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Abstract

SW engineering is quite different from conventional engineering disciplines. Major
difference is the lack of quantification and the related analysis techniques. We will
shortly explore an example from control engineering: How are control elements
characterized and analyzed? We propose a similar approach for performance
characterization and analysis of digital hardware and software platforms.
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1 Introduction

What happens if you ask a software engineer to quantify the product under construction?
Well, then in most cases this software engineer will quantify the project rather than
the system of interest. Frequently used quantifications of software projects are:

• man-years

• lines-of-code

• problem reports

• code-complexity

• fault density

• release schedule

We formulate the following problem statement for this paper:

Qualities of SW intensive systems, such as performance, are emerging
i.s.o. predictable properties The SW engineering discipline today is
process oriented, quantities are process metrics. The System Of Interest
(SOI) is designed from behavioral point of view. Conventional Engineering
disciplines design the SOI with quantitative techniques.

In this paper we will look at another discipline, control design, to see how
quantitative engineering is done here. We use the same kind of approach for perfor-
mance of software. The question arises what other aspects of software can be
approached more quantitatively. Many aspects need more research to reach the
level of practical applicability.

2 Example of quantified engineering in control

The discipline of control design is well established. In this discipline formalisms,
techniques and methods are available to design feedback based controllers for
electrical motors.

Figure 1 shows a typical block diagram from this domain. The goal is to design
a controller for a given motor such that the requested set point is reached despite
the presence of disturbances. To achieve this goal the position of the motor is
measured and used for feedback by the controller. The comparison of the actual
motor position with the required set point gives the deviation or error in positioning.

The combination of the controller and motor is characterized (or identified)
by measuring the disturbance transfer and the tracking response. The disturbance
transfer is measured by scanning through the disturbance frequencies. For every
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Figure 2: Measuring Disturbance Transfer

disturbance frequency the relative impact on the output is measured, as shown in
Figure 2.
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Figure 3: Idealized Disturbance Transfer

Based on available control design know how a curve is fitted through the
measured points. This curve is parameterized by the bandwidth (where is the
damping less than 3 dB) and by the (undesired) overshoot (how much is the distur-
bance amplified at higher frequencies), see Figure 3.

The tracking response is measured by scanning through the frequencies for
all set point frequencies. For every frequency the relative impact on the output is
measured.
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Figure 4: Measuring Tracking Response
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Figure 5: Idealized Tracking Response

The available know how provides a parameterized curve for the tracking response.
The parameter if this curve is the bandwidth, up to which frequency does the
control track the set point within 3 dB? Figure 5 shows a typical tracking transfer
curve.

Note that for a good controller the tracking bandwidth and the disturbance
response bandwidth should approximately be the same. In the working range of
the controller the tracking response should be good as well as the damping of the
disturbances.

The know how of control design also provides black box models of controllers,
as shown in Figure 6. Using parameters such as disturbance transfer bandwidth,
tracking bandwidth, overshoot, and controller parameters, such as the order of the
controller, the performance of the controller can be analyzed: How well will the
response follows the stimulus. The black box model is a set of simple mathematical
formulas with a physical interpretation of the parameters and variables.

An essential part of the control design know how is what is hidden by the black
box model. Control designers know much more about the controller-motor combi-
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Figure 6: Black Box Model
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Figure 7: White Box Model

nation than is represented in the (highly) simplified black box model. Figure 7
shows the white box model of the controller-motor combination, where many
non-idealities, such as friction, hysteresis, and interference become visible. The
challenge for the control design discipline is to know what non-idealities to ignore
and to be able to ignore as many non-idealities as possible.

Figure 8 shows the different parts of design control know how that have been
discussed, plus know how that has been used implicit:

typical controllers What are typical controllers and their parameterization, e.g.
differential, proportional, integrating.

typical motors What are typical motors and their parameterizations

non-idealities of motors and controllers What are typical non-idealities, such as
friction, hysteresis, and interference.

measurements and representations What should be measured and how to present
the results? What stimuli should be used, when to use logarithmic axes, et
cetera.
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Figure 8: Control Engineering Knowledge

set-point inputsperformance What performance is typically required from the
controller-motor combination given the typical set-point inputs?

analysis and design techniques What should be measured or calculated? How to
determine the type of controller and its parameterization? How to analyze
tracking performance, suppression of disturbances and stability of the combi-
nation?

disturbances What are typical disturbances, what is their impact?

consolidation 

and reflection

experience

research

formalisms

techniques

methods

robustness

design for ....

representations

measurements

models

Figure 9: Summary of Control Engineering

Figure 9 summarizes what we can learn from a more mature discipline. Based
on experience and research the discipline consolidated this know how by reflection
into formalisms (and representations), techniques (such as robustness analysis and
characterization measurements), methods (how to design a controller that . . . ), and
models capturing the know how in mathematical models with physical interpreta-
tions.
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3 Quantified engineering of software performance

We will discuss the performance of software as an example of a property that lends
itself well for quantified engineering techniques. Despite the quantitative nature
of performance, many projects where a lot of software is involved, suffer from
performance problems before and after formal release.

