
Performance Patterns, Pitfalls, and Approach
by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Performance Design is based on the application on many performance oriented
patterns. Patterns are a way are to consolidate experience: what solution fits to
what problem in what situation? Pitfalls are also a way to consolidate experience:
what are common design mistakes?

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-
ESI is required. This material is preliminary course material.

September 1, 2020
status: preliminary
draft
version: 0.1

Case 6

Common Platforms and Bloating

Generic nature of platforms

Most SW implementations are way too big

Performance suffers from oversize and generic provisions

Performance Patterns, Pitfalls, and Approach
2 Gerrit Muller

version: 0.1
September 1, 2020

PPbloatingIntro

Exploring Bloating: Main Causes

>90% of all Software statements are not

needed, but caused by:

over-specification

bad design

too generic

dogmatic rules

legacy remains

overhead

value

legendcore function

less than 10%

Performance Patterns, Pitfalls, and Approach
3 Gerrit Muller

version: 0.1
September 1, 2020

PPbloating

Necessary Functionality � Intended Regular Function

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Performance Patterns, Pitfalls, and Approach
4 Gerrit Muller

version: 0.1
September 1, 2020

BLOATcoreFunctionality

The Danger of Being Generic: Bloating

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Performance Patterns, Pitfalls, and Approach
5 Gerrit Muller

version: 0.1
September 1, 2020

GDbloatingVisualized

Problem Propagation via Copy & Paste

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Performance Patterns, Pitfalls, and Approach
6 Gerrit Muller

version: 0.1
September 1, 2020

BLOATshitPropagation

Example of Problem Propagation

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Performance Patterns, Pitfalls, and Approach
7 Gerrit Muller

version: 0.1
September 1, 2020

BLOATshitPropagationExample

Overhead Penalty of Modularity

monolithic

coarse grainmedium grain
modular

fine grain

63 4481

o
v
e

rh
e

a
d

o
v
e

rh
e

a
d

o
v
e

r-

h
e

a
d

% % %

v
a

lu
e

v
a

lu
e

v
a

lu
e

Performance Patterns, Pitfalls, and Approach
8 Gerrit Muller

version: 0.1
September 1, 2020

EASRTcallTree

Function Call Overhead

prepare

parameters

save state

jump

access

parameters

do something

useful

return

restore state

do something

useful

do something

useful

Load and depth dependent

(hidden) side effects

pipeline flush

I-cache disturbance

D-cache disturbance

overhead

value

legenda

Performance Patterns, Pitfalls, and Approach
9 Gerrit Muller

version: 0.1
September 1, 2020

EASRTcallOverhead

Exercise Call Tree Overhead

Suppose:

Call Overhead = 10µs

Call graph branching factor = 2

Depth = 12

What is the Call overhead

when all branches are followed?

Performance Patterns, Pitfalls, and Approach
10 Gerrit Muller

version: 0.1
September 1, 2020

PPexerciseCallTreeOverhead

Exercise Frame Rate for Layered SW

Suppose:

Function call = 10µs

Call layer depth = 20

1024 calls per image

What is the maximum frame rate possible

assuming that the complete CPU time is available

for function calls?

Performance Patterns, Pitfalls, and Approach
11 Gerrit Muller

version: 0.1
September 1, 2020

PPexerciseLayers

Case 6

Common Platforms and Bloating

Platforms are overprovisioned and very generic

Are benefits > disadvantages?

Performance loss is significant and can be measured and modelled

Performance Patterns, Pitfalls, and Approach
12 Gerrit Muller

version: 0.1
September 1, 2020

PPbloatingSummary

Case 7

Multi-Dimensional Viewing of many Images: Greedy and

Lazy Design Patterns

Performance Patterns, Pitfalls, and Approach
13 Gerrit Muller

version: 0.1
September 1, 2020

Greedy versus Lazy

Greedy and Lazy systems

Greedy: pre-fetched lots of data:

System tries to have data available for the requesting system

Lazy: hardly of no pre-fetching of data:

System tries to set data available for the requesting system

only when asked for

Performance Patterns, Pitfalls, and Approach
14 Gerrit Muller

version: 0.1
September 1, 2020

PSRTgreedyLazy

Viewing Large Image Sets

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

Example Greedy / Lazy (1)

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META

DATA

META DATA=

Patient name

Slice nr. / position

annotation

explanation

date / time

Performance Patterns, Pitfalls, and Approach
15 Gerrit Muller

version: 0.1
September 1, 2020

PSRTgreedyLazyImaging

Design Options

Example Greedy / Lazy (2)

Lazy: Fetch only

the requested image

Greedy: Fetch all the images

in the set

In between options:

- Fetch requested image + surrounding images

- Fetch requested image + only meta information of images

Performance Patterns, Pitfalls, and Approach
16 Gerrit Muller

version: 0.1
September 1, 2020

PSRTgreedyLazyImagingOptions

Consequences

Example Greedy / Lazy (3)

Lazy:

- low load on system

- long waiting time for next image

Greedy:

- high load on system

- possible long initial wait

- short response time insteady state

In between options:

- medium system load

- fast response for initialization and common image fetches

Performance Patterns, Pitfalls, and Approach
17 Gerrit Muller

version: 0.1
September 1, 2020

PSRTgreedyLazyImagingConsequences

Theory

Initialization, Steady State and Finalization

Performance Patterns, Pitfalls, and Approach
18 Gerrit Muller

version: 0.1
September 1, 2020

Start-up, Steady State, Shut Down

RunInit Finish

State

Change

Zap

Steady state

Start-up Shut-down

Performance Patterns, Pitfalls, and Approach
19 Gerrit Muller

version: 0.1
September 1, 2020

PSRTstartupRunFinish

Start-up, Steady State, Shut Down Scheme

discover kernel HW

initialise kernel data structures

determine next layer

load and initialise loader

determine loading HW

determine next layer

bring in initial state

load and initialise firmware

configure services

allocate resources

load, initialise and start services

configure UI

allocate resources

load, initialise and start UI

detect external services

publish internal services

connect where needed

load

configure

initialise, start

power

boot-loader

HW

kernel

services

user interface

connect to outside

application

stop in safe sequence

flush ongoing activities

close connections

save persistent data

free resources

stop

start up

HW SW interface

shut down

Performance Patterns, Pitfalls, and Approach
20 Gerrit Muller

version: 0.1
September 1, 2020

CVstartUp

Start-up, Steady State, Shut Down Trade off

Trade-off:

Optimize on steady state

may result in

poor performance for initialization

and process finish

Optimize on Initialization

and/or finish

may result in

poor steady state performance

RunInit Finish

State

Change

Zap

Steady state

Performance Patterns, Pitfalls, and Approach
21 Gerrit Muller

version: 0.1
September 1, 2020

PSRTstartupRunFinishTradeoff

Common Performance Pitfalls

- Overhead

- Data bloating

- Cache thrashing

- Layering

- Process communication

- Conversions

- Serialization

- Backfiring optimalisations

- Hidden loads (bus, DMA etc)

- Poor algorithms

- Wrong dimensioning

Performance Patterns, Pitfalls, and Approach
22 Gerrit Muller

version: 0.1
September 1, 2020

PSRTcommonPerformancePitfalls

Colofon

The ASP
TM

 course is partially derived from the

EXARCH course developed at Philips CTT by

Ton Kostelijk and Gerrit Muller.

Extensions and additional slides have been

developed at ESI by Teun Hendriks, Roland

Mathijssen and Gerrit Muller.

Performance Patterns, Pitfalls, and Approach
23 Gerrit Muller

version: 0.1
September 1, 2020

PERFcolofon

