
Module Modeling and Analysis: System model

Gerrit Muller
HSN-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

This module addresses Modeling and Analysis Performance. What are the
customer performance needs, what are the operational performance considera-
tions? What are the performance related design choices? How to analyze feasi-
bility, explore design options, and how to validate performance?

The complete course MA 611TM is owned by TNO-ESI. To teach this course a license from TNO-ESI is
required. This material is preliminary course material.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.4 status: preliminary draft June 21, 2020

Contents

1 Modeling and Analysis: System Model 1
1.1 Introduction . 1
1.2 Stepwise approach to system modeling 2
1.3 Example system modeling of web shop 3
1.4 Discussion . 11
1.5 Summary . 12
1.6 Acknowledgements . 13

2 Modeling and Analysis: Budgeting 14
2.1 Introduction . 14
2.2 Budget-Based Design method 15

2.2.1 Goal of the method . 15
2.2.2 Decomposition into smaller steps 16
2.2.3 Possible order of steps 16
2.2.4 Visualization . 17
2.2.5 Guidelines . 17
2.2.6 Example of overlay budget for wafersteppers 18
2.2.7 Example of memory budget for Medical Imaging Worksta-

tion . 19
2.2.8 Example of power budget visualizations in document han-

dling . 20
2.2.9 Evolution of budget over time 20
2.2.10 Potential applications of budget method 23

2.3 Summary . 23
2.4 Acknowledgements . 23

Chapter 1

Modeling and Analysis: System
Model

quantified mid office server example

th = 0.02 ms

tm = 2 ms

na = 1000

Load(h) = 1000 * 2[ms] - 1000* h * 1.98[ms]

Load(h) = 2000 - 1980* h [ms]

2

1

10.5

hit rate

lo
a

d
 i
n

s
e

c
o

n
d

s

utilizable capacity
working range

to be measured

hit rate also!

Hit rate of well designed

system is ample within

working range (e.g. 95%)

0
th
 order formula is valid:

Load = 0.12 * na [ms]

Hit rate is context dependent.

Life cycle changes or peak

loads may degrade hit rate.

1.1 Introduction

content

What to model of the system

Stepwise approach to system modeling

Non Functional requirements (NFR), System Properties and

Critical Technologies

Examples of web shop case

Figure 1.1: Overview of the content of this paper

Figure 1.1 shows an overview of this paper. We will discuss what to model of
the system of interest, see also Figure 1.2. We will provide a stepwise approach
to system modeling, based on the relations between Non Functional Requirements
(NFR), system design properties and critical technologies. Several examples will
be shown using the web shop case.

In our modeling we will focus on the NFR’s, such as performance, reliability,

life cycle context

systemusage context

enterprise

&

users

NFR's:

performance

reliability

availability

scalability

maintainability

...

(emerging?) properties:

resource utilization

load

latency, throughput

quality, accuracy

sensitivity

(changes, inputs)

...

creation

life cycle business

critical technologies

caching

load balancing

firewalls

virtual networks

XML for customization

and configuration

...

Figure 1.2: What to Model in System Context?

availability, scalability, or maintainability. We assume that the functional require-
ments and system decomposition are being created in the system architecting and
design activity. In practice many NFR’s emerge, due to lack of time and attention.
We recommend to reduce the risks by modeling and analysis of relevant NFR’s
where some higher risk is perceived. Figure 1.2 shows that the external visible
system characteristics depend on the design of system properties, such as resource
utilization, load, latency, throughput, quality, accuracy, or sensitivity for changes
or varying inputs. Note that these properties also often emerge, due to lack of time
or attention. Not only the design of these properties determine the external visible
system characteristics, but also the chosen technologies has a big impact. Therefor
we also have to look at critical technologies, for example caching, load balancing,
firewalls, virtual networks, or XML for customization and configuration.

1.2 Stepwise approach to system modeling

We recommend an approach where first the system is explored: what is relevant,
what is critical? Then the most critical issues are modeled. Figure 1.3 shows a
stepwise approach to model a system.

1. Determine relevant Non Functional Requirements (NFR’s) where the relevance
is often determined by the context: the usage context or the life cycle context.