3.1 What if ...

Let’s assume that the application asks for the display of 3 ·3 images to be displayed
“instantaneously”. The author of the requirements specification wants to sharpen
this specification and asks for the expected performance of feasible solutions. For
this purpose we assume a solution, for instance an image retrieval function with
code that looks like the code in Figure 10. How do we predict or estimate the
expected performance based on this code fragment?

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images 

instanteneous
design

design

or

Figure 10: Image Retrieval Performance

If we want to estimate the performance we have to know what happens in the
system in the retrieve_image function. We may have a simple system, as shown
in Figure 11, where the retrieve_image function is part of a user interface process.
This process reads image data directly form the hard disk based store and renders
the image directly to the screen. Based on these assumptions we can estimate
the performance. This estimation will be based on the disk transfer rate and the
rendering rate.

However, the system might be slightly more complex, as shown in Figure 12.
Instead of one process we now have multiple processes involved: database, user
interface process and screen server. Process communication becomes an additional
contribution to the time needed for the image retrieval. If the process communi-
cation is image based (every call to retrieve_image triggers a database access and a
transfer to the screen server) then 2 · 9 process communications takes place. Every
process communication costs time due to overhead as well as due to copying image
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UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Figure 11: Straight Forward Read and Display

data from one process context to another process context. Also the database access
will contribute to the total time. Database queries cost a significant amount of time.

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 12: More Process Communication

The actual performance might be further negatively impacted by the overhead
costs of the meta-information. Meta-information is the describing information of
the image, typically tens to hundreds of attributes. The amount of data of meta-
information, measured in bytes, is normally orders of magnitude smaller than the
amount of pixel data. The initial estimation ignores the cost of meta-information,
because the of amount of data is insignificant. However, the chosen implemen-
tation does have a significant impact on the cost of meta-information handling.
Figure 13 shows an example where the attributes of the meta-information are inter-
nally mapped on COM objects. The implementation causes a complete “factory”
construction for every attribute that is retrieved. The cost of such a construction
is 80µsec. With 100 attributes per image we get a total construction overhead of
9 · 100 cdot80µs = 72ms. This cost is significant, because it is in the same order
of magnitude as image transfer and rendering operations.

Figure 14 shows I/O overhead as a last example of potential hidden costs. If the
granularity of I/O transfers is rather fine, for instance based on image lines, then
the I/O overhead becomes very significant. If we assume that images are 5122, and
if we assume tI/O = 1ms, then the total overhead becomes 9 · 512 · 1ms ≈ 4.5s!
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta
------

---------

--------

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 13: Meta Information Realization Overhead

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Figure 14: I/O overhead

3.2 Problem Statement

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Figure 15: Non Functional Requirements Require System View

In the previous section we have shown that the performance of a new function
cannot directly be derived from the code fragment belonging to this function. The
performance depends on many design and implementation choices in the SW layers
that are used. Figure 15 shows the conclusions based on the previous What if
examples.

Figure 16 shows the factors outside our new function that have impact on the
overall performance. All the layers used directly or indirectly by the function have
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Figure 16: Function in System Context

impact, ranging from the hardware itself, up to middleware providing services. But
also the neighboring functions that have no direct relation with our new function
have impact on our function. Finally the environment including the user have
impact on the performance.

HW HW HW

OS OS OS

MW MW MW MW
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Hardware

Performance = Function (F&S, other F&S, MW, OS, HW)

MW, OS, HW >> 100 Manyear : very complex

Challenge: How to understand MW, OS, HW

with only a few parameters

Figure 17: Challenge

Figure17 formulates a problem statement in terms of a challenge: How to
understand the performance of a function as a function of underlying layers and
surrounding functions expressed in a manageable number of parameters? Where
the size and complexity of underlying layers and neighboring functions is large
(tens, hundreds or even thousands man-years of software).

