

Criteria for Process Decomposition

• management of concurrency

• management of shared devices

• unit of memory budget (easy measurement)

• enables distribution over multiple processors

• unit of exception handling: fault containment and watchdog monitor

Processes are a facility provided by the

Operating System (OS) to manage concurrency,

resources and exceptions

Soft Real Time Design
100 Gerrit Muller

version: 0.2
March 6, 2021

PSRTprocessCriteria

Simplified Layering of the SW (Construction Decomposition)

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard IPX workstationDOR
HC

interf

RC

interf

SunOS

NIXRC

driver

HC

driver

DOR

driver

Spool HCU Store Image Gfx UI DB
PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools Print Store View Cluster

operating system

toolbox

hardware

application functions

user interface

connected system

SW infrastructure

legend

Soft Real Time Design
101 Gerrit Muller

version: 0.2
March 6, 2021

MICVswLayers1992

Memory Use and Performance

Easyvision Memory and Performance

Performance problems

Analysis of memory use

Memory budget

Soft Real Time Design
102 Gerrit Muller

version: 0.2
March 6, 2021

PSRTeasyvisionMemoryIntro

Performance as a Function of Memory Use
p

e
rf

o
rm

a
n

c
e

physical

memory
paging to disk

MB64 200MB0 memory usage

Good

Bad

Soft Real Time Design
103 Gerrit Muller

version: 0.2
March 6, 2021

EASRTperformanceVsMemory

Problem: Unlimited Memory Consumption (1992)

total measured memory usage

p
e

rf
o

rm
a

n
c
e

physical

memory
paging to disk

MB64 200

codeOS data bulk data
fragmen-

tation

MB0 memory usage

Soft Real Time Design
104 Gerrit Muller

version: 0.2
March 6, 2021

MSmemoryZeroMeasurement

Measurement Per Process

s
h

a
re

d
 l
ib

ra
ri
e

s

U
I

c
o

m
m

u
n

ic
a

ti
o

n

s
e

rv
e

r
s
to

ra
g

e
 s

e
rv

e
r

p
ri
n

t
s
e

rv
e

r

o
th

e
r

U
N

IX10

20

30

0

budget per process (right column)

10

MByte

measured (left column)

d
at
a

co
d
e

20

Soft Real Time Design
105 Gerrit Muller

version: 0.2
March 6, 2021

MSmemoryBudget

Solution: Measure and Iterative Redesign

measured

code

OS

data

bulk data

fragmen-
tation

budget

anti-fragmenting

 budget based

awareness,

measurement

DLLs

tuning

200

MB

74

MB

Soft Real Time Design
106 Gerrit Muller

version: 0.2
March 6, 2021

MSmemoryUsageReduction

Method: Budget per Process

Budget:

+ measurable

+ fine enough to

provide direction

+ coarse enough to

be maintainable
d

ll'
s

U
I

c
o

m
m

u
n

ic
a

ti
o

n

s
e

rv
e

r

s
to

ra
g

e
 s

e
rv

e
r

p
ri
n

t
s
e

rv
e

r

o
th

e
r

U
N

IX10

20

30

0

budget per process (right column)

10

MByte

measured (left column)

Soft Real Time Design
107 Gerrit Muller

version: 0.2
March 6, 2021

MSmemoryBudgetAnnotated

Example of a Memory Budget

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Soft Real Time Design
108 Gerrit Muller

version: 0.2
March 6, 2021

RVmemoryBudgetTable

Exercise: Bulk Data Capacity

Memory block

12MByte

How many blocks of

1024 x 1024 8-bits data

can be stored?

How many blocks of

1024 x 1024 16-bits data

can be stored?

Soft Real Time Design
109 Gerrit Muller

version: 0.2
March 6, 2021

PSRTexerciseBulkdata

Exercise: Object Data Capacity

Object Data

3MByte

Frequency Description Typical size

1 Large objects (e.g. dictionary) 20 kB

20 Medium object, e.g. UI data 200 Bytes

1000 Small object, e.g. image attributes 20 Bytes

Total

How many objects with this distribution

fit in the 3MByte Object data store?

Soft Real Time Design
110 Gerrit Muller

version: 0.2
March 6, 2021

PSRTexerciseObjectData

Memory Budget of Easyvision RF R1 and R2

shared code

UI process

database server

print server

DOR server

communication server

UNIX commands

compute server

system monitor

application total

UNIX

file cache

total

R1

2.0

4.2

2.2

4.2

15.4

0.5

28.5

R1

12.0

7.0

2.0

10.0

31.0

R1

6.0

0.2

0.2

0.4

0.4

1.2

0.2

8.6

R1

6.0

14.2

4.4

9.6

6.6

26.6

0.7

66.1

7.0

3.0

76.1

memory budget in Mbytes R2

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

R2

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

R2

12.0

3.0

9.0

1.0

4.0

6.0

35.0

R2

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

code object data bulk data total

Soft Real Time Design
111 Gerrit Muller

version: 0.2
March 6, 2021

MICVmemoryBudgetR1R2

Answer: Bulk Data Capacity

Memory block

12MByte

How many blocks of

1024 x 1024 8-bits data

can be stored?

How many blocks of

1024 x 1024 16-bits data

can be stored?

12

6

Memory block

12MByte

Memory block

12MByte

* Assuming that 8-bit data is stored as 8-bit (char)

 Assuming that 16-bit data is stored as 16-bit (short int)

Soft Real Time Design
112 Gerrit Muller

version: 0.2
March 6, 2021

PSRTanswerBulkdata

Answer: Object Data Capacity

Object Data

3MByte

Frequency Description Typical size Size * Freq

1 Large objects (e.g. dictionary) 20 kB 20 kB

20 Medium object, e.g. UI data 200 Bytes 4kB

1000 Small object, e.g. image attributes 20 Bytes 20kB

Total 44kB

44kByte fits approximately 68 times in 3MByte

Expect to store at most 68 large objects

(1360 Medium sized objects, 68000 small objects)

Soft Real Time Design
113 Gerrit Muller

version: 0.2
March 6, 2021

PSRTanswerObjectData

Memory Use and Performance

Easyvision Memory Design

Fragmentation and consequences

Application caches

Memory design applied

Soft Real Time Design
114 Gerrit Muller

version: 0.2
March 6, 2021

PSRTeasyvisionMemoryDesignIntro

Memory Fragmentation

legendimage 1, 256 kB image 2, 256 kB image 3, 256 kB

image 5, 256 kB

image 1, 256 kB image 3, 256 kB

image 1, 256 kB image 3, 256 kB

image 1, 256 kB image 3, 256 kB

4

4

image 5, 256 kBimage 3, 256 kB4

image 5, 256 kBimage 3, 256 kB46

unused memory

image in use
1. replace image 3 by image 4

2. add image 5

3. replace image 1 by image 6

Soft Real Time Design
115 Gerrit Muller

version: 0.2
March 6, 2021

MICVfragmentationAnimation

Memory Fragmentation Increase

M
B
yt
es

time

10

20

nett used

used address space

gross used

Soft Real Time Design
116 Gerrit Muller

version: 0.2
March 6, 2021

MICVfragmentationInTime

Cache Layers

virtual memory

physical

memory

memory

management

unit

disk storage

instruction

and data

cache

heap memory, malloc() free()

allocator, chunk

view PixMap

cache

print PixMap

cache

cluster PixMap

cache

operating

system

toolbox

hardware

application

functions

user

interface

Medical imaging R/F cache sizes legend

Soft Real Time Design
117 Gerrit Muller

version: 0.2
March 6, 2021

MICVcacheLayers

Bulk Data Memory Management Memory Allocators

chunk size:3MB

for large images

from 225 kB (480*480*8)

to 3 MB (1536*1024*16)

block size:

256kB

chunk size: 2MB

for small (screen) images

from 8kB

to 225 kB

block size: 8 kB

chunk size: 1MB

for stamp images

96*96*8 (9kB)
block size: 9kB

Soft Real Time Design
118 Gerrit Muller

version: 0.2
March 6, 2021

MICVmemoryAllocators

Cached Intermediate Processing Results

raw

image

resized

image
enhanced

image

grey-

value

image

view-

port

gfx

text

retrieve enhance inter-
polate

lookup merge display

Soft Real Time Design
119 Gerrit Muller

version: 0.2
March 6, 2021

MICVprocessingCachedPixmaps

Example of Allocator and Cache Use

Pixmap cache

viewport
viewport

viewport
grey-

value

image

grey-

value

image

resized

image

resized

image
resized

image
resized

image

raw

image
raw

image
raw

image
raw

image

resized

image

grey-

value

image

gfx

text

retrieve enhance lookup merge display

viewport

4 * 1024
2

1 byte / pixel
4 * 460

2

2 byte / pixel
4 * 460

2

1 byte / pixel
4 * 460

2

1 byte / pixel

5
retrieve enhance interpolate lookup

96
2

200
2

96
2

merge display

raw

image
raw

image
raw

image
enhanced

image inter-
polate

200
2

200
2

block size:

9kB

block size:

8 kB

block size:

256kB

4 * 1024
2

2 byte / pixel

1024
2

8 bit image requires

4 256kB blocks

8 1024
2
 images require

48 256kB blocks

12 blocks shortage

460
2
image 8 bit requires 27 8kB blocks

200
2
 images require 5 8kb blocks

all screen-size images require

334 8kB blocks, 78 blocks shortage

Soft Real Time Design
120 Gerrit Muller

version: 0.2
March 6, 2021

MICVpixmapExample

Print Server is Based on Banding

4k pixels

128 pixels
1024 pixels

original images

1024

pixels

Soft Real Time Design
121 Gerrit Muller

version: 0.2
March 6, 2021
MICVbanding

CPU Load and Performance

Easyvision Memory CPU load and performance

CPU load analysis

response time

throughput

measurement tools

Soft Real Time Design
122 Gerrit Muller

version: 0.2
March 6, 2021

PSRTeasyvisionCPUloadIntro

CPU Processing Times and Viewing Responsiveness

pipeline timing proportional

retrieve enhance interpolate LUT
g

f

x

dis-

play

accumulated processing time in seconds

0.05s0.025s0.075s0.2s0.5s0.3s

raw

image

resized

image

grey-

value

image

gfx

retrieve enhance
lookup
(LUT)

gfx
merge displayview-

port
enhanced

image

inter-
polate

txt

next

0.9s
-1

C/B

7 s
-1

zoom

3 s
-1

update rate for

common user actions

0.10.20.30.40.50.60.70.80.91.01.1 0

1024
2

920
2

920
2

920
2

1024
2

Soft Real Time Design
123 Gerrit Muller

version: 0.2
March 6, 2021

MICVprocessingTimes

Server CPU Load

210 s/exam

50 s/exam

communication

data base

print

remote systems

and users

printer

disk

im
p

o
rt

p

ri
n

t

3
.5

 C
P

U
 s

e
c
o

n
d

p
e

r

M
p

ix
e

l
o

u
tp

u
t

2
.5

 C
P

U
 s

e
c
o

n
d

p
e

r

M
b

y
te

 i
n

p
u

t

print
10.5 min /

exam

import
2.5 min /

exam

margin
2 min

serving 3

examination

rooms

serving one

examination

room

CPU time

available for

interactive

viewing

3
0

%

9
0

%

Soft Real Time Design
124 Gerrit Muller

version: 0.2
March 6, 2021

MICVserverCPUload

Resource Measurement Tools

time

tn-2 tn-1 tn
preamble to remove

start-up effects
use case

object instantations

heap memory usage
oit

ps

vmstat

kernel resource

stats

kernel CPU time

user CPU time

code memory

virtual memory

paging

heapviewer (visualise fragmentation)

Soft Real Time Design
125 Gerrit Muller

version: 0.2
March 6, 2021

MICVtools

Object Instantiation Tracing

AsynchronousIO

AttributeEntry

BitMap

BoundedFloatingPoint

BoundedInteger

BtreeNode1

BulkData

ButtonGadget

ButtonStack

ByteArray

0

237

21

1034

684

200

25

34

12

156

-3

-1

-4

-3

-1

-3

0

0

0

-4

+3

+5

+8

+22

+9

+3

1

2

1

+12

[819200]

[8388608]

[13252]

class name current
nr of

objects

deleted
since

tn-1

created

since

tn-1

heap
memory

usage

Soft Real Time Design
126 Gerrit Muller

version: 0.2
March 6, 2021

MICVoitTool

Overview of Benchmarks and Other Measurement Tools

Byte benchmark computer platform performance

OS, shell, file I/O

coarse new hardware

new OS release

test / benchmark what, why accuracy when

SpecInt (by suppliers) CPU integer coarse new hardware

file I/O file I/O throughput medium new hardware

image processing CPU, cache, memory

as function of image, pixel size

accurate new hardware

Objective-C overhead method call overhead

memory overhead

accurate initial

socket, network throughput

CPU overhead

accurate ad hoc

data base transaction overhead

query behaviour

accurate ad hoc

load test throughput, CPU, memory accurate regression

s
e

lf
 m

a
d

e
p

u
b

lic

Soft Real Time Design
127 Gerrit Muller

version: 0.2
March 6, 2021

MICVbenchmarks

Case 4

MRI Volume Reconstruction and Viewing

Usage patterns as impact on performance

Resource model and requirements identification for usage patterns

Soft Real Time Design
128 Gerrit Muller

version: 0.2
March 6, 2021

PHRTcaseMRvolumeIntro

Volume Acquisition and Reconstruction

512

5
1
2

25
6

Data in bytes =

2 * 512 * 512 * 256 * 2 =

V
o

lu
m

e
s x y z

b
y
te

s
 p

e
r

p
ix

e
l

256 MBytes

in 2 * 2 minutes =

240 seconds

Soft Real Time Design
129 Gerrit Muller

version: 0.2
March 6, 2021
MRneuroCubic

Performance Requirements

15 minute time slot

14:00 14:15 14:30

George

arrives
at radiology

department

Nurse

explains
the procedure

Position Imaging

George

leaves
exam room

Examination of previous patient

George is

waiting
in the dressing room

Prepare
George for the

examination

(a.o. RF coils)

View
away

View
away

Soft Real Time Design
130 Gerrit Muller

version: 0.2
March 6, 2021

MRneuroTypicalTimeline

Resource Model

Acquisition
Recon-

struction
Viewing

Intermediate

data:

256 MByte

Storage

2 Volumes

256 MByte

View away

in ca 10 sec.

full screen

25 images

per second

Soft Real Time Design
131 Gerrit Muller

version: 0.2
March 6, 2021

MRneuroResourceModel

Critical Resources

Attribute
access

Buffer
architecture

Acquisition
Recon-

struction
Viewing

Intermediate

data:

256 MByte

Storage

2 Volumes

256 MByte

View away

in ca 10 sec.

