
Module Role of Software in Complex Systems

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This module addresses the role of software in complex systems

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.0 status: preliminary draft May 29, 2023

Contents

1 The Role of Software in Systems 1
1.1 Introduction . 1
1.2 Why is Software a Bottleneck in Product Development? 2

1.2.1 Growth of software effort 2
1.2.2 Roles of the disciplines in a system 2
1.2.3 Characterization of disciplines 4

1.3 System or Software Issues? . 5
1.4 Acknowledgments . 6

Chapter 1

The Role of Software in Systems

sensor
optical

device

mechanical

device

C
o
n
tr
o
l

Fe
ed

b
ac
k

human user

application SW

control SW

digital electronics

analog or power electronics

mechanical

device
sensor

optical

device

local

automation

or safety

legend

1.1 Introduction

The relation between the software and system disciplines is difficult in many organi-
zations. The poor relation between the disciplines results in gaps in the design and
later in quality problems in the final systems. As a consequence software is in
many organizations perceived as a problem and a bottleneck in product creation.

Part of the explanation is traditionally physical disciplines, e.g. mechanical,
optical, or electrical engineering, dominated system design. Historically the engineers
from these physical disciplines were confronted most with the application domain.
These engineers have evolved into domain engineers.

In the modern world software has a significant impact on many system qualities,
as we will show in this chapter. More and more customer value depends on
software. Unfortunately, many software engineers have not yet build up sufficient
knowledge of the physical aspects of their systems or of the application domain.
At the same time the engineers from the physical disciplines, who dominate the
system design, do not yet understand the jargon and the concepts from the “virtual”
disciplines (software, digital electronics engineering).

1.2 Why is Software a Bottleneck in Product Development?

1.2.1 Growth of software effort

Software is a relative young discipline. The amount of software in systems is
growing exponentially. The contribution of different disciplines to the system,
measured in effort is shifting continuously. Figure 1.1 shows the growth of effort
to make software and the related relative decrease of the other disciplines.

100%

time

re
la

ti
ve

ef

fo
rt

SWelectronics

mechanics

physics/chemistry, etc.

1970 2000

Figure 1.1: The relative contribution of software effort as function of time

1.2.2 Roles of the disciplines in a system

The different disciplines do have an asymmetric relation when we look at the
control in systems. Figure 1.2 shows a typical control hierarchy in a system. At the
bottom we see the physical disciplines who realize physical devices and sensors.
We prefer to keep these physical components independent from each other seen
from control perspective. Safety provisions are the major exception to this rule.

The physical devices need actuation that is delivered by some analog (power)
electronics, e.g. amplifiers. Note that there might be all kinds of conversions in
between in the more complex reality, e.g. pressure in a hydraulic system, light
in an optics system. Again we prefer to keep the analog electronics mutually
independent. The analog electronics is controlled by digital electronics. The
control stack continues with control software that sits on top of the digital hardware.
Finally, application software determines what the control software should do. Hopefully,
the human user is the person who is really in control.

Gerrit Muller
The Role of Software in Systems
May 29, 2023 version: 1.3

USN-SE

page: 2

sensor
optical

device

mechanical

device

C
o
n
tr
o
l

Fe
ed

b
ac
k

human user

application SW

control SW

digital electronics

analog or power electronics

mechanical

device
sensor

optical

device

local

automation

or safety

legend

Figure 1.2: The Control Hierarchy of a system along the Technology dimension

Note that in all layers there are several reasons to have short cuts from sensors
to control:

Safety is always kept as simple and direct as possible, since any complexity intro-
duces new safety risks. A good safety design carefully allocates safety
functions to the different layers to achieve the desired safety while achieving
the desired control flexibility.

Automation can be done on lower layers if this simplifies the overall design.
Automation provides value when the higher level work flows are well under-
stood and well defined.

Performance is a special case of automation, where the short cut facilitates better
performance, for example fast response times.

