
Performance Method Fundamentals
-

determine most

important and critical

requirements

model 

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

Gerrit Muller
HSN-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The Performance Design Methods described in this article are based on a multi-
view approach. The needs are covered by a requirements view. The system design
consists of a HW block diagram, a SW decomposition, a functional design and
other models dependent on the type of system. The system design is used to create
a performance model. Measurements provide a way to get a quantified character-
ization of the system. Different measurement methods and levels are required to
obtain a usable characterized system. The performance model and the characteriza-
tions are used for the performance design. The system design decisions with great
performance impact are: granularity, synchronization, priorization, allocation and
resource management. Performance and resource budgets are used as tool.

The complete course ASPTM is owned by TNO-ESI. To teach this course a license from TNO-ESI is required.
This material is preliminary course material.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.2 status: draft June 21, 2020



1 Introduction

The performance of a system is determined by the hardware deign, the software
design and the mapping of the software design on the hardware, the so-called
execution architecture. The execution architecture itself is the design step from
the conceptual view to the realization view. The justification for design decisions
has its roots in the customer objectives view and the application view, based on
often ill articulated needs, concerns and expectations of the customer. A good
understanding of mostly performance and timing related needs and expectations is
needed and used to get a specific and measurable product definition with respect
to performance and timing requirements. This definition is not a pure top down
approach, a priori know how of the possible solutions is used to converge more
quickly on relevant specification issues.

diverse

complex

fuzzy

performance

expectations

needs

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

SMART

+ timing

requirements

+ external

interfaces

models
analysis

models
analysis

simulations
measurements

simulations
measurements

execution architecture 

design
threads

interrupts

timers

queues

allocation

scheduling

synchronization

decoupling

Figure 1: Positioning in CAFCR

Figure 1 visualizes these relations in the CAFCR model. The top-down and
bottom-up iteration is shown as modeling and analyzing top down and simulating
and measuring bottom up.

We will discuss an incremental approach to ensure the link between the CAFCR
views. Then we discuss shortly the representations needed to understand system
performance. Finally, we discuss benchmarking as a way to get quantified insight
for performance models.

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 1



2A Measure performance at 3 levels

1A Collect most critical performance and timing requirements

1B Find system level diagrams

3 Evaluate performance, identify potential problems

2B Create Performance Model

4 Performance analysis and design

Re-iterate all steps

application, functions and micro benchmarks

granularity, synchronization, priorization,

allocation, resource management

are the right requirements addressed,

refine diagrams, measurements, models, and improve design

HW block diagram, SW diagram, functional model(s)

concurrency model, resource model, time-line

Figure 2: Top-level Performance Design Method

2 Incremental approach

Figure 2 shows a stepwise approach for performance design. Step 1 is the identifi-
cation of the most critical timing and performance requirements, parallel with the
search for system level diagrams. During step 2 the performance of the system
is measured at multiple levels, and a performance model is created. Step 3 is
the evaluation of the performance and the identification of potential problems.
Step 4 is the actual performance analysis and design. All these steps are not purely
sequential, iteration is crucial.

determine most

important and critical

requirements

model 

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

Figure 3: Incremental approach

An incremental approach is strongly recommended. The problem and solution
domain is often so complex that no human being can understand and oversee it
entirely. The understanding and overview is build up in steps or passes, where all

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 2



aspects are touched in one pass. The next pass deepens and enriches the insights.
The reason that incremental approaches work is that it enables the humans to learn,
based on the short feedback cycles. Typical cycle times are days or weeks, not
months.

Figure 3 shows the spiral approach. First the what (requirements) and how
(design) are studied, than the implementation, verification and evaluation is done,
which closes the feedback cycle.

o
ri
g

in
a

l 
b

y
 T

o
n

 K
o

s
te

lij
k

system

TR

hardware

TR

software

TR

ns

us

ms

s

most and hardest

TR handled by HW

new control TRs

Figure 4: Decomposition of system TR in HW and SW

Most timing requirements are handled by the hardware, especially the very
short response times are implemented by means of dedicated hardware. However
this dedicated hardware itself needs some control, with more relaxed timing constraints.
The hardware design imposes also timing requirements on the software design.
Figure 4 visualizes this transformation of severe system timing requirements in
somewhat more relaxed software timing requirements.

The architect is continuously trying to improve his understanding of problem
and solution[4]. This understanding is based on many different interacting insights,
such as functionality, behavior, relationships et cetera. An important factor in
understanding is the quantification. Quantification helps to get grip on the many
vague aspects of problem and solution. Many aspects can be quantified, much
more than most designers are willing to quantify.