full screen

25 images

per second

Pipeline &

caching

Soft Real Time Design
132 Gerrit Muller

version: 0.2
March 6, 2021

MRneuroResourceCriticalities

Case 4

MRI Volume Reconstruction and Viewing

Operational usage pattern drives (implicit/explicit) system performance

requirements

Resource / cost trade-off must support operational usage patterns

Soft Real Time Design
133 Gerrit Muller

version: 0.2
March 6, 2021

PHRTcaseMRvolumeSummary

Case 5

Mobile Display Appliances

Modelling external environment

End-to-end performance

Allocation choices

Soft Real Time Design
134 Gerrit Muller

version: 0.2
March 6, 2021

PSRTmobileApplianceIntro

Mobile Display Appliances

Mobile Display Appliance

Mediascreen

Original pictures from Nokia

Soft Real Time Design
135 Gerrit Muller

version: 0.2
March 6, 2021

FFTSclient

User Access Point to a Long Foodchain

User

Network

Providers

Service

Providers

Content

Providers

Home

Server

Appliance

Soft Real Time Design
136 Gerrit Muller

version: 0.2
March 6, 2021

FFTStotalChain

The ”SMART” World of the Design

Data

transport
Security

Virtual

Machine

Applications

Display

and UI

Standard Interactive System

free after Nick Thorne, Philips Semiconductors,

Systems Laboratory Southampton UK,

 as presented at PSAVAT April 2001

Soft Real Time Design
137 Gerrit Muller

version: 0.2
March 6, 2021

FFTSstandardInteractiveSystem

Specifiable Characteristics

Data

transport
Security

Virtual

Machine

Applications

Display

and UI

Standard Interactive System

Throughput

Latency

Distance

Power

Security Level

Performance

Encryption

Authentication

Functionality

Performance

Power, Footprint

Display size

Color depth

Rendering

Performance

IQ

UI modi

Functionality

Performance

Power, Footprint

Servers

&

Networks

Soft Real Time Design
138 Gerrit Muller

version: 0.2
March 6, 2021

FFTSstandardInteractiveSystemAnnotated

Response Time: Latency Budget

Data transport

Security

Virtual Machine

Application

Graphics and UI

Home Server

Network contention

Last-Mile network

Backbone network

Service server

Content server

Home Network

Appliance

Message

Latency

Response

Time

times in

milliseconds

Provider Infrastructure

User need

10

10

10

10

0

40

10

10

20

20

40

50

50

50

310

200

Total

10

20

10

10

20

20

20

30

10

30

20

100

50

160

110

A
ll

n
u

m
b

e
rs

 a
re

 i
m

a
g

in
a

ry
 a

n
d

 f
o

r
ill

u
s
tr

a
ti
o

n
 p

u
rp

o
s
e

s
 o

n
ly

Soft Real Time Design
139 Gerrit Muller

version: 0.2
March 6, 2021

FFTSlatencyBudget

Interaction or Irritation?

User

Network

Providers

Service

Providers

Content

Providers

Home

Server

Appliance

Interactive

Experience

Irrit
ating

Experience

Response

Time (ms)

100

150

310

Soft Real Time Design
140 Gerrit Muller

version: 0.2
March 6, 2021

FFTStotalChainResponseTime

Case 5 Summary

Mobile Display Appliances

Modelling external environment: make assumptions

End-to-end performance:

large part of performance budget is not controlled

User perceived performance determines function allocation

Soft Real Time Design
141 Gerrit Muller

version: 0.2
March 6, 2021

PSRTmobileApplianceSummary

Exercise

Explore “Fast Browser” product specification, design options and performance
issues

Soft Real Time Design
142 Gerrit Muller

version: 0.2
March 6, 2021

Scheduling Techniques and Analysis
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The choice of scheduling technique and it’s parametrization impacts the perfor-
mance of systems. This is an area where quite some theoretical work has
been done. In this presentation we address Earliest Deadline First and Rate
Monotolic Scheduling (RMS). We provide how-to information for RMS, based on
Rate Monotonic Analysis (RMA).

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: preliminary
draft
version: 0

Theory Block Scheduling Techniques and Analysis

Theory Hard Real Time Scheduling

Earliest Deadline First (EDF)

Rate Monotonic Scheduling (RMS)

Scheduling Techniques and Analysis
144 Gerrit Muller

version: 0
March 6, 2021

PHRTtheorySchedulingIntro

Real Time Scheduling

Scheduler

Ready Run

Wait

Run

Queue

Ready
Ready

ReadyReady

Wait
Wait

Wait

Queue

Scheduler admin

Proc. 1

Prio. High

State ready

Process /

tasks

instances

Proc. 2

Prio. Med.

State ready

Proc. 3

Prio. High

State ready

. . .

. . .

. . .

Priorities

Scheduling Techniques and Analysis
145 Gerrit Muller

version: 0
March 6, 2021

PSRTscheduling

Earliest Deadline First

• Constraints

• Determine deadlines in Absolute time (CPU cycles or msec, etc.)

• Assign priorities Process that has the earliest deadline

gets the highest priority

(no need to look at other processes)

Smart mechanism needed

for Real-Time determination of deadlines

Pre-emptive scheduling needed

EDF = Earliest Deadline First

Earliest Deadline based scheduling

for (a-)periodic Processing

The theoretical limit for any number of processes

is 100% and so the system is schedulable.

Scheduling Techniques and Analysis
146 Gerrit Muller

version: 0
March 6, 2021

PHRTedfPriorityAssignment

Exercise Earliest Deadline First (EDF)

Calculate loads and determine thread activity (EDF)

Source: Ton Kostelijk - EXARCH course

Suppose at t=0, all threads are ready to process the arrived trigger.

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5

Thread 3 23 5

Scheduling Techniques and Analysis
147 Gerrit Muller

version: 0
March 6, 2021

PHRTexerciseEDF

Rate Monotonic Scheduling

• Constraints

• Determine deadlines (period) in terms of Frequency or Period (1/F)

• Assign priorities Highest frequency (shortest period)

==> Highest priority

Independent activities

Periodic

Constant CPU cycle consumption

Assumes Pre-emptive scheduling

RMS = Rate Monotonic Scheduling

Priority based scheduling for Periodic Processing

of tasks with a guaranteed CPU - load

Scheduling Techniques and Analysis
148 Gerrit Muller

version: 0
March 6, 2021

PHRTrmsPriorityAssignment

Exercise Rate Monotonic Scheduling (RMS)

Calculate loads and determine thread activity (RMS)

Source: Ton Kostelijk - EXARCH course

Suppose at t=0, all threads are ready to process the arrived trigger.

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5

Thread 3 23 5

Scheduling Techniques and Analysis
149 Gerrit Muller

version: 0
March 6, 2021

PHRTexerciseRMS

RMS Theory

Set of tasks with periods Ti, and

process time Pi: load ui = Pi / Ti

Schedule is at least possible when tasks are

independent and:

1.00 , 0.83 , 0.78 , 0.76 , ... log(2) = 0.69

Real-time scheduling theory,

utilization bound

Source: Ton Kostelijk - EXARCH course

12

1

n
ii nULoad

Scheduling Techniques and Analysis
150 Gerrit Muller

version: 0
March 6, 2021

PHRTrealTimeSchedulingTheory

RMS Evaluation

RMS cannot utilize 100% (1.0) of CPU,

but for 1, 2, 3, 4, ... processes:

1.00 , 0.83 , 0.78 , 0.76 , ... log(2) = 0.69

RMS guarantees that all processes will

always meet their deadlines, for any

interleaving of processes.

With fixed priorities, context switch

overhead is limited



Source: Ton Kostelijk - EXARCH course

Scheduling Techniques and Analysis
151 Gerrit Muller

version: 0
March 6, 2021

PHRTrmsEvaluation

RMS Evaluation (continued)

For specific cases the utilization bound

can be higher:

up to 0.88 load for large n

A processor running only

hard-real-time processes is rare.