3.3 Layered benchmarking approach

We propose to tackle the performance analysis by measuring and analyzing the
system at several levels, as shown in Figure 18. The purpose of this approach is to
understand the system performance throughout the entire system. Unfortunately,
the entire system is way too complex to understand in one single pass. Therefore
we look for natural layers or subsystems. A reasonably generic four layer model is
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Figure 18: Layered Benchmarking

helpful:

Hardware CPU, memory, bus, cache, disk, network, et cetera. At this level
latencies, bandwidth and resource efficiency are valuable data points.

Operating System (OS) Interrupt handling, task switching, process communication,
resource management, and other OS services. At this level duration and
footprint data needs to be known.

Services (or Middleware) Interoperability services based on networks or storage
devices, database functionality, and other higher level services. At this level
lots of performance data is needed: throughput, duration, CPU time, footprint,
cache impact, number of generated interrupts and context switches, and
number of invoked OS services.

Applications The end-to-end performance of functions, as perceived by the user
of the system. The same performance data is needed here as on the services
level, plus the amount of service invocations.

Tools Compilers, linkers, high level generators, configurators. These tools generally
influence most other layers. Typical data to be known is locality and density
of code, efficiency of generated output, run-time overhead induced by the
tools.

We will start simple by determining typical values for the mentioned parameters.
However, a lot of additional insight can be obtained by looking at the variation in
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these numbers, and by thinking in terms of range boundaries. Special attention is
needed for interference aspects. For example sharing of computing resources often
results in degraded cache performance when functions run concurrently.

3.4 Micro-benchmarks of hardware and OS

PCB
chip

CPU

Instruction

cache

Data

cache

memory
on-chip 

bus

cache line size:

8  32-bit words

memory 

bus

200 MHz 100 MHz

Figure 19: Case 2: ARM9 Cache Performance

An up to date example of micro-benchmarking uses the ARM9 as case, see
Figure 19. A typical chip based on the ARM9 architecture has anno 2006 a clock-
speed of 200 MHz. The memory is off-chip standard DRAM. The CPU chip has
on-chip cache memories for instruction and data, because of the long latencies of
the off-chip memory access. The memory bus is often slower than the CPU speed,
anno 2006 typically 100 MHz.
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memory access time in case of a cache miss
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data

memory

response

22 cycles

Figure 20: Example Hardware Performance

Figure 20 shows more detailed timing of the memory accesses. After 22
CPU cycles the memory responds with the first word of a memory read request.
Normally an entire cache line is read, consisting of 8 32-bit words. Every word
takes 2 CPU cycles = 1 bus cycle. So after 22+ 8 ∗ 2 = 38 cycles the cache-line is
loaded in the CPU.
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ARM9  200 MHz 

as function of cache use

From cache 2 µs

After cache flush 10 µs

Cache disabled 50 µs

cache setting tcontext switch

tcontext switch

Figure 21: Actual ARM Figures

At OS level a micro-benchmark was performed to determine the context switch
time of a real-time executive on this hardware platform. The measurement results
are shown in Figure 21. The measurements were done under different condi-
tions. The most optimal time is obtained by simply triggering continuous context
switches, without ant other activity taking place. The effect is that the context
switch runs entirely from cache, resulting in a 2µs context switch time. Unfortu-
nately, this is a highly misleading number, because in most real-world applications
many activities are running on a CPU. The interrupting context switch pollutes
the cache, which slows down the context switch itself, but it also slows down the
interrupted activity. This effect can be simulated by forcing a cache flush in the
context switch. The performance of the context switch with cache flush degrades
to 10µs. For comparison the measurement is also repeated with a disabled cache,
which decreases the context switch even more to 50µs. These measurements show
the importance of the cache for the CPU load. In cache unfriendly situations (a
cache flushed context switch) the CPU performance is still a factor 5 better than in
the situation with a disabled cache. One reason of this improvement is the locality
of instructions. For 8 consecutive instructions ”only” 38 cycles are needed to load
these 8 words. In case of a disabled cache 8 ∗ (22+2 ∗ 1) = 192 cycles are needed
to load the same 8 words.