2. Determine relevant system design properties by looking either at the NFR’s
or at the design itself: what are the biggest design concerns?

3. Determine critical technologies criticality can have many reasons, such as working
close to the working range limit, new components, complex functions with
unknown characteristics, sensitivity for changes or environmental condi-
tions, et cetera.

4. relate NFR’s to properties to critical technologies by making a graph of relations.
Such a graph often has many-to-many relations.

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 2

1. determine relevant Non Functional Requirements

(NFR's)

2. determine relevant system design properties

3. determine critical technologies

4. relate NFR's to properties to critical technologies

5. rank the relations in relevancy and criticality

6. model relations with a high score

Figure 1.3: Approach to System Modeling

5. Rank the relations in relevancy and criticality to find potential modeling candi-
dates.

6. Model relations with a high ranking score a time-boxed activity to build up
system understanding.

Note that this system modeling approach fits in the broader approach of modeling
and analysis. The broader approach is discussed in Modeling and Analysis: Reasoning.

1.3 Example system modeling of web shop

system

NFR's:

performance browsing

initial cost

running costs

reliability/availability

scalability order rate

maintainability

effort product changes

effort staff changes

security

(emerging?) properties:

resource utilization
server load, capacity

memory load, capacity

response latency

redundancy

order throughput

product data quality

product definition flow

staff definition flow

security design
compartimentalization

authentication

encryption

critical technologies

caching

load balancing

pipelining

virtual memory

memory management

data base transactions

XML for customization

and configuration

firewalls

virtual networks

...

1 2 3

Figure 1.4: Web Shop: NFR’s, Properties and Critical Technologies

Figure 1.4 shows the results of step 1, 2, and 3 of the approach.

1. Determine relevant Non Functional Requirements (NFR’s) For the web shop
the following requirements are crucial: performance browsing, initial cost,

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 3

running costs, reliability/availability, scalability order rate, maintainability
(effort to enter product changes and effort to enter staff changes) and security.

2. Determine relevant system design properties based on experience and NFR’s
the following properties were identified as relevant: resource utilization (server
load, server capacity, memory load, and memory capacity), response latency,
redundancy, order throughput, product data quality, product definition flow,
staff definition flow, security design (which can be refined further in compar-
timentalization, authentication, and encryption). Note that we mention here
design issues such as product definition flow and staff definition flow, which
have an direct equivalent in the usage context captured in some of the customer’s
processes.

3. Determine critical technologies Based on experience and risk assessment the
following technologies pop up as potentially being critical: caching, load
balancing, pipelining, virtual memory, memory management, data base trans-
actions, XML for customization and configuration, firewalls, and virtual
networks.

system

NFR's:

performance browsing

initial cost
running costs

reliability/availability

scalability order rate

maintainability

effort product changes

effort staff changes

security

(emerging?) properties:

resource utilization
server load, capacity

memory load, capacity

response latency

redundancy

order throughput

product data quality

product definition flow

staff definition flow

security design
compartimentalization

authentication

encryption

critical technologies

caching

load balancing

pipelining

virtual memory

memory management

data base transactions

XML for customization

and configuration

firewalls

virtual networks

...

1 2 3

4

4

Figure 1.5: 4. Determine Relations

Figure 1.5 shows for a small subset of the identified requirements, properties
and technologies the relations. The performance of browsing is related to the
resource management design and the concurrency design to meet the response
latency. The resource management design relates to several resource specific technologies
from caching to memory management. The cost requirements also relate to the
resource utilization and to the cost of redundancy measures. The dimensioning of
the system depends also on the design of the order throughput. Crucial technology
for the order throughput is the data base transaction mechanism and the related
performance.

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 4

system

NFR's:

performance browsing

initial cost
running costs

reliability/availability

scalability order rate

maintainability

effort product changes

effort staff changes

security

(emerging?) properties:

resource utilization
server load, capacity

memory load, capacity

response latency

redundancy

order throughput

product data quality

product definition flow

staff definition flow

security design
compartimentalization

authentication

encryption

critical technologies

caching

load balancing

pipelining

virtual memory

memory management

data base transactions

XML for customization

and configuration

firewalls

virtual networks

...