The software technology is in most modern systems the integrating technology,
as shown by the control hierarchy. In the next section we will dive somewhat
deeper in the relation between system qualities and software technology. In modern
systems software technology determines to a high degree most system qualities.
The inherent system qualities are often determined by the physical design, but the
actually achieved quality is often determined by the way the software is constructed.
For example, we can dimension a system with quite powerful motors to ensure high
performance, but if the software does not fully utilize the motors, then the system
performance is lower than can be expected from the physical design. Similarly
for reliability that inherently is determined by the physical design. However, the
software control may negatively impact reliability. For example, in a system with
pumps, the software used a sequence where one of the pumps regularly ran dry.
The consequence was that this pump failed often.

Gerrit Muller
The Role of Software in Systems
May 29, 2023 version: 1.3

USN-SE

page: 3

Software

Data

Digital

Electronics

Analogue / power

Electronics

Mechanics

Optics

abstractconcrete

intangibletangible

immaturemature

material cost

production lead-time

flexible?

instanteneous deployment

Figure 1.3: Characterization of disciplines, ordered along the level of abstraction

1.2.3 Characterization of disciplines

Physical disciplines work on aspects that can be touched, the subjects are tangible.
Virtual disciplines work on abstract concepts, the subjects are intangible. Figure 1.3
shows the disciplines on an axes of decreasing tangibility and increasing abstractness.
Mechanics is one of the older disciplines that is highly tangible. Analog (power)
electronics is younger as discipline and less tangible. Digital electronics is again
younger. Although the digital electronics itself can be touched, the circuitry itself
is much more conceptual and abstract.

Figure 1.3 also provides a number of other characterizations that follow the
same trend as tangibility and abstractness:

maturity The more tangible the more mature a discipline seems to be. Mature
means here well known and founded; the discipline has an established and
documented body of knowledge.

production lead time The physical world is constrained by nature. Processing
and production of components have an inherent lead time. Software can be
seen as infinitely fast. However, when testing, quality control and configu-
ration management are included in the production lead time, then this lead
time becomes strongly dependent on people, processes, and tools. Hence the
question mark behind flexible at the right hand side of the figure.

material cost Physical systems do have inherent cost in the materials and its processing.

These differences in nature, especially production lead time and material cost,
cause also differences in other business processes and the approach to life cycle
aspects. For many physical components the logistics design is crucial for cycle
time, stocks, and cost, where software does have zero reproduction cycle time, cost
and infinite stocks.

Gerrit Muller
The Role of Software in Systems
May 29, 2023 version: 1.3

USN-SE

page: 4

1.3 System or Software Issues?

Systems can be specified in terms of their functionality and qualities. Most qualities
of a system are strongly influenced or even determined by the software design.
Figure 1.4 based on [3] shows a checklist for qualities. In this figure all qualities
that have a strong or weak relation with the software design are highlighted.

usability

attractiveness

responsiveness

image quality

wearability

storability

transportability

usable

safety

security

reliability

robustness

integrity

availability

dependable

throughput or

productivity

effective

serviceability

configurability

installability

serviceable

liability

testability

traceability

standards compliance

liable

ecological footprint

contamination

noise

disposability

ecological

reproducibility

predictability

consistent

efficient
resource utilization

cost of ownership

cost price

power consumption

consumption rate

(water, air,

chemicals,

etc.)

size, weight

accuracy

down-to-earth

attributes

manufacturability

logistics flexibility

lead-time

logistics friendly

evolvability

portability

upgradability

extendibility

maintainability

future proof

interoperable

connectivity

3
rd

 party extendible

weak SW relation

strong SW relation

legend

Figure 1.4: Quality Checklist annotated with the relation with software

During System Design the system is decomposed in subsystems and implemen-
tation technologies. The combination of subsystems and technologies together has
to realize the qualities. During this step the contribution or the role of a subsystem
and implementing technology is determined.

Figure 1.5 shows the System level design aspects that are strongly related to
software. Figure 1.6 shows a list of mechanisms used by SW engineers. These
mechanisms facilitate the system level design aspects mentioned in Figure 1.5.