Figure 22 shows the impact of context switches on system performance for
different context switch rates. Both parameters tcontextswitch and ncontextswitch can
easily be measured and are quite indicative for system performance and overhead
induced by design choices. The table shows that for the realistic number of tcontextswitch =
10µs the number of context switches can be ignored with 500 context switches per
second, it becomes significant for a rate of 5000 per second, while 50000 context
switches per second consumes half of the available CPU power. A design based
on the too optimistic tcontextswitch = 2µs would assess 50000 context switches as
significant, but not yet problematic.
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Figure 22: Context Switch Overhead
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Figure 23: Performance as Function of all Layers

3.5 From micro-benchmarks to system performance

All data gathering activities must be processed in an intelligent way into a set of
higher level diagrams and models. For example the micro-benchmarks generate a
lot of data points that should be turned into a layered performance model, visualized
in Figure 23. This performance model is not one single formula, but a more a set of
related formula’s. For instance the interrupt handling and task switching duration
can be expressed in the lower layers as function of hardware parameters:

tinterrupthandling = f(CPUspeed, cachesize, OS)

At the higher service layer a typical value for the interrupt handling time is used,
without the complicating dependencies on hardware and operating system:

tservice = ninterrupts∗10µs(tinterrupthandling)+gservice(inputdata, ttransaction, tnetwork)

We recommend to work bottom-up and top-down concurrently. Bottom-up
means start to measure the bottom layer and work upwards. Try to understand
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the higher layer numbers in terms of the lower layer data, during this bottom-up
process. Top-down starts at the end user side, by measuring end-to-end perfor-
mance. The end-to-end performance can be decomposed in contributions of the
subsystems or functions involved in this operation. The top-down approach requires
a lot of reasoning:

• what is happening and what should be happening?

• how much time is contributed by the different functions?

• what are the main lower level parameters that determine this amount of time

At last the end-to-end performance should be explainable in terms of the lower
level micro-benchmark results. By working concurrently bottom-up and top-down
both activities can be limited to relevant measurements. In a system that does only
have a few interrupts, the interrupt handling time might be ignored.

3.6 Using n-order formulas

The basis for most performance models are simple mathematical formulas, using
secondary school math. The challenge is to keep the models as simple as possible,
as discussed in the section about control design. We can express the degree of
detail in formulas by the order of the formula. Figure 24 shows such classification.

0
th
 order main function

parameters

order of magnitude

relevant for main function

1
st
 order add overhead

secondary function(s)
estimation

2
nd

 order interference effects

circumstances
more accurate, understanding

main function, overhead

and/or secondary functions

Figure 24: Theory Block 1: n Order Formulas

Figure 25 shows an example of a highly simplified model of the CPU load for
image processing. This formula assumes that the CPU load is directly proportional
to the number of pixels plus some time to perform the user interface tasks. We call
such a formula, where only the main parameter is present, a zeroth order formula.

It could be that the 0-order formula does not work well enough, for example
because overhead is significant. In Figure 26 the biggest overhead contribution is
added to the formula, in this example the context switch overhead.
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tcpu total tcpu processing=

nx tpixelny= * *

tUI+

tcpu processing

Figure 25: CPU Time Formula Zero Order

tcpu total tcpu processing

tcontext switch

overhead

+= tUI

+

Figure 26: CPU Time Formula First Order

However, in a heavily loaded system may suffer additional loads due to the
context switches, the so-called second order effects. In Figure 27 these second
order effects are added to the formula. The second order impact may depend on
the type of system load. The second order terms might be parameterized to express
this relation. For example signal processing loads might cause low penalties, due
to high cache efficiency, while control processing might be much more sensitive to
these effects.

tcpu total tcpu processing tcontext switch

overhead

tstall time due to

context switching

+=

+

+

tstall time due to

cache efficiency

signal processing: high efficiency

control processing: low/medium efficiency

+tUI

Figure 27: CPU Time Formula Second Order

3.7 Example of n-order formulas in MR reconstruction

The reconstruction of MR images is a processing intensive operation. Fast recon-
structions are beneficial for the throughput of MRI scanners and are prerequisite
for a number of performance critical applications. Figure 28 shows a simplified
block diagram of an MRI scanner, the context of the MR reconstruction. The MR
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Figure 28: MR Reconstruction Context

data is digitized in the acquisition subsystem and transferred to the reconstruction
subsystem. The reconstructed images are stored in the data base and viewed at
the operator or viewing console. All subsystems are controlled by a central host
computer.

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

Figure 29: MR Reconstruction Performance Zero Order

In Figure 29 a visualization and mathematical formulas are used in combination
to model the performance of the MR reconstruction. The visualization shows the
processing steps that are performed as reconstruction. Above the arrows it is shown
what the size of the data matrices is at that phase.

This 0-order model uses the Fast Fourier Transform (FFT) as the dominating
term contributing to the performance, but the row and column overhead are already
identified as significant and taken into account. Most operations are directly propor-
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tional to the matrix size shown above the formulas. The FFT itself is an order
nlog(n) term, parameterized with its corresponding load cfft.