1 2 3

ranking will be discussed in

Modeling and Analysis: Reasoning
5

4

4

Figure 1.6: 5. Rank Relations

Ranking, Figure 1.6 will be discussed in the Modeling and Analysis: Reasoning
paper. For this example we will mostly focus on the relations shown in Figure 1.5.

data

base

server

web

server

client client

network

network

client

screen screen screen

product

descriptions

logistics

ERP

customer

relations
financial

picture

cache

required
server capacity

response time

required

server capacity

browse

products

exhibit

products

Figure 1.7: Purpose of Picture Cache Model in Web Shop Context

Figure 1.7 shows the picture cache as a specific example of the use of caching
technology. The purpose of picture cache is to realize the required performance of
product browsing at the client layer. At the web server layer and at the data base
layer the picture cache should realize a limited server load of the product exhibition
function.

The most simple model we can make for the server load as function of the
number of requests is shown in Figure 1.8. This is a so called zero order model,
where only the direct parameters are included in the model. It is based on the very
simple assumption that the load is proportional with the number of requests.

When we introduce a cache based design, then the server load depends on the

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 5

zero order web server load model

Load = na* ta

na = total requests

ta = cost per request

Figure 1.8: Zero Order Load Model

first order web server load model

Load = na,h*th + na,m*tm

na,m= accesses with cache miss

na,h = accesses with cache hit

th = cost of cache hit

tm = cost of cache miss

na,h = na * h

na = total accesses

h = hit rate

na,m = na * (1-h)

Load(h) = na * h* th + na* (1-h) * tm = na * tm - na* h * (tm - th)

Figure 1.9: First Order Load Model

effectiveness of the cache. Requests that can be served from the cache will have a
much smaller server load than requests that have to be fetched from the data base.
Figure 1.9 shows a simple first order formula, where the contributions of requests
from cache are separated of the requests that need data base access. We introduce
an additional parameter h, the hit-rate of the cache. This helps us to create a simple
formula where the server load is expressed as a function of the hit-rate.

The simple mathematical formula starts to make sense when we instantiate
the formula with actual values. An example of such an instantiation is given in
Figure 1.10. In this example we use values for request handling of th = 20µs
and tm = 2ms. For the number of requests we have used na = 1000, based on
the assumption that we are serving the product exhibition function with millions
of customers browsing our extensive catalogue. The figure shows the server load
as function of the hit-rate. If the available server capacity is known, then we can
deduce the minimal required hit-rate to stay within the server capacity. The allowed
range of hit-rate values is called the working range.

In Figure 1.11 we zoom in on the hit-rate model. First of all we should realize
that we have used assumed values for th, tm and na. These assumptions were

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 6

quantified mid office server example

th = 0.02 ms

tm = 2 ms

na = 1000

Load(h) = 1000 * 2[ms] - 1000* h * 1.98[ms]

Load(h) = 2000 - 1980* h [ms]

2

1

10.5

hit rate

lo
a

d
 i
n

s
e

c
o

n
d

s

utilizable capacity
working range

Figure 1.10: Quantification: From Formulas to Insight

based on experience, since we know as experienced designers that transactions cost
approximately 1 ms, and that the cache roughly improves the request with a factor
100. However, the credibility of the model increases significantly by measuring
these quantities. Common design practice is to design a system well within the
working range, for example with a hit-rate of 95% or higher. If the system operates
at these high hit-rates, then we can use the zero-order formula for the system load
again. Using the same numbers for performance we should then use ta ≈ 0.95 ∗
th + 0.05 ∗ tm ≈ 0.12ms. Another assumption we have made is that the hit-rate
is constant and independent of the circumstances. In practice this is not true. We
will, for instance, have varying request rates, perhaps with some high peak values.
If the peak values coincide with lower hit rates, then we might expect some nasty
performance problems. The hit-rate might also be impacted by future life cycle
changes. For example new and different browser functionality might decrease the
hit-rate dramatically.

