Performance Method Fundamentals

by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com www.gaudisite.nl

Abstract

The Performance Design Methods described in this article are based on a multiview approach. The needs are covered by a requirements view. The system design consists of a HW block diagram, a SW decomposition, a functional design and other models dependent on the type of system. The system design is used to create a performance model. Measurements provide a way to get a quantified characterization of the system. Different measurement methods and levels are required to obtain a usable characterized system. The performance model and the characterizations are used for the performance design. The system design decisions with great performance impact are: granularity, synchronization, priorization, allocation and resource management. Performance and resource budgets are used as tool.

The complete course ASP^{\rm TM} is owned by TNO-ESI. To teach this course a license from TNO-ESI is required. This material is preliminary course material.

August 21, 2020 status: draft version: 0.2

Positioning in CAFCR

version: 0.2 August 21, 2020 EAAandCAFCR

1A Collect most critical performance and timing requirements	
--	--

1B Find system level diagrams	HW block diagram, SW diagram, functional model(s) concurrency model, resource model, time-line		
2A Measure performance at 3 levels	application, functions and micro benchmarks		
2B Create Performance Model			
3 Evaluate performance, identify potential problems			
4 Performance analysis and design	granularity, synchronization, priorization, allocation, resource management		
Re-iterate all steps	are the right requirements addressed, refine diagrams, measurements, models, and improve design		

Incremental Approach

version: 0.2 August 21, 2020 EAAhwswReguirements

Quantification Steps

zoom in on detail aggregate to end-to-end performance from coarse guestimate to reliable prediction from typical case to boundaries of requirement space from static understanding to dynamic understanding from steady state to initialization, state change and shut down discover unforeseen critical requirements improve diagrams and designs from old system to prototype to actual implementation

Functional Decomposition

An example of a process decomposition of a MRI scanner.

Combine views in Execution Architecture

Layered Benchmarking Approach

Micro Benchmarks

	infrequent operations, often time-intensive	often repeated operations
database	start session finish session	perform transaction query
network, I/O	open connection close connection	transfer data
high level construction	component creation component destruction	method invocation same scope other context
low level construction	object creation object destruction	method invocation
basic programming	memory allocation memory free	function call loop overhead basic operations (add, mul, load, store)
OS	task, thread creation	task switch interrupt response
HW	power up, power down boot	cache flush Iow level data transfer

The ASP[™] course is partially derived from the EXARCH course developed at *Philips CTT* by *Ton Kostelijk* and *Gerrit Muller*.

Extensions and additional slides have been developed at *ESI* by *Teun Hendriks*, *Roland Mathijssen* and *Gerrit Muller*.