Typical FFT, 1k points ~ 5 msec 

( scales with 2 * n * log (n)  )

nraw-x = 512

nraw-y = 256

ny = 256

nx = 256

using:

trecon = nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

+

+

512 * 1.2  + 256 * 2.4  

~= 1.2 s

Figure 30: Zero Order Quantitative Example

Unfortunately the formulas don’t tell us much without quantification. Figure 30
provides us with some quantified input based on a FFT micro-benchmark: an FFT
on thousand points executes in about 5 msecs (typical performance figures for
processing hardware around 1990). The figure takes one typical use case, where a
512*256 raw image is reconstructed on a 256*256 image, to calculate the recon-
struction performance. Also an assumption is made about the row and column
overhead: both 0.2 msec. For this use case and assumptions we get 1.4 seconds.

trecon =

nraw-x * tfft(nraw-y)

ny * tfft(nraw-x)

tfilter(nraw-x ,nraw-y) +

+

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

nx

ny

nx

ny

tcorrections(nx ,ny)

Figure 31: MR Reconstruction Performance First Order

Figure 32 extends the model to also take the non-FFT processing into account.
These operations filter the raw data and perform some simple corrections on the
image. Both operations are proportional to the number of pixels that is processed.
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Typical FFT, 1k points ~ 5 msec 

( scales with 2 * n * log (n)  )

Filter 1k points ~ 2 msec

( scales linearly with n )

Correction ~ 2 msec

( scales linearly with n )

Figure 32: First Order Quantitative Example

Figure 32 provides the quantifications obtained by micro-benchmarking both
operations: 2 msec to process 1k points. Using the same numbers as Figure 30 we
get for filtering 512 ∗ 256 ∗ 2/1024ms ≈ 0.26s and for correction 256 ∗ 256 ∗
2/1024ms ≈ 0.13s. Both processing steps can not be ignored compared to the
FFT operation!

overhead

trecon = nraw-x * ( tfft(nraw-y)

ny * ( tfft(nraw-x)

tfilter(nraw-x ,nraw-y) + +

+

tfft(n) = cfft * n * log(n)

filter FFT FFT
correc
tions

tcol-overhead

tcorrections(nx ,ny)trow-overhead +tcontrol-overhead+

)  +

)  +

nraw-x

nraw-y

nraw-x

nraw-y

nraw-x

ny

FFT computations

column overhead

FFT computations

row overhead
correction computations

overhead

filter computations

read I/O

write I/O

malloc, free
transpose

bookkeeping

number 
crunching

overhead

focus on overhead

reduction

is more important

than faster algorithms

this is not an excuse

for sloppy algorithms

read
I/O

write
I/O

trans-
pose

nraw-x

ny

nx

ny

nx

ny

tread I/O +twrite I/O+ttranspose

Figure 33: MR Reconstruction Performance Second Order

Finally we add bookkeeping and I/O type operations to the formula, see Figure 33.
In practice both terms often ruin the performance of well designed processing
kernels, mostly by a lack of attention.
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4 From behavioral to quantified software design

Current software engineering methods are only quantitative for project like data or
in highly specialized niches such as algorithmic research. What type of research
is needed to shift the software engineering discipline more towards quantified
engineering? The starting point is to look for quantifiable aspects of software.
Performance, for example response times or throughput, is one of the most easy
quantifiable aspects. Performance at user level has impact on the design of the use
of computing resources.

Another area of quantification is user interfaces: the number of user interac-
tions and the amount screen real estate being used. The user interface quantification
is also resource related, the user interface resources. The first research challenge is
to identify the aspects to be quantified.

10
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10
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system

multi-disciplinary

mono-disciplinary

n
u

m
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e
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o
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e
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ils

software

requirements

system 
requirements

Figure 34: Software is Intimately Coupled with System

Both examples show that quantification of software as a product starts at system
level. A system has desired properties that are captured as quantified system
requirements. Then we apply a system and software design step to be able to
create a software requirements specification. In this step from relatively few system
requirements to software requirements the amount of details is increased with
several orders of magnitude, see Figure 34. This increase is caused by the design
step involved: we specify the software itself as components, classes and methods; a
much finer granularity level than the software requirements. Most software require-
ments specifications are not quantified. The focus is most often on functionality or
behavior.

