How to Characterize SW and HW to Facilitate Predictable Design?

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

SW engineering is quite different from conventional engineering disciplines. Major difference is the lack of quantification and the related analysis techniques. We will shortly explore an example from control engineering: How are control elements characterized and analyzed? We propose a similar approach for performance characterization and analysis of digital hardware and software platforms.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

September 6, 2020 status: preliminary

draft

version: 1.0

Ask a SW-architect to *quantify* the product under construction.

What happens?

?

Challenge; Answer to the Question

Ask a SW-architect to *quantify* the product under construction.

What happens?

The *project* is quantified, rather than the *system* of interest

man-years lines-of-code problem reports code-complexity fault density release schedule

The SW engineering discipline today is process oriented, quantities are process metrics.

The System Of Interest (SOI) is designed from *behavioral* point of view.

Conventional Engineering disciplines design the SOI with *quantitative* techniques.

Qualities of SW intensive systems, such as performance, are *emerging* i.s.o. *predictable* properties

Structure of this Presentation

Block Diagram Control Measurement

Measuring Disturbance Transfer

Idealized Disturbance Transfer

Measuring Tracking Response

Idealized Tracking Response

Black Box Model

White Box Model

challenge: to know what non-idealities to ignore and to ignore as much as possible

Control Engineering Knowledge

Summary of Control Engineering

application need:

at event 3*3 show 3*3 images instanteneous

Sample application code:

```
for x = 1 to 3 {
    for y = 1 to 3 {
        retrieve_image(x,y)
    }
}
```

```
alternative application code:
```

```
event 3*3 -> show screen 3*3
```

<screen 3*3>

<row 1>

or

What If....

Sample application code:

```
for x = 1 to 3 {
    for y = 1 to 3 {
        retrieve_image(x,y)
    }
}
```


Sample application code: What If.... for x = 1 to 3 { for y = 1 to 3 { retrieve_image(x,y) 9 * update screen **UI** process server screen 9 * retrieve database

What If....


```
Sample application code:

for x = 1 to 3 {
  for y = 1 to 3 {
    retrieve_image(x,y)
  }
}
```

Attribute = 1 COM object 100 attributes / image

9 images = 900 COM objects

1 COM object = 80μ s

9 images = 72 ms

What If....

```
Sample application code:

for x = 1 to 3 {
   for y = 1 to 3 {
      retrieve_image(x,y)
   }
}
```

- I/O on line basis (512² image)

$$9 * 512 * t_{I/O}$$

 $t_{I/O} \sim = 1 \text{ms}$

- . . .

Challenge SW Performance Design

F & S	F & S	F & S	F & S	F & S	F & S	F & S	F & S	
MW		MW		MW		MW		
OS			OS			os		
HW			HW			HW		

Functions & Services

Middleware

Operating systems

Hardware

Performance = Function (F&S, other F&S, MW, OS, HW) MW, OS, HW >> 100 Manyear : very complex

Challenge: How to understand MW, OS, HW with only a few parameters

Layered Benchmarking

Case: ARM9 Cache Performance

Example Hardware Performance

memory access time in case of a cache miss 200 Mhz, 5 ns cycle: 190 ns

ARM9 200 MHz t_{context switch} as function of cache use

cache setting	t _{context} switch
From cache	2 µs
After cache flush	10 µs
Cache disabled	50 µs

Context Switch Overhead

 $t_{\text{overhead}} = n_{\text{context switch}} * t_{\text{context switch}}$

n	t _{context} swite	_{ch} = 10µs	$t_{\text{context switch}} = 2\mu s$		
n _{context} switch (s ⁻¹)	t _{overhead}	CPU load overhead	t _{overhead}	CPU load overhead	
500	5ms	0.5%	1ms	0.1%	
5000	50ms	5%	10ms	1%	
50000	500ms	50%	100ms	10%	

Performance as Function of all Layers

Theory Block 1: n Order Formulas

Oth order main function parameters

order of magnitude

relevant for main function

1st order add overhead secondary function(s)

estimation

2nd order interference effects circumstances

main function, overhead and/or secondary functions more accurate, understanding

CPU Time Formula Zero Order

$$t_{cpu\ total} = t_{cpu\ processing} + t_{UI}$$
 $t_{cpu\ processing} = n_x * n_y * t_{pixel}$

CPU Time Formula First Order

$$t_{cpu\ total} = t_{cpu\ processing} + t_{UI}$$
 $+ t_{context\ switch}$
overhead

CPU Time Formula Second Order

$$t_{cpu\ total} = t_{cpu\ processing} + t_{UI} + t_{context\ switch} +$$

tstall time due to t_{stall time due to} + cache efficiency context switching

signal processing: high efficiency control processing: low/medium efficiency

MR Reconstruction Context

MR Reconstruction Performance Zero Order

Typical FFT, 1k points ~ 5 msec (scales with 2 * n * log (n))

using:

$$n_{raw-x} = 512$$

$$n_{raw-y} = 256$$

$$n_x = 256$$

$$n_v = 256$$

$$t_{recon} = n_{raw-x} * t_{fft}(n_{raw-y}) +$$
 $n_y * t_{fft}(n_{raw-x}) +$

512 * 1.2 + 256 * 2.4

$$\sim = 1.2 s$$

MR Reconstruction Performance First Order


```
Typical FFT, 1k points ~ 5 msec
                (scales with 2 * n * log(n))
```

```
Filter 1k points ~ 2 msec
                (scales linearly with n)
```

Correction ~ 2 msec (scales linearly with n)

MR Reconstruction Performance Second Order

Examples of Quantifiable Aspects

user level performance

design impact

time

response time

productivity

capacity

user interactions screen real estate

computing resources

user interface resources

Software is Intimately Coupled with System

Most Quantifications Relate Context to Design!

Example facts for "Electronic Patient Record"

Customer objectives figures of merit

patients/physician physician income success rate failure rate integral cost

Application

typical quantities

patients
physicians
exams/day
exams/patient
information/
 patient

Functional

critical specs

productivity response time capacity

Conceptual

working ranges

transactions# queriespeak&average

Realization

critical numbers

network speed
CPU speed
memory size
power consumption
query duration
transaction overhead

internal Operational view

market size market share growth rate product life cycle business model market segments maintenance effort update frequency service crew

suppliers partners competitors

effort cost time project size
engineers/discipline
teams

What Kind of Research is Needed?

observational experimental fundamental theory development research research research best practices optimizations metrics theory evaluation rigorous proofs heuristics formalisms theory evolution classification fundamentals first principle based techniques ontology models principles methods methodologies

What needs to be defined and researched?

task granularity
#process comm

granularity
quality
message size
scheduling type
options
CPU frequency
bus width
cache line size
component latency

algorithmic performance
task switch time alloc free overhead service call overhead memory latency

search sweet spot analyse robustness determine worst case optimize determine design parameters

techniques