The precision of the quantification increases during the project. Figure 5 shows
the stepwise refinement of the quantification. In first instance it is important to get
a feeling for the problem by quantifying orders of magnitude. For example:

• How fast should the system respond, for instance zap?

• What is the affordable cost, how much is the customer willing and able to
spend?

• How many pictures/movies do they want to watch, transfer, store concur-
rently?

• How much storage and bandwidth is needed?

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 3



order of magnitude

guestimates

calibrated estimates

10

50 200

30 300

10030 300

70 140

90 115

feasibility
measure,

analyze,

simulate

back of the

envelope

benchmark,

spreadsheet

calculation

99.999 100.001
cycle

accurate

Figure 5: Successive quantification refined

The order of magnitude numbers can be refined by making back of the envelop
calculations, making simple models and making assumptions and estimates. From
this work it becomes clear where the major uncertainties are and which measure-
ments or other data acquisitions will help to refine the numbers further.

At the bottom of figure 5 the other extreme of the spectrum of quantification is
shown, in this example cycle accurate simulation of video frame processing results
in very accurate numbers. It is a challenge for an architect to bridge these worlds.

zoom in on detail

aggregate to end-to-end performance

from coarse guestimate to reliable prediction

from typical case to boundaries of requirement space

from static understanding to dynamic understanding

from steady state to initialization, state change and shut down

discover unforeseen critical requirements

improve diagrams and designs

from old system to prototype to actual implementation

Figure 6: Directions of iterations

Figure 6 shows the many directions of potential iterations:

zoom in on detail Drill down to the essential detail, often based on historic data
and experience.

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 4



aggregate to end-to-end performance Add all numbers to estimate the end-to-
end time

from coarse guestimate to reliable prediction Work from coarse estimates, which
provide guidance and insight, towards more accurate numbers that are suffi-
ciently accurate and robust to be usable as prediction.

from typical case to boundaries of requirement space Start to understand the “typical”
use case that is frequently happening and then look at the more complicated
cases, such as the boundaries of the requirement space.

from static understanding to dynamic understanding Start by creating simple
insight by ignoring many dynamic aspects. Add dynamics step by step, when
the impact is significant.

from steady state to initialization, state change and shut down Start with the steady
state situation, where the application is continuously is repeating the same
operations. Later the singular moments are added, such as start-up, shut
down and state changes.

discover unforeseen critical requirements Modeling of the system itself and exploring
its performance often triggers the discovery of requirements that were not yet
foreseen or that are more critical than foreseen.

improve diagrams and designs The increasing insight should be captured in the
diagrams and designs.

from old system to prototype to actual implementation The earlier fact finding
start the better the models are grounded in facts. Older, existing systems are
a gold-mine of factual information. In order to get facts about the impact of
design changes prototypes are needed. Finally the actual implementation
should be used for verification of the performance requirements and the
underlying designs, such as budgets.

3 Multiple views needed to understand system performance

The decomposition can be done along different axes. Subsection 3.1 shows construction
as axis, and Subsection 3.2 shows the functional decomposition. The decompo-
sition into concurrent activities and the mapping on processes, threads and processors
is called the execution architecture, which is described in Subsection 3.3.

3.1 Construction Decomposition

The construction decomposition views the system from the construction point of
view, see Figure 7 for an example. In this example the decomposition is structured

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 5



to show layers and the degree of domain know-how. The vertical layering defines
the dependencies: components in the higher layers depend on components in the
lower layers. Components are not dependent on components at the same or higher
layer. The amount of domain know how provides an indication of the added value
of the components. More generic components are more likely to be shared in a
broader application area, and are more likely to be purchased instead of being
developed.

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view PIP

browseviewport menu

adjust
view 

TXT

hardware

driver

applications

services

toolboxes

domain specific generic

signal processing subsystem control subsystem

Figure 7: Example of a construction decomposition of a simple TV. The vertical
axis is used for layers, where higher layers depend on lower layers, but not vice
versa. In horizontal direction the left hand side shows the domain specific compo-
nents, the right hand side shows the more generic components.

The construction decomposition is mostly used for the design management. It
defines units of design, as these are created and stored in repositories and later
updated. The atomic units are aggregated into compound design units. In software
the compound design units are often called packages, in hardware they are called
modules. The blocks in Figure 7 are at the level of these packages and modules.
Packages and modules are used as unit for testing and release and they often
coincide with organizational ownership and responsibility.