Another system property that was characterized as relevant was the response
time design. Response time depends on the degree of concurrency, the synchro-
nization design and the time required for individual operations. Figure 1.12 shows
a timing model for the response time, visualizing the above mentioned aspects for
the retrieval of a picture in case of a cache miss.

Yet another system design property is the use of resources, such as memory.
Figure 1.13 shows the flow of pictures throughout the system, as a first step to
address the question how much memory is needed for picture transfers.

In Figure 1.14 we zoom in on the web server to have a look at the memory used
for picture transfers. This figure shows a number of alternative design options,
ranging from a minimal set of copies in the memory to the more realistic situation

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 7

quantified mid office server example

th = 0.02 ms

tm = 2 ms

na = 1000

Load(h) = 1000 * 2[ms] - 1000* h * 1.98[ms]

Load(h) = 2000 - 1980* h [ms]

2

1

10.5

hit rate

lo
a

d
 i
n

s
e

c
o

n
d

s

utilizable capacity
working range

to be measured

hit rate also!

Hit rate of well designed

system is ample within

working range (e.g. 95%)

0
th
 order formula is valid:

Load = 0.12 * na [ms]

Hit rate is context dependent.

Life cycle changes or peak

loads may degrade hit rate.

Figure 1.11: Hit Rate Considerations

where every thread contains multiple copies of every picture, while at the same
time multiple threads serve concurrent customers.

These alternative design options are transformed in a simple mathematical
model in Figure 1.15. This formula is parametrized for the different specification
and design parameters:

n = number of data base access threads a design parameter dimensioning the amount
of concurrency towards the data base layer.

m = number of picture cache threads a design parameter dimensioning the amount
of concurrency of the picture cache itself.

k = number of web server threads a design parameter dimensioning the amount
of concurrency of client access to the web server.

s = picture size in bytes an application and design dependent parameter, the average
size in bytes of the pictures.

c = in memory cache capacity in number of pictures a design parameter deter-
mining the size of a picture cache in number of pictures per picture cache
thread.

This formula is instantiated in a quantified table in Figure 1.16, for different
values of the design parameters. Note that depending on the chosen design param-
eters the picture cache maps on completely different storage technologies, with the
related different performance characteristics.

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 8

re
q

u
e

s
t

p
ic

tu
re

c
h

e
c
k

c
a

c
h

e

re
q

u
e

s
t

p
ic

tu
re

retrieve

picture
s
to

re
 i
n

c
a

c
h

e

tr
a

n
s
fe

r

to
 c

lie
n

t
tr

a
n

s
fe

r

p
ro

c
e

s
s

d
is

p
la

y

press next look

data

base

server

web

server

client

human

customer

t0 t0+ 10 t0+ 20 t0+ 30 t0+ 40 t0+ 50 t0+ 60 t0+ 70

time in milliseconds in optimal circumstances

Figure 1.12: Response Time

back

office

server

mid

office

server

client client

network

network

client

screen screen screen

product

descriptions

logistics

ERP

customer

relations
financial

picture

cache

browse

products

exhibit

products required

memory capacity?

Figure 1.13: What Memory Capacity is Required for Picture Transfers?

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 9

mid office

server

back

office

access

back

office

access

picture

cache

server

picture

cache

server

web

server
web

server

one copy

per process

multiple copies

per process

mid office

server

web

server

back

office

access

picture

cache

server

mid office

server

picture

cache

server

back

office

access

web

server

picture

cache

server

back

office

access

web

server

multiple copies

per process and thread

n

m

k

Figure 1.14: Process view of picture flow in web server

web

server

back

office

access

back

office

access

picture

cache

server

picture

cache

server

web

server
web

server

picture

cache

server

data

base

access

web

server

multiple copies

per process and thread

n

m

k

picture memory =

3 * n * s +

5 * m * s + c * s +

3 * k * s

where

n = # data base access threads

m = # picture cache threads

k = # web server threads

s = picture size in bytes

c = in memory cache capacity in # pictures

Figure 1.15: Formula memory Use Web Server

kB MB GB

L1 L2 L3 diskmain memory

picture memory = 3 n s + 5 m s + c s +3 k s

where

n = # back office access threads

m = # picture cache threads

k = # web server threads

s = picture size in bytes

c = in memory cache

capacity in # picturesmemory use

product browsing only

pictures only

single server

What is the performance impact of memory use on other processing?