For soft-RT less of a problem

A lot of additional theory exists.
Meeting deadlines in hard-real-time systems

(L.P. Briand & D.M. Roy)

Source: Ton Kostelijk - EXARCH course

Scheduling Techniques and Analysis
152 Gerrit Muller

version: 0
March 6, 2021

PHRTrmsEvaluationContinued

Answer EDF Exercise

Answers: loads and thread activity (EDF)

Source: Ton Kostelijk - EXARCH course

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5 33.3%

Thread 3 23 5 21.7%

88.3%

Scheduling Techniques and Analysis
153 Gerrit Muller

version: 0
March 6, 2021

PHRTexerciseEDFanswer

Answer RMS Exercise

Answers: loads and thread activity (RMS)

Source: Ton Kostelijk - EXARCH course

0 9 15 18 23

Thread 1

Thread 2

Thread 3

Thread Period = deadline Processing Load

Thread 1 9 3 33.3%

Thread 2 15 5 33.3%

Thread 3 23 5 21.7%

88.3%

3 3 3

5

1 3

3 2

-1 ??

Scheduling Techniques and Analysis
154 Gerrit Muller

version: 0
March 6, 2021

PHRTexerciseRMSanswer

Extensions of the Application of RMS

if deadline <> 1/period

then use period = 1/deadline

time

deadline

interrupt

period

if CPU consumption varies

then use worst case CPU consumption

More advanced techniques are available,

for instance in case of "nice" frequencies

Scheduling Techniques and Analysis
155 Gerrit Muller

version: 0
March 6, 2021

PHRTtheorySchedulingExtensions

Summary

Theory Hard Real Time Scheduling

Earliest Deadline First (EDF):

optimal according theory, but practical not applicable due to overhead

Rate Monotonic Scheduling (RMS):

provides recipe to assign priorities to tasks

results in predictable real time behavior

works well, even outside theoretical constraints

Scheduling Techniques and Analysis
156 Gerrit Muller

version: 0
March 6, 2021

PHRTtheorySchedulingSummary

Exercise

Measurement of file transfers with different HTTP, FTP, Windows filesystem, on
fast and slow networks

Scheduling Techniques and Analysis
157 Gerrit Muller

version: 0
March 6, 2021

Soft Real Time

Navigation Case to be inserted here

Scheduling Techniques and Analysis
158 Gerrit Muller

version: 0
March 6, 2021

Home work

Assignment for next block

Scheduling Techniques and Analysis
159 Gerrit Muller

version: 0
March 6, 2021

Summary

to be inserted here

Scheduling Techniques and Analysis
160 Gerrit Muller

version: 0
March 6, 2021

Home work reporting

Scheduling Techniques and Analysis
161 Gerrit Muller

version: 0
March 6, 2021

Exploring an existing code base: measurements and
instrumentation

by Gerrit Muller University of South-Eastern Norway-NISE
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Many architects struggle with a given large code-base, where a lot of knowledge
about the code is in the head of people or worse where the knowledge has disap-
peared. One of the means to recover insight from a code base is by measuring
and instrumenting the code-base. This presentation addresses measurements of
the static aspects of the code, as well as instrumentation to obtain insight in the
dynamic aspects of the code.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

March 6, 2021
status: draft
version: 0.4

typical small testprogram

create steady state

ts = timestamp()

for(i=0;i<1M;i++) do something

te = timestamp()

duration = ts - te

small test programs

HW support

(computing) hardware

operating system

services

applications
instrumentation

small test programs

test suite

task manager

perfmon

ps, vmstat

small test programs

tools

OIT

visual inspection

small test programs

heapviewer

OS

m
e

m
o

ry

in
s
tr

u
m

e
n

ta
ti
o

n

processing

parametrized

processing

Problem Statement

complex

system

created by

>100 people

code

repository

> 1Mloc

> 1k files

document

repository

> 100 klines

> 1k docs

>100 people

left

wanted:

new functions and interfaces, higher performance levels,

improvements, et cetera

given:

Exploring an existing code base: measurements and instrumentation
163 Gerrit Muller

version: 0.4
March 6, 2021
EBMIproblem

Overview of Approach and Presentation Agenda

1 collect overviews

2 study static structure

2A macroscopic fact finding

2B microscopic sampling

2C construct medium level diagrams

software

system

3 study dynamic behavior

3A measurements

3B construct simple models

size, effort

relations

code reading

time

resources

4
.
it
e

ra
te

Exploring an existing code base: measurements and instrumentation
164 Gerrit Muller

version: 0.4
March 6, 2021

EBMImethod

SW Overview(s)

Registry

NameSpace

server

Monitor

Broker

Event

manager

Transparant

Communication

Persistent

Storage

Abstraction

Layer

Device

independent

format

Plug-in

framework

Queue

manager

Spool server

Resource

scheduler

Plug & play

Configurable

pipeline

Property

editor
Session

manager

Compliance

profile

Application

hardware abstraction layer

middleware services

applications

in
fr

a
-

s
tr

u
c
tu

re

mechanism centric (over)simplistic

delivery centric

Exploring an existing code base: measurements and instrumentation
165 Gerrit Muller

version: 0.4
March 6, 2021

EBMIinputs

System Overviews

illuminatorlaser

sensor

pulse-freq, bw,

wavelength, ..

uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

laser

light source

illuminator

beam

shaping

lens

projection

reticle stage

positioning

wafer stage

positioning

m
e

a
s
u

re
m

e
n

t

a
lig

n
m

e
n

t,
 l
e

v
e

lli
n

g

reticle

handler

input/output

wafer

handler

input/output

C&T

contanimation,

temperature

system

control

coordination

light

reticles

wafers

laser
illumi-

nator
lens

reticle

stage

wafer

stage

measure-

ment

reticle

handler

wafer

handler
C&T

system

control

coordination

vertic

al

motio

n

hori-

zontal

motio

n

vertic

al

motio

n

hori-

zontal

motio

n

ethernet

VMEVME

250

mm/s

wafer

reticle

slit

v
y

t

v
x

e
x
p

o
s
e

e
x
p

o
s
e

s
te

p

dynamic exposure through slit

subsystems control hierarchy

kinematic

physics/optics

Exploring an existing code base: measurements and instrumentation
166 Gerrit Muller

version: 0.4
March 6, 2021

EBMIsystemDiagrams

Case 1: EasyVision (1992)

EasyVision: Medical Imaging WorkstationURF-systems

typical clinical

image (intestines)

Exploring an existing code base: measurements and instrumentation
167 Gerrit Muller

version: 0.4
March 6, 2021
MSeasyvision

Examples of Macroscopic Fact Finding

version control information:

#new files

#deleted files

#changes per file since ...

package information:

files

metrics:

QAC type information

methods

globals

> wc -l *.m

72 Acquisition.m

13 AcquisitionFacility.m

330 ActiveDataCollection.m

132 ActiveDataObject.m

304 Activity.m

281 ActivityList.m

551 AnnotateParser.m

1106 AnnotateTool.m

624 AnyOfList.m

466 AsyncBulkDataIO.m

264 AsyncDeviceIO.m

261 AsyncLocalDbIO.m

334 AsyncRemoteDbIO.m

205 AsyncSocketIO.m

Exploring an existing code base: measurements and instrumentation
168 Gerrit Muller

version: 0.4
March 6, 2021

EBMImacroscopic

Histogram of File Sizes EV R1.0

0 1000200 600400 800 1200 1400

20

40

60

80

100

120

25

10

1500..

2000

2000..