In hardware this is quite often a very natural decomposition, for instance into
cabinets, racks, boards and finally integrated circuits, Intellectual property (IP)
cores and cells. The components in the hardware are very tangible. The relationship
with a number of other decompositions is reasonably one to one, for instance with
the work breakdown for project management purposes.

The construction decomposition in software is more ambiguous. The structure
of the code repository and the supporting build environment comes close to the
hardware equivalent. Here files and packages are the aggregating construction
levels. This decomposition is less tangible than the hardware decomposition and
the relationship with other decompositions is sometimes more complex.

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 6



3.2 Functional Decomposition

The functional decomposition decomposes end user functions into more elementary
functions. The elementary functions are internal, the decomposition in elementary
functions is not easily observable from outside the system. In other words, the
what is worked out in how. Be aware of the fact that the word function in system
design is heavily overloaded. No attempt is made to define the functional decompo-
sition more sharply, because a sharper definition does not provide more guidance to
architects. Main criterium for a good functional decomposition is its useability for
design. A functional decomposition provides insight how the system will accom-
plish its job.

storage

acquisition 

processing
compress

encoding

display 

processing

de-

compress decoding
display

acquisition

Figure 8: Example functional decomposition camera type device

Figure 8 shows an example of (part of) a functional decomposition for a camera
type device. It shows a data flow with communication, processing, and storage
functions and their relations. This functional decomposition is not addressing the
control aspects, which might be designed by means of a second functional decom-
position, this time taken from the control point of view.

3.3 Execution Architecture

The execution architecture is the run-time architecture of a system. The process1

decomposition plays an important role in the execution architecture. Figure 9
shows an example of a process decomposition.

One of the main concerns for process decomposition is concurrency: which
concurrent activities are needed or running, and how do we synchronize these
activities? Two techniques to support asynchronous functionality are widely used
in operating systems: processes and threads. Processes are self sustained, which
own their own resources, especially memory. Threads have less overhead than

1Process in terms of the operating system

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 7



image handlingscan control

scan

control

acq

control

recon 

control

xDAS recon

db 

control

disk

scan

UI

image handling

UI

archiving

control

media

import

export

network

display

control

display device hardware

server

process

UI process

legend

Figure 9: An example of a process decomposition of a MRI scanner.

processes. Threads share resources, which makes them more mutually dependent.
In other words processes provide better means for separation of concerns.

other architecture

views

execution

architecture

functional 

model

process

display

receive demux

store

Map

process

task

threadthreadthread

process

task

threadthreadthread

process

task
threadthreadthread

interrupt

handlersin
pu
t

hardware

tuner drive

CPU DSP RAM

in
pu
t

repository 

structure

queue

DCTmenu

txt

tuner

foundation 

classes

hardware 

abstraction

list DVD drive

UI toolkit processing

Applications
play zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Figure 10: Execution Architecture

The execution architecture must map the functional decomposition on the process
decomposition. This mapping must ensure that the timing behavior of the system
is within specification. The most critical timing behavior is defined by the dead
lines. Missing a dead line may result in loss of throughput or functionality. The
timing behavior is also determined by the choice of the synchronization methods,
by the granularity of synchronization and by the scheduling behavior. The most
common technique to control the scheduling behavior is by means of priorities.

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 8



This requires, of course, that priorities are assigned. Subsystems with limited
concurrency complexity may not even need multiple threads, but these subsystems
can use a single thread that keeps repeating the same actions all the time. The
mapping is further influenced by hardware software allocation choices, and by the
construction decomposition. Figure 10 shows what views are combined to create
the execution architecture.

A well known method in the hard real time domain is DARTS (Design Approach
for Real Time Systems) [1]. This methods provides guidelines to identify hard
real time requirements, translate them in activities and to map activities on tasks.
DARTS then describes how to design the scheduling priorities.

In practice many components from the construction decomposition are used in
multiple functions, and are mapped on multiple processes. These shared compo-
nents are aggregated in shared or dynamic-link libraries (dll’s). Sharing the program
code run-time is advantageous from memory consumption point of view.

We promote iteration over hardware, software and functional design. In practice
this iteration is limited, amongst others due to different development life-cycles of
hardware, software and system. Often most hardware design choices are made
long before the software design is known. In other words the hardware is a fact,
where only minor changes are possible. Another reality is that large amounts of
software are inherited from existing systems, which also severely limits the degrees
of freedom of the software design.

The remaining degrees of freedom for the execution architecture are limited to:

• allocation to tasks, processes or threads

• allocation of hardware resources

• priorities, scheduling strategy (limited by the operating system facilities)

• granularity

The art of designing a good execution architecture is to simplify the problems
sufficiently, by focusing on the real critical timing issues.