Figure 35 shows a frequently occurring problem in system development: the
disconnect of the customer world where systems are being used from the technical
world where detailed design decisions are taken. The quantification of system
requirements starts in a quantified understanding of the user world, the software
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Figure 35: Most Quantifications Relate Context to Design!

realization has a big impact on the final system properties as experienced by customers.

Customer

objectives
figures of merit

patients/physician

physician income

success rate

failure rate

integral cost

Application

typical quantities

# patients

# physicians

# exams/day

# exams/patient

# information/

patient

Functional

critical specs

productivity

response time

capacity

Conceptual

working ranges

# transactions

# queries

peak&average

Realization

critical numbers

network speed

CPU speed

memory size

power consumption

query duration

transaction overhead

internal Operational view

market size

market share

growth rate

product life cycle

business model

market segments

project size

# engineers/discipline

# teams

# suppliers

partners

competitors

maintenance effort

update frequency

service crew

effort

cost

time

Figure 36: Example facts for “Electronic Patient Record”

Figure 36 shows quantifiable aspects in the CAFCR-model. It shows possible
quantifications in terms of the Customer Objectives, what does the customer want
to achieve, up to the Realization, what are the quantified properties of actual compo-
nents.
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5 Future Research to come closer to quantified software
engineering

In the history of science different types of research have been applied, see Figure 37:

• Observational research

• Theory development

• Experimental research

• Fundamental research

observational 

research

theory

development

metrics

formalisms

techniques

models

methods

theory evaluation

theory evolution

fundamentals

principles

methodologies

experimental 

research

best practices

heuristics

classification

ontology

fundamental

research

optimizations

rigorous proofs

first principle based

Figure 37: What Kind of Research is Needed?

In the early phases, when scientists did not yet have workable theories, obser-
vational research is the starting point. Observational research starts with describing
the observations. For example case descriptions are valuable means. In system and
software engineering we should capture best practices and heuristics. Research
could also make a classification and ontology, based on the observations.

Theories are developed by trying to explain the observations. Numeric under-
standing is strived for by defining metrics. Theory development requires formalisms,
techniques, models, and methods as means. These more abstract elements are often
also the outcome of this type of research.

In the experimental phase the theories are tested. The more or less historical
view of the early phases is replaced by an attempt to get a more objective validation
of the theory. The main vehicle to achieve validation is experimentation. Theories
are evaluated, often resulting in adaptation of the theory. The experimental researchers
are searching for fundamentals, principles, and methodologies.

Once the field is well-defined, then more fundamental research becomes possible.
For example the search for optimal solution, rigorous proofs, and first principle
based derivations.

In practice all these types of research are concurrent and iterative.
Figure 38 summarizes what needs to be defined and researched in system and

software engineering:

entities What are the most relevant entities used or created by the engineers?
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Figure 38: What needs to be defined and researched?

parameters How can these entities be parameterized?

models How can we model these entities and their properties in a useful way?

representations and formalisms What formalisms and representations do we need
to capture the entities and parameters in order to explore them by means of
models and techniques?

techniques What techniques help us to explore relevant properties?

methods What methods will help engineers to combine all of the above in a usable
way?

6 Acknowledgements

Heico Sandee explained the Control Engineering approach. Peter van den Bosch,
and Jaap van der Heijden provided feedback. The Boderc project (www.esi.nl/
Boderc) provided insight in the differences currently between software engineering
as discipline and control engineering.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

Gerrit Muller
How to Characterize SW and HW to Facilitate Predictable Design?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 22

www.esi.nl/Boderc
www.esi.nl/Boderc
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html


History
Version: 1.0, date: September 3, 2007 changed by: Gerrit Muller

• added section acknowledgements
• added text sections quantification and research
• increased status to draft

Version: 0.2, date: August 31, 2007 changed by: Gerrit Muller
• started to create a text version
• selected PENGcontrolDisturbanceMeasurement as logo
• decreased status to preliminary draft because of preliminary state of the text.

Version: 0.1, date: September 8, 2006 changed by: Gerrit Muller
• Added Research types
• System Software relation
• reordered last slides
• changed status to draft

Version: 0, date: August 11, 2006 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
How to Characterize SW and HW to Facilitate Predictable Design?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 23


	Introduction
	Example of quantified engineering in control
	Quantified engineering of software performance
	What if ...
	Problem Statement
	Layered benchmarking approach
	Micro-benchmarks of hardware and OS
	From micro-benchmarks to system performance
	Using n-order formulas
	Example of n-order formulas in MR reconstruction

	From behavioral to quantified software design
	Future Research to come closer to quantified software engineering
	Acknowledgements