n m k s c MB storage type

1

2

2

2

2

2

1

4

4

4

4

4

small shop

highly concurrent

large pictures

many pictures

all at once

1

10

1000

1000

10

1000

100

100

100

1000

100

1000

10

20

100

100

100,000

100,000

1.5

5.3

296

2,962

9,540

98,234

L3

main

main

main+disk

main+disk

disk

use case

processor caches

Figure 1.16: Web server memory capacity

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 10

1.4 Discussion

In the previous section we have modeled a few parts of the system. Figure 1.17
shows that we have covered so far a small part of the system space We can describe
the system space by several dimensions: functions, data and aspects. Our coverage
so far has been limited to the browse and exhibit products function, looking at the
pictures as data, looking at the aspects of server memory use, response time and
server load.

function browse/exhibit products sales, order intake, payments

track, order handling

stock handling

financial bookkeeping

customer relation management

update catalogue

advertize

after sales support

data picture structured (product attributes, logistics, ...)

program code

aspect server memory use

response time

server load

network use

reliability

any resource, any NFR

aspect

result
=

d = all data f = all functions
aspect(d, f)

ignoring other dimensions such as applications, users, circumstances

Figure 1.17: Only a small part of the system has been modeled so far

This figure shows many more functions, types of data and aspects present in
systems. To answer one of the NFR like questions we have to combine the aspect
results of functions and all data types. In practice the context also impacts the
NFR’s, we have still ignored applications, users, and circumstances.

static

mostly assumptions and coarse estimates

some insight in:

what are key design issues

what are relevant use case areas

Figure 1.18: The modeling so far has resulted in understand some of the systems
aspects

Figure 1.18 adds to this by reminding us that we so far have only made static

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 11

models, mostly based on assumptions and coarse estimates. Nevertheless we have
obtained some insight in key design issues and relevant use cases.

life cycle context

systemusage context

enterprise &

users

NFR's:

performance

reliability

availability

scalability

maintainability

...

(emerging?) properties:

resource utilization

load

latency, throughput

quality, accuracy

sensitivity

(changes, inputs)

...

creation

life cycle business

critical technologies

caching

load balancing

firewalls

virtual networks

XML for customization

and configuration

...

Figure 1.19: Refinement of the system models takes place after context modeling

We are far from finished with system modeling. However, with the results
obtained so far it is important to take the next step of the broader iteration: modeling
of the contexts, see Figure 1.19. Many of the models we have made of the system
trigger questions about the system use and the life cycle. What is the expected
amount of browsing, by how many customers, for what size of catalogue? What is
the preferred picture quality? How relevant is the maintenance effort related to the
product catalogue? et cetera.

1.5 Summary

Conclusions

Non Functional Requirements are the starting point for system modeling

Focus on highest ranking relations between NFR's and critical technologies

Make simple mathematical models

Evaluate quantified instantiations

Techniques, Models, Heuristics of this module

Non functional requirements

System properties

Critical technologies

Graph of relations

Figure 1.20: Summary of system modeling

Gerrit Muller
Modeling and Analysis: System Model
June 21, 2020 version: 0.4

University of South-Eastern Norway-NISE

page: 12

Figure 1.20 shows a summary of this paper. We have shown that Non Functional
Requirements are the starting point for system modeling. Our approach focuses on
the highest ranking relations between NFR’s and critical technologies. For these
relations we make simple mathematical models that are evaluated by quantified
instantiations of these models.

1.6 Acknowledgements

Roelof Hamberg caught several errors in the detailed models

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 13

Chapter 2

Modeling and Analysis:
Budgeting

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

2.1 Introduction

Budgets are well known from the financial world as a means to balance expen-
ditures and income. The same mechanism can be used in the technical world to
balance for instance resource use and system performance.