4 Benchmarking

We propose to tackle the dynamic analysis by measuring and analyzing the system
at several levels, as shown in Figure 11. The purpose of this approach is to under-
stand the system performance throughout the entire system. Unfortunately the
entire system is way too complex to understand in one single pass. Therefore
we look for natural layers or subsystems. For the medical imaging workstation a
reasonably generic four layer model is helpful:

Hardware CPU, memory, bus, cache, disk, network, et cetera. At this level
latencies, bandwidth and resource efficiency are valuable data points.

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 9



CPU 

cache

memory

bus

..

(computing) hardware

typical values

interference

variation

boundaries

operating system

services

applications

network transfer

database access

database query

services/functions

duration

CPU time

footprint

cache

end-to-end 

function

duration

services

interrupts

task switches

OS services

CPU time

footprint

cache

latency

bandwidth

efficiency

interrupt

task switch

OS services

duration

footprint

interrupts

task switches

OS services

tools

locality

density

efficiency

overhead

Figure 11: Layered Benchmarking

Operating System (OS) Interrupt handling, task switching, process communication,
resource management, and other OS services. At this level duration and
footprint data needs to be known.

Services (or Middleware) Interoperability services based on networks or storage
devices, database functionality, and other higher level services. At this level
lots of performance data is needed: throughput, duration, CPU time, footprint,
cache impact, number of generated interrupts and context switches, and
number of invoked OS services.

Applications The end-to-end performance of functions, as perceived by the user
of the system. The same performance data is needed here as on the services
level, plus the amount of service invocations.

Tools Compilers, linkers, high level generators, configurators. These tools generally
influence most other layers. Typical data to be known is locality and density
of code, efficiency of generated output, run-time overhead induced by the
tools.

We will start simple by determining typical values for the mentioned parameters.
However, a lot of additional insight can be obtained by looking at the variation in
these numbers, and by thinking in terms of range boundaries. Special attention is
needed for interference aspects. For example sharing of computing resources often
results in degraded cache performance when functions run concurrently.

The actual characteristics of the technology being used must be measured
and understood in order to make a good (reliable, cost effective) design. The

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 10



basic understanding of the technology is created by performing micro-benchmarks:
measuring the elementary functions of the technology in isolation. Figure 12 lists
a typical set of micro-benchmarks to be performed. The list shows infrequent and
often slow operations and frequently applied operations that are often much faster.
This classification implies already a design rule: slow operations should not be
performed often2.

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive 

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Figure 12: Typical micro-benchmarks for timing aspects

The results of micro-benchmarks should be used with great care. The measure-
ments show the performance in totally unrealistic circumstances, in other words
it is the best case performance. This best case performance is a good baseline
to understand performance, but when using the numbers the real life interference
(cache disturbance for instance) should be taken into account. Sometimes additional
measurements are needed at a slightly higher level to calibrate the performance
estimates.

The standard work about performance issues in computer architectures is the
book by Hennesey and Patterson [2]. Here modelling and measurement methods
can be found that can serve as inspiration for performance analysis of embedded
systems.

2This really sounds as an open door. However, I have seen many violations of this entirely trivial
rule, such as setting up a connection for every message, performing I/O byte by byte et cetera.
Sometimes such a violation is offset by other benefits, especially when a slow operation is in fact not
very slow and when the brute force approach is both affordable as well as extremely simple.

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 11



5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. Most of the material is based on material from the EXARCH course created
by Ton Kostelijk and Gerrit Muller. Reinder Bril gave feedback which was used to
improve the sheets.

References

[1] H Gomaa. Software Design Methods for Real-time Systems. Addison-Wesley,
1993.

[2] John L. Hennessy, David A. Patterson, and David Goldberg. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann, 1996.

[3] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[4] Gerrit Muller. Architectural reasoning explained. http://www.
gaudisite.nl/ArchitecturalReasoningBook.pdf, 2002.

History
Version: 0.2, date: September 4, 2007 changed by: Gerrit Muller

• added diagram of banchmark layers
• added process view and execution architecture
• cahnegd logo to EAAsprial
• changed status to draft
• created text

Version: 0.1, date: June 18, 2006 changed by: Gerrit Muller
• Relayout and reorder

Version: 0, date: January 10, 2006 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
Performance Method Fundamentals
June 21, 2020 version: 0.2

HSN-NISE

page: 12

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf

	Introduction
	Incremental approach
	Multiple views needed to understand system performance
	Construction Decomposition
	Functional Decomposition
	Execution Architecture

	Benchmarking
	Acknowledgements