4000

3

>4000

largest file:

4473 lines

DatabaseTool.m

legend

size OK, sample few

slightly suspect,

sample some

suspect, have a look

Exploring an existing code base: measurements and instrumentation
169 Gerrit Muller

version: 0.4
March 6, 2021

EBMIhistogram

Microscopic Sampling (Code Reading)

13 IndexBtree.m

12 IndexInteriorNode.m

13 IndexLeafNode.m

13 ObjectStoreBtree.m

12 ObjectStoreInteriorNode.m

13 ObjectStoreLeafNode.m

Example of small classes due to

database design;

These classes are only supporting constructs

4473 DatabaseTool.m

1291 EnhancementTool.m

1106 AnnotateTool.m

1291 EnhancementTool.m

3471 GreyLevelTool.m

1639 HCConfigurationTool.m

1007 HCQueueViewingTool.m

1590 HardcopyTool.m

Example of large classes due to

large amount of UI details

1541 GenericRegion.m

1415 GfxArea.m

1697 GfxFreeContour.m

4095 GfxObject.m

1714 GfxText.m

1374 CVObject.m

1080 ChartStack.m

1127 Collection.m

1651 Composite.m

1725 CompositeProjectionImage.m

1373 Connection1.m

1181 Database1.m

3707 DatabaseClient.m

3240 Image.m

1861 ImageSet.m

Example of large classes due to

inherent complexity;

some of these classes are really suspect

Exploring an existing code base: measurements and instrumentation
170 Gerrit Muller

version: 0.4
March 6, 2021
EBMIsampling

Changes Over Time

time

#
c
h

a
n

g
e

d

lin
e

s partial redesigns

failed in retrospect

redesign by

mature designer ever changing files e.g.:

systemConstants.h

ShakyImplementation.m

hot spots

Exploring an existing code base: measurements and instrumentation
171 Gerrit Muller

version: 0.4
March 6, 2021

EBMIchangesOverTime

Simplified Medium Level Diagram

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard IPX workstationDOR
HC

interf

RC

interf

SunOS

NIXRC

driver

HC

driver

DOR

driver

Spool HCU Store Image Gfx UI DB
PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools Print Store View Cluster

operating

system

toolbox

hardware

application

functions

user interface

connected

system

SW

infrastructure

legend

The real layering diagram did have >15 layers

Exploring an existing code base: measurements and instrumentation
172 Gerrit Muller

version: 0.4
March 6, 2021
EBMIswLayers

Conclusions Static Exploration

Quantification helps to calibrate the intuition of the architect

Macroscopic numbers related to code level understanding provides insight

+ relative complexity

+ relative effort

+ hot spots

+ (static) dependencies and relations

Exploring an existing code base: measurements and instrumentation
173 Gerrit Muller

version: 0.4
March 6, 2021

EBMIconclusionStatic

Dynamics � Static

running

system

behavior

functionality

emerging

properties

resources

(CPU, cache,

memory, bus BW,

network, ...)

data

code

user

interface

sy
st
em

co
nt

ex
t

de
si
gn

co
nt

ex
t

images

patient info

configuration

performance

reliability

Exploring an existing code base: measurements and instrumentation
174 Gerrit Muller

version: 0.4
March 6, 2021
EBMIdynamics

Layered Benchmarking

CPU

cache

memory

bus

..

(computing) hardware

typical values

interference

variation

boundaries

operating system

services

applications

network transfer

database access

database query

services/functions

duration

CPU time

footprint

cache

end-to-end

function

duration

services

interrupts

task switches

OS services

CPU time

footprint

cache

latency

bandwidth

efficiency

interrupt

task switch

OS services

duration

footprint

interrupts

task switches

OS services

tools

locality

density

efficiency

overhead

Exploring an existing code base: measurements and instrumentation
175 Gerrit Muller

version: 0.4
March 6, 2021

EBMIbenchmarkStack

Example: Processing HW and Service Performance

spatial

enhancement

interpolate
Look up table

invert

contrast / brightness

graphics

merge

colour

LUT

HWSW

monitor

image

from

database

o
u
tp
u
t

input

contrast

brightness
bi-linear

bi-cubic

legend

Exploring an existing code base: measurements and instrumentation
176 Gerrit Muller

version: 0.4
March 6, 2021

MICVpresentationPipeline

Processing Performance

pipeline timing proportional

retrieve enhance interpolate LUT
g

f

x

dis-

play

accumulated processing time in seconds

0.05s0.025s0.075s0.2s0.5s0.3s

raw

image

resized

image

grey-

value

image

gfx

retrieve enhance
lookup
(LUT)

gfx
merge displayview-

port
enhanced

image

inter-
polate

txt

next

0.9s
-1

C/B

7 s
-1

zoom

3 s
-1

update rate for

common user actions

0.10.20.30.40.50.60.70.80.91.01.1 0

1024
2

920
2

920
2

920
2

1024
2

Exploring an existing code base: measurements and instrumentation
177 Gerrit Muller

version: 0.4
March 6, 2021

MICVprocessingTimes

Resource Measurement Tools

time

tn-2 tn-1 tn
preamble to remove

start-up effects
use case

object instantations

heap memory usage
oit

ps

vmstat

kernel resource

stats

kernel CPU time

user CPU time

code memory

virtual memory

paging

heapviewer (visualise fragmentation)

Exploring an existing code base: measurements and instrumentation
178 Gerrit Muller

version: 0.4
March 6, 2021

MICVtools

Object Instantiation Tracing

AsynchronousIO

AttributeEntry

BitMap

BoundedFloatingPoint

BoundedInteger

BtreeNode1

BulkData

ButtonGadget

ButtonStack

ByteArray

0

237

21

1034

684

200

25

34

12

156

-3

-1

-4

-3

-1

-3

0

0

0

-4

+3

+5

+8

+22

+9

+3

1

2

1

+12

[819200]

[8388608]

[13252]

class name current
nr of

objects

deleted
since

tn-1

created

since

tn-1

heap
memory

usage

Exploring an existing code base: measurements and instrumentation
179 Gerrit Muller

version: 0.4
March 6, 2021

MICVoitTool

Memory Instrumentation

measured

code

OS

data

bulk data

fragmen-
tation

200

MB

budget

accountable

by OS services

and OIT

unaccounted

big lump

manually

instrumentedunaccounted

leftover

Exploring an existing code base: measurements and instrumentation
180 Gerrit Muller

version: 0.4
March 6, 2021

EBMImemoryInstrumentation

Overview of Benchmarks and Other Measurement Tools

Byte benchmark computer platform performance

OS, shell, file I/O

coarse new hardware

new OS release

test / benchmark what, why accuracy when

SpecInt (by suppliers) CPU integer coarse new hardware

file I/O file I/O throughput medium new hardware

image processing CPU, cache, memory

as function of image, pixel size

accurate new hardware

Objective-C overhead method call overhead

memory overhead

accurate initial

socket, network throughput

CPU overhead

accurate ad hoc

data base transaction overhead

query behaviour

accurate ad hoc

load test throughput, CPU, memory accurate regression

s
e

lf
 m

a
d

e
p

u
b

lic

Exploring an existing code base: measurements and instrumentation
181 Gerrit Muller

version: 0.4
March 6, 2021

MICVbenchmarks

Tools and Instruments Positioned in the Stack

typical small testprogram

create steady state

ts = timestamp()

for(i=0;i<1M;i++) do something

te = timestamp()

duration = ts - te

small test programs

HW support

(computing) hardware

operating system

services

applications
instrumentation

small test programs

test suite

task manager

perfmon

ps, vmstat

small test programs

tools

OIT

visual inspection

small test programs

heapviewer

OS

m
e

m
o

ry

in
s
tr

u
m

e
n

ta
ti
o

n

processing

parametrized

processing

Exploring an existing code base: measurements and instrumentation
182 Gerrit Muller

version: 0.4
March 6, 2021

EBMIbenchmarkPositions

Case 2: ARM9 Cache Performance

PCB
chip

CPU

Instruction

cache

Data

cache

memory
on-chip

bus

cache line size:

