Performance Design of Streaming Systems

by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Video and audio content is a continuous stream of data. Video and audio systems have to be designed in such a way that these streams are processed and delivered continuously. We discuss the pipelining of multiple functions and the impact on bus bandwidth, memory use and CPU overhead.

The complete course ASP^{\rm TM} is owned by TNO-ESI. To teach this course a license from TNO-ESI is required. This material is preliminary course material.

August 21, 2020 status: preliminary draft version: 0

Video Streaming

Hard real-time performance for distributed system with memory-bus

Trade-off of between latency, memory and overhead

Performance consideration in increasing detail

Case Video Streaming: Performance Design

Video Streaming: HW Diagram

Performance Design of Streaming Systems 4 Gerrit Muller

Video Streaming Pipeline

Video Streaming: Resources

Overhead = (T1 + T2 + T3 + T4) * Frame rate Memory usage = 3 * 2 * Frame size Bus load = $\frac{3 * 2 * Frame size * Frame rate}{Bus capacity}$ %

T1 .. T4 = Overhead to start P1 .. P4

Latency Calculation

 $\begin{array}{cccc} 4 & 0.01s & 1\\ Latency = Nr. of Proc. blocks * processing time per block * frame fragment\\ Memory = (Nr. of Proc. blocks - 1) * 2 * pixels per frame * frame fragment\\ 4 & 10 \ \mu s\\ Overhead = Nr. of Proc. blocks * task switch time\\ Overhead (\%) = Overhead / Latency\\ 2430 \ kB & 1 & 25 & 500 \ MB/s\\ Busload = Memory usage * frame fragment * (frames/s) / BusCapacity\\ \end{array}$

(mind the units, ms vs. µs and kB vs MB!)

lines	576 pixels per frame		414720	
pixels per line	720		Memory in kB	405
			Memory in MB	0.40
frame time	0.04		frame time in µs	40000
task switch time (µs)	10			
Processing per block	0.01		Processing in µs	10000
Bus capacity (MB/s)	500			
Line time (µs)	69			
Frame fragment	Full fram	me : 1		

Nr of Processing Blocks	4
Latency (ms)	40
Memory (kB)	2430
Overhead (µs)	40
Overhead (%)	0
Busload (%)	12.15

Performance Design of Streaming Systems 8 Gerrit Muller

Exercise

Exercise Worksheet

Nr of Processing Blocks		4	20
Block size			
	Latency (ms)	40	200
Frame	Memory (kB)	2430	15390
1	Overhead (µs)	40	200
	Overhead (%)	0	0
	Busload (%)	12.15	76.95
	Latency (ms)		
1/2 Frame	Memory (kB)		
2	Overhead (µs)		
	Overhead (%)		
	Busload (%)		
	Latency (µs)		
Line	Memory (kB)		
576	Overhead (µs)		
	Overhead (%)		
	Busload (%)		

lines	576
pixels per line	720
pixels per frame	414720
Memory in kB	405
Memory in MB	0.395508
frame time	0.04
frame time in µs	40000
task switch time (µs)	10
Processing per block	0.01
Processing in µs	10000
Bus capacity (MB/s)	500
Line time (µs)	69

Changing the Buffer Size

Processing time = 1/4 * original (per fragment)Latency ~1/4 * originalOverhead =4 * originalMemory use =1/4 original	buffersize = ¼ frar	ne
	Processing time = Latency ~ Overhead = Memory use =	 ¹/₄ * original (per fragment) ¹/₄ * original 4 * original ¹/₄ original

buffersize = 1 lineProcessing time = $1/_{576}$ * original (per fragment)Latency ~ $1/_{576}$ * original + overheadOverhead =576 * originalMemory use = $1/_{576}$ original

Video Streaming

Properly designing distributed HRT systems requires trade-off between latency, overhead, and memory needs

Performance model detailing dependent on significance of impact factors

The ASP[™] course is partially derived from the EXARCH course developed at *Philips CTT* by *Ton Kostelijk* and *Gerrit Muller*.

Extensions and additional slides have been developed at *ESI* by *Teun Hendriks*, *Roland Mathijssen* and *Gerrit Muller*.