Both Quality Attributes and Design Aspects are System Level issues, however
most of these issues are predominantly influenced by the software. The System
Architect should: define the system level what, co-design the system level how
and be involved with the single technology or subsystem how.

Due to the strong Software impact the software architect should: understand/review
the system level what, co-design the system level how and design the software
how.

This requires significant domain know-how of the Software Architect, see [1].
Figures 1.5 and 1.6 contain too many design aspects and software mechanisms

to discuss as part of this book. The main purpose of these lists is to show the variety
of technology issues to be addressed by the software architect.

Many of the design aspects have a many to many relation to the software
mechanisms. For example, the design strategies for performance, safety, and security

Gerrit Muller
The Role of Software in Systems
May 29, 2023 version: 1.3

USN-SE

page: 5

Customer

objectives

Application Functional Conceptual Realization

design philosophy per quality attribute

granularity, scoping, containment, cohesion, coupling

interfaces, allocation, budgets

information model (entities, relations, operations)

identification, naming

static characteristics, dynamic behavior

system-level infrastructure

software development process, environment, repository, and tools

life cycle, configuration management, upgrades, obsolescence

feedback tools, for instance monitoring, statistics, and analysis

persistence

licensing, SW-keys

setup sequence, initialization, start-up, shutdown

technology choices

make, outsource, buy, or interoperability decisions

performance, safety, security, ...

e.g., distributed or

centralized control

HAL_message_acknowledge_status versus ACK

Figure 1.5: System design aspects that are strongly SW related

relate to nearly all software mechanisms. Vice versa most software mechanisms
penetrate throughout most software and relate back to most of the design aspects.

The software part of systems is complex in itself. The software is a construct
made by many people, stacking construct on construct. The risk is that software
architects spend all their time internally in the software, while they also have to
relate the software choices to the context, the system.

1.4 Acknowledgments

Jürgen Müller helped to sort out the attributes, aspects, mechanisms et cetera,
which helps to position the Software Discipline in the System Development.

Gerrit Muller
The Role of Software in Systems
May 29, 2023 version: 1.3

USN-SE

page: 6

Customer

objectives

Application Functional Conceptual Realization

error handling, exception handling, logging

processes, tasks, threads

configuration management; packages, components, files, objects, modules, interfaces

automated testing: special methods, harness, suites

signaling, messaging, callback scheduling, notification, active data, watchdogs, timeouts

locking, semaphores, transactions, checkpoints, deadlock detection, rollback

identification, naming, data model, registry, configuration database, inheritance, scoping

resource management, allocation, fragmentation prevention, garbage collection

persistence, caching, versioning, prefetching, lazy evaluation

licensing, SW-keys

bootstrap, discovery, negotiation, introspection

call graphs, message tracing, object tracing, etc.

distribution, allocation, transparency; component, client/server, multitier model

Figure 1.6: List of Software Mechanisms that are frequently applied to solve the
system level design aspects

Gerrit Muller
The Role of Software in Systems
May 29, 2023 version: 1.3

USN-SE

page: 7

Bibliography

[1] Philip Kruchten. The software architect- and the software architecture team. In
Software Architecture; TC2 First Working IFIP Conference on Software Archi-
tecture (WICSA1), pages 565–583. IFIP, 1999. This article describes required
skills for architect and architecture team; traps and pitfalls; Personality profile
based on Myers-Briggs Type Indicator.

[2] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[3] Gerrit Muller. CAFCR: A multi-view method for embedded systems archi-
tecting: Balancing genericity and specificity. http://www.gaudisite.
nl/ThesisBook.pdf, 2004.

History
Version: 1.1, date: October 22, 2014 changed by: Gerrit Muller

• added summary
Version: 1.0, date: March 25, 2004 changed by: Gerrit Muller

• created reader

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/ThesisBook.pdf
http://www.gaudisite.nl/ThesisBook.pdf

	The Role of Software in Systems
	Introduction
	Why is Software a Bottleneck in Product Development?
	Growth of software effort
	Roles of the disciplines in a system
	Characterization of disciplines

	System or Software Issues?
	Acknowledgments