8 32-bit words

memory

bus

200 MHz 100 MHz

Exploring an existing code base: measurements and instrumentation
183 Gerrit Muller

version: 0.4
March 6, 2021

PHRTarmCacheExample

Example Hardware Performance

memory

request w
o

rd
 1

w
o

rd
 7

w
o

rd
 4

w
o

rd
 3

w
o

rd
 2

w
o

rd
 8

w
o

rd
 6

w
o

rd
 5

38 cycles

memory access time in case of a cache miss

200 Mhz, 5 ns cycle: 190 ns

data

memory

response

22 cycles

Exploring an existing code base: measurements and instrumentation
184 Gerrit Muller

version: 0.4
March 6, 2021

EBMImemoryTimingARM

Actual ARM Figures

ARM9 200 MHz

as function of cache use

From cache 2 µs

After cache flush 10 µs

Cache disabled 50 µs

cache setting tcontext switch

tcontext switch

Exploring an existing code base: measurements and instrumentation
185 Gerrit Muller

version: 0.4
March 6, 2021

PHRTarmCacheActualFigures

Context Switch Overhead

toverhead ncontext switch tcontext switch*=

ncontext switch

(s
-1

) toverhead
CPU load

overhead

tcontext switch = 10µs

500

5000

50000

5ms

50ms

500ms

0.5%

5%

50%

toverhead

1ms

10ms

100ms

0.1%

1%

10%

tcontext switch = 2µs

CPU load
overhead

Exploring an existing code base: measurements and instrumentation
186 Gerrit Muller

version: 0.4
March 6, 2021

PSRTcontextSwitchOverhead

Performance as Function of all Layers

hardware

operating system

services

applications

tools

system performance = f(,

,

,

,

)

w
h

at
 is

 u
se

d
?

h
o

w
 o

ft
en

?

h
o

w
 m

u
ch

d

o
es

 it
 c

o
st

?

Exploring an existing code base: measurements and instrumentation
187 Gerrit Muller

version: 0.4
March 6, 2021

EBMIperformanceFormula

Annotated Performance Formule

hardware

operating system

services

applications

tools

system performance = f(
,

,

,

,

)

cache miss: 190ns

hit-rate, miss-rate,

#transactions

interrupt-rate, task switch rate

CPU-load

transaction overhead: 25 ms

interrupt latency: 10 us

task-switch: 10 us

(with cache flush)

Exploring an existing code base: measurements and instrumentation
188 Gerrit Muller

version: 0.4
March 6, 2021

EBMIperformanceExample

Keep iterating!

zoom in on suspect parts

code reading

problematic

dynamic

properties

static

structure

new measurements

and experiments

create

(recover)

insight in

complex

system

Exploring an existing code base: measurements and instrumentation
189 Gerrit Muller

version: 0.4
March 6, 2021
EBMIiteration

Discussion propositions

system context

system

software

0. many design teams have lost the

overview of the system

1. a good (sw) architect has a

quantified understanding of system

context, system and software

2. a good design facilitates

measurements of critical aspects

for a small realization effort

Exploring an existing code base: measurements and instrumentation
190 Gerrit Muller

version: 0.4
March 6, 2021

EBMIpropositions

Performance Patterns, Pitfalls, and Approach
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Performance Design is based on the application on many performance oriented
patterns. Patterns are a way are to consolidate experience: what solution fits to
what problem in what situation? Pitfalls are also a way to consolidate experience:
what are common design mistakes?

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: preliminary
draft
version: 0.1

Case 6

Common Platforms and Bloating

Generic nature of platforms

Most SW implementations are way too big

Performance suffers from oversize and generic provisions

Performance Patterns, Pitfalls, and Approach
192 Gerrit Muller

version: 0.1
March 6, 2021

PPbloatingIntro

Exploring Bloating: Main Causes

>90% of all Software statements are not

needed, but caused by:

over-specification

bad design

too generic

dogmatic rules

legacy remains

overhead

value

legendcore function

less than 10%

Performance Patterns, Pitfalls, and Approach
193 Gerrit Muller

version: 0.1
March 6, 2021

PPbloating

Necessary Functionality � Intended Regular Function

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Performance Patterns, Pitfalls, and Approach
194 Gerrit Muller

version: 0.1
March 6, 2021

BLOATcoreFunctionality

The Danger of Being Generic: Bloating

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Performance Patterns, Pitfalls, and Approach
195 Gerrit Muller

version: 0.1
March 6, 2021

GDbloatingVisualized

Problem Propagation via Copy & Paste

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Performance Patterns, Pitfalls, and Approach
196 Gerrit Muller

version: 0.1
March 6, 2021

BLOATshitPropagation

Example of Problem Propagation

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Performance Patterns, Pitfalls, and Approach
197 Gerrit Muller

version: 0.1
March 6, 2021

BLOATshitPropagationExample

Overhead Penalty of Modularity

monolithic

coarse grainmedium grain
modular

fine grain

63 4481

o
v
e

rh
e

a
d

o
v
e

rh
e

a
d

o
v
e

r-

h
e

a
d

% % %

v
a

lu
e

v
a

lu
e

v
a

lu
e

Performance Patterns, Pitfalls, and Approach
198 Gerrit Muller

version: 0.1
March 6, 2021

EASRTcallTree

Function Call Overhead

prepare

parameters

save state

jump

access

parameters

do something

useful

return

restore state

do something

useful

do something

useful

Load and depth dependent

(hidden) side effects

pipeline flush

I-cache disturbance

D-cache disturbance

overhead

value

legenda

Performance Patterns, Pitfalls, and Approach
199 Gerrit Muller

version: 0.1
March 6, 2021

EASRTcallOverhead

Exercise Call Tree Overhead

Suppose:

Call Overhead = 10µs

Call graph branching factor = 2

Depth = 12

What is the Call overhead

when all branches are followed?

Performance Patterns, Pitfalls, and Approach
200 Gerrit Muller

version: 0.1
March 6, 2021

PPexerciseCallTreeOverhead

Exercise Frame Rate for Layered SW

Suppose:

Function call = 10µs

Call layer depth = 20

1024 calls per image

What is the maximum frame rate possible

assuming that the complete CPU time is available

for function calls?

Performance Patterns, Pitfalls, and Approach
201 Gerrit Muller

version: 0.1
March 6, 2021

PPexerciseLayers

Case 6

Common Platforms and Bloating

Platforms are overprovisioned and very generic

Are benefits > disadvantages?

Performance loss is significant and can be measured and modelled

Performance Patterns, Pitfalls, and Approach
202 Gerrit Muller

version: 0.1
March 6, 2021

PPbloatingSummary

Case 7

Multi-Dimensional Viewing of many Images: Greedy and

Lazy Design Patterns

Performance Patterns, Pitfalls, and Approach
203 Gerrit Muller

version: 0.1
March 6, 2021

Greedy versus Lazy

Greedy and Lazy systems

Greedy: pre-fetched lots of data:

System tries to have data available for the requesting system

Lazy: hardly of no pre-fetching of data:

System tries to set data available for the requesting system

only when asked for

Performance Patterns, Pitfalls, and Approach
204 Gerrit Muller

version: 0.1
March 6, 2021

PSRTgreedyLazy

Viewing Large Image Sets

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

Example Greedy / Lazy (1)

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META DATA=

Patient name

Slice nr. / position

annotation

explanation

date / time

Performance Patterns, Pitfalls, and Approach
205 Gerrit Muller

version: 0.1
March 6, 2021

PSRTgreedyLazyImaging

Design Options

Example Greedy / Lazy (2)

Lazy: Fetch only

the requested image

Greedy: Fetch all the images

in the set

In between options:

- Fetch requested image + surrounding images

- Fetch requested image + only meta information of images

Performance Patterns, Pitfalls, and Approach
206 Gerrit Muller

version: 0.1
March 6, 2021

PSRTgreedyLazyImagingOptions

Consequences

Example Greedy / Lazy (3)

Lazy:

- low load on system

- long waiting time for next image

Greedy:

- high load on system

- possible long initial wait

- short response time insteady state

In between options:

- medium system load

- fast response for initialization and common image fetches

Performance Patterns, Pitfalls, and Approach
207 Gerrit Muller

version: 0.1
March 6, 2021

PSRTgreedyLazyImagingConsequences

Theory

Initialization, Steady State and Finalization

Performance Patterns, Pitfalls, and Approach
208 Gerrit Muller

version: 0.1
March 6, 2021

Start-up, Steady State, Shut Down

RunInit Finish

State

Change

Zap

Steady state

Start-up Shut-down

Performance Patterns, Pitfalls, and Approach
209 Gerrit Muller

version: 0.1
March 6, 2021

PSRTstartupRunFinish

Start-up, Steady State, Shut Down Scheme

discover kernel HW

initialise kernel data structures

determine next layer

load and initialise loader

determine loading HW

determine next layer

bring in initial state

load and initialise firmware

configure services

allocate resources

load, initialise and start services

configure UI

allocate resources

load, initialise and start UI

detect external services

publish internal services

connect where needed

load

configure

initialise, start

power

boot-loader

HW

kernel

services

user interface

connect to outside

application

stop in safe sequence

flush ongoing activities

close connections

save persistent data

free resources

stop

start up

HW SW interface

shut down

Performance Patterns, Pitfalls, and Approach
210 Gerrit Muller

version: 0.1
March 6, 2021

CVstartUp

Start-up, Steady State, Shut Down Trade off

Trade-off:

Optimize on steady state

may result in

poor performance for initialization

and process finish

Optimize on Initialization

and/or finish

may result in

poor steady state performance

RunInit Finish

State

Change

Zap

Steady state

Performance Patterns, Pitfalls, and Approach
211 Gerrit Muller

version: 0.1
March 6, 2021

PSRTstartupRunFinishTradeoff

Common Performance Pitfalls

- Overhead

- Data bloating

- Cache thrashing

- Layering

- Process communication

- Conversions

- Serialization

- Backfiring optimalisations

- Hidden loads (bus, DMA etc)

- Poor algorithms

- Wrong dimensioning

Performance Patterns, Pitfalls, and Approach
212 Gerrit Muller

version: 0.1
March 6, 2021

PSRTcommonPerformancePitfalls

Performance Design of Streaming Systems
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Video and audio content is a continuous stream of data. Video and audio systems
have to be designed in such a way that these streams are processed and delivered
continuously. We discuss the pipelining of multiple functions and the impact on
bus bandwidth, memory use and CPU overhead.

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: preliminary
draft
version: 0

Case Video Streaming

Video Streaming

Hard real-time performance for distributed system with memory-bus

Trade-off of between latency, memory and overhead

Performance consideration in increasing detail

Performance Design of Streaming Systems
214 Gerrit Muller

version: 0
March 6, 2021

PHRTcaseVideoStreamingIntro

Case Video Streaming: Performance Design

P1 P2 P3 P4

Ping

Pong

Control

Processor

P1

P2

P4

P3

Memory

interface

Memory

Fixed HW

 diagram

Fixed

algorithmic flow

Design

process

- Latency

- CPU Overhead

- Memory use

- Bus load

- Granularity

- Synchronisation strategy

Performance Design of Streaming Systems
215 Gerrit Muller

version: 0
March 6, 2021

PHRTdesignProcess

Video Streaming: HW Diagram

Control

Processor

P1

P2

P4

P3

Memory

interface

Memory

Performance Design of Streaming Systems
216 Gerrit Muller

version: 0
March 6, 2021

PHRTlatencyOverConsecutiveProcesses

Video Streaming Pipeline

P1 P2 P3 P4

Ping

Pong

Performance Design of Streaming Systems
217 Gerrit Muller

version: 0
March 6, 2021

PHRTvideoStreamingPipeline

Video Streaming: Latency

Frame
Available

Start

Finished

P1

Finished

P2

Finished

P3

Finished

P4

Start P1

P1Proc P2Proc P3Proc P4Proc

Latency

T1 T2 T3 T4

Start P2

Start P3

Start P4

P3Proc < ½ Tframe ~

Latency 2 Tframe~~

Legenda

Task switch

Process 1

Process 2

Process 3

Process 4

Performance Design of Streaming Systems
218 Gerrit Muller

version: 0
March 6, 2021

PHRTdataDrivenLatency

Video Streaming: Resources

Frame
Available

Start

Finished

P1

Finished

P2

Finished

P3

Finished

P4

Start P1

P1Proc P2Proc P3Proc
P4Pro

c

Latency

T1 T2 T3 T4

Start P2

Start P3

Start P4

Overhead = (T1 + T2 + T3 + T4) * Frame rate

Memory usage = 3 * 2 * Frame size

Bus load = %
3 * 2 * Frame size * Frame rate

 Bus capacity

Control

Processor

P1

P2

P4

P3

Memory

interface

Memory

T1 .. T4 = Overhead

to start P1 .. P4

Performance Design of Streaming Systems
219 Gerrit Muller

version: 0
March 6, 2021

PHRTdataDrivenAnswers

Latency Calculation

Nr of Processing Blocks 4

Latency (ms) 40

Memory (kB) 2430

Overhead (µs) 40

Overhead (%) 0

Busload (%) 12.15

lines 576 pixels per frame 414720

pixels per line 720 Memory in kB 405

Memory in MB 0.40

frame time 0.04 frame time in µs 40000

task switch time (µs) 10

Processing per block 0.01 Processing in µs 10000

Bus capacity (MB/s) 500

Line time (µs) 69

Frame fragment Full frame : 1

Latency = Nr. of Proc. blocks * processing time per block * frame fragment

Memory = (Nr. of Proc. blocks - 1) * 2 * pixels per frame * frame fragment

Overhead = Nr. of Proc. blocks * task switch time

Overhead (%) = Overhead / Latency

Busload = Memory usage * frame fragment * (frames/s) / BusCapacity

(mind the units, ms vs. µs and kB vs MB!)

4 0.01s 1

4 1414720

4 10 µs

40 µs 40 ms

2430 kB 1 25 500MB/s

Performance Design of Streaming Systems
220 Gerrit Muller

version: 0
March 6, 2021

PHRTdataDrivenLatencyCalculationTable

Exercise

Calculate:

Processing time

Overhead

Memory Use

Latency

for buffer size = 1/4 frame size

and for

buffer size = 1 video line

nx

1/4 ny

nx

ny

nx

ny *

1 line

Performance Design of Streaming Systems
221 Gerrit Muller

version: 0
March 6, 2021

PHRTexerciseBufferSizes

Exercise Worksheet

Nr of Processing Blocks 4 20

Block size

Latency (ms) 40 200

Frame Memory (kB) 2430 15390

1 Overhead (µs) 40 200

Overhead (%) 0 0

Busload (%) 12.15 76.95

Latency (ms)

½ Frame Memory (kB)

2 Overhead (µs)

Overhead (%)

Busload (%)

Latency (µs)

Line Memory (kB)

576 Overhead (µs)

Overhead (%)

Busload (%)

lines 576

pixels per line 720

pixels per frame 414720

Memory in kB 405

Memory in MB 0.395508

frame time 0.04

frame time in µs 40000

task switch time (µs) 10

Processing per block 0.01

Processing in µs 10000

Bus capacity (MB/s) 500

Line time (µs) 69

Performance Design of Streaming Systems
222 Gerrit Muller

version: 0
March 6, 2021

PHRTexerciseBufferSizesWorksheet

Changing the Buffer Size

buffersize = 1 line

Processing time =

Latency ~

Overhead =

Memory use =

buffersize = ¼ frame

Processing time =

Latency ~

Overhead =

Memory use =

1
/576 * original (per fragment)

1
/576* original + overhead

576 * original
1
/576 original

¼ * original (per fragment)

¼ * original

4 * original

¼ original

Performance Design of Streaming Systems
223 Gerrit Muller

version: 0
March 6, 2021

PHRTdataDrivenLatencySmallerDataPackets

Summary Case Video Streaming

Video Streaming

Properly designing distributed HRT systems requires trade-off

between latency, overhead, and memory needs

Performance model detailing dependent on significance of impact

factors

Performance Design of Streaming Systems
224 Gerrit Muller

version: 0
March 6, 2021

PHRTcaseVideoStreamingSummary

Home work reporting

Performance Design of Streaming Systems
225 Gerrit Muller

version: 0
March 6, 2021

Exercise

Measure functions or platform characteristics needed for “Fast Browser”. Select
most critical characteristics

Performance Design of Streaming Systems
226 Gerrit Muller

version: 0
March 6, 2021

Home work reporting

Performance Design of Streaming Systems
227 Gerrit Muller

version: 0
March 6, 2021

Performance Method Fundamentals
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The Performance Design Methods described in this article are based on a multi-
view approach. The needs are covered by a requirements view. The system
design consists of a HW block diagram, a SW decomposition, a functional design
and other models dependent on the type of system. The system design is used
to create a performance model. Measurements provide a way to get a quantified
characterization of the system. Different measurement methods and levels are
required to obtain a usable characterized system. The performance model and
the characterizations are used for the performance design. The system design
decisions with great performance impact are: granularity, synchronization, prior-
ization, allocation and resource management. Performance and resource budgets
are used as tool.

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

March 6, 2021
status: draft
version: 0.2

determine most

important and critical

requirements

model

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

Positioning in CAFCR

diverse

complex

fuzzy

performance

expectations

needs

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

SMART

+ timing

requirements

+ external

interfaces

models
analysis

models
analysis

simulations
measurements

simulations
measurements

execution architecture

design
threads

interrupts

timers

queues

allocation

scheduling

synchronization

decoupling

Performance Method Fundamentals
229 Gerrit Muller

version: 0.2
March 6, 2021

EAAandCAFCR

Toplevel Performance Design Method

2A Measure performance at 3 levels

1A Collect most critical performance and timing requirements

1B Find system level diagrams

3 Evaluate performance, identify potential problems

2B Create Performance Model

4 Performance analysis and design

Re-iterate all steps

application, functions and micro benchmarks

granularity, synchronization, priorization,

allocation, resource management

are the right requirements addressed,

refine diagrams, measurements, models, and improve design

HW block diagram, SW diagram, functional model(s)

concurrency model, resource model, time-line

Performance Method Fundamentals
230 Gerrit Muller

version: 0.2
March 6, 2021
PMFtopLevel

Incremental Approach

determine most

important and critical

requirements

model

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

Performance Method Fundamentals
231 Gerrit Muller

version: 0.2
March 6, 2021

EAAspiral

Decomposition of System TR in HW and SW

o
ri
g

in
a

l
b

y
 T

o
n

 K
o

s
te

lij
k

system

TR

hardware

TR

software

TR

ns

us

ms

s

most and hardest

TR handled by HW

new control TRs

Performance Method Fundamentals
232 Gerrit Muller

version: 0.2
March 6, 2021

EAAhwswRequirements

Quantification Steps

order of magnitude

guestimates

calibrated estimates

10

50 200

30 300

10030 300

70 140

90 115

feasibility
measure,

analyze,

simulate

back of the

envelope

benchmark,

spreadsheet

calculation

99.999 100.001
cycle

accurate

Performance Method Fundamentals
233 Gerrit Muller

version: 0.2
March 6, 2021

BWMAquantificationSteps

Iteration

zoom in on detail

aggregate to end-to-end performance

from coarse guestimate to reliable prediction

from typical case to boundaries of requirement space

from static understanding to dynamic understanding

from steady state to initialization, state change and shut down

discover unforeseen critical requirements

improve diagrams and designs

from old system to prototype to actual implementation

Performance Method Fundamentals
234 Gerrit Muller

version: 0.2
March 6, 2021

PMFiteration

Construction Decomposition

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view PIP

browseviewport menu

adjust
view

TXT

hardware

driver

applications

services

toolboxes

domain specific generic

signal processing subsystem control subsystem

Performance Method Fundamentals
235 Gerrit Muller

version: 0.2
March 6, 2021

CVconstructionDecomposition

Functional Decomposition

storage

acquisition

processing
compress

encoding

display

processing

de-

compress decoding
display

acquisition

Performance Method Fundamentals
236 Gerrit Muller

version: 0.2
March 6, 2021

CVfunctionalDecomposition

An example of a process decomposition of a MRI scanner.

image handlingscan control

scan

control

acq

control

recon

control

xDAS recon

db

control

disk

scan

UI

image handling

UI

archiving

control

media

import

export

network

display

control

display device hardware

server

process

UI process

legend

Performance Method Fundamentals
237 Gerrit Muller

version: 0.2
March 6, 2021

CVprocessDecomposition

Combine views in Execution Architecture

other architecture

views

execution

architecture

functional

model

process

display

receive demux

store

Map

process

task

threadthreadthread

process

task

threadthreadthread

process

task
threadthreadthread

interrupt

handlersin
pu
t

hardware

tuner drive

CPU DSP RAM

in
pu
t

repository

structure

queue

DCTmenu

txt

tuner

foundation

classes

hardware

abstraction

list DVD drive

UI toolkit processing

Applications
play zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Performance Method Fundamentals
238 Gerrit Muller

version: 0.2
March 6, 2021

CVexecutionArchitecture

Layered Benchmarking Approach

CPU

cache

memory

bus

..

(computing) hardware

typical values

interference

variation

boundaries

operating system

services

applications

network transfer

database access

database query

services/functions

duration

CPU time

footprint

cache

end-to-end

function

duration

services

interrupts

task switches

OS services

CPU time

footprint

cache

latency

bandwidth

efficiency

interrupt

task switch

OS services

duration

footprint

interrupts

task switches

OS services

tools

locality

density

efficiency

overhead

Performance Method Fundamentals
239 Gerrit Muller

version: 0.2
March 6, 2021

EBMIbenchmarkStack

Micro Benchmarks

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Performance Method Fundamentals
240 Gerrit Muller

version: 0.2
March 6, 2021

RVuTimingBenchmarks

Home work reporting

Performance Method Fundamentals
241 Gerrit Muller

version: 0.2
March 6, 2021

Performance and Reliability

To be inderted here

Performance Method Fundamentals
242 Gerrit Muller

version: 0.2
March 6, 2021

Exercise

Create “fast Browser” performance model. Finish measurements where needed

Performance Method Fundamentals
243 Gerrit Muller

version: 0.2
March 6, 2021