A budget is

a quantified instantation of a model

A budget can

prescribe or describe the contributions

by parts of the solution

to the system quality under consideration

Figure 2.1: Definition of a budget in the technical world

Budgets are more than an arbitrary collection of numbers. The relationship

between the numbers is guided by an underlying model. Figure 2.1 shows what
a budget is. Technical budgets can be used to provide guidance by prescribing
allowed contributions per function or subsystem. Another use of budgets is as a
means for understanding, where the budget describes these contributions.

We will provide and illustrate a budget method with the following attributes:

• a goal

• a decomposition in smaller steps

• possible orders of taking these steps

• visualization(s) or representation(s)

• guidelines

2.2 Budget-Based Design method

In this section we illustrate a budget-based design method applied at waferstepper,
health care, and document handling systems, where it has been applied on different
resources: overlay, memory, and power.

2.2.1 Goal of the method

• to make the design explicit

• to provide a baseline to take decisions

• to specify the requirements for the detailed designs

• to have guidance during integration

• to provide a baseline for verification

• to manage the design margins explicitly

Figure 2.2: Goals of budget based design

The goal of the budget-based design method is to guide the implementation of
a technical system in the use of the most important resource constraints, such as
memory size, response time, or positioning accuracy. The budget serves multiple
purposes, as shown in Figure 2.2.

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 15

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

Figure 2.3: Visualization of Budget-Based Design Flow. This example shows a
response time budget.

2.2.2 Decomposition into smaller steps

Figure 2.3 visualizes the budget-based design flow. This visualization makes it
clear that although the budget plays a central role in this design flow, cooperation
with other methods is essential. In this figure other cooperating methods are perfor-
mance modeling, micro-benchmarking, measurement of aggregated functions, measure-
ments at system level, design estimates, simulations, and requirements specifi-
cation.

Measurements of all kinds are needed to provide substance to the budget.
Micro-benchmarks are measurements of elementary component characteristics.
The measured values of the micro-benchmarks can be used for a bottom-up budget.
Measurements at functional level provide information at a higher aggregated level;
many components have to cooperate actively to perform a function. The outcome
of these function measurements can be used to verify a bottom-up budget or can
be used as input for the system level budget. Measurements in the early phases of
the system integration are required to obtain feedback once the budget has been
made. This feedback will result in design changes and could even result in speci-
fication changes. The use of budgets can help to set up an integration plan. The
measurement of budget contributions should be done as early as possible, because
the measurements often trigger design changes.

2.2.3 Possible order of steps

Figure 2.4 shows a budget-based design flow (the order of the method). The
starting point of a budget is a model of the system, from the conceptual view.

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 16

1B model the performance starting with old systems

1A measure old systems

1C determine requirements for new system

2 make a design for the new system

3 make a budget for the new system:

4 measure prototypes and new system

flow model and analytical model

micro-benchmarks, aggregated functions, applications

response time or throughput

explore design space, estimate and simulate

step example

models provide the structure

measurements and estimates provide initial numbers

specification provides bottom line

micro-benchmarks, aggregated functions, applications

profiles, traces

5 Iterate steps 1B to 4

Figure 2.4: Budget-based design steps

An existing system is used to get a first guidance to fill the budget. In general the
budget of a new system is equal to the budget of the old system, with a number
of explicit improvements. The improvements must be substantiated with design
estimates and simulations of the new design. Of course the new budget must fulfill
the specification of the new system; sufficient improvements must be designed to
achieve the required improvement.

2.2.4 Visualization

In the following three examples different actually used visualizations are shown.
These three examples show that a multi-domain method does not have to provide a
single solution, often several useful options exist. The method description should
provide some guidance in choosing a visualization.

2.2.5 Guidelines

A decomposition is the foundation of a budget. No universal recipe exists for
the decomposition direction. The construction decomposition and the functional
decomposition are frequently used for this purpose. Budgets are often used as part
of the design specification. From project management viewpoint a decomposition
is preferred that maps easily on the organization.

The architect must ensure the manageability of the budgets. A good budget has
tens of quantities described. The danger of having a more detailed budget is loss
of overview.

The simplification of the design into budgets introduces design constraints.
Simple budgets are entirely static. If such a simplification is too constraining or too

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 17

costly then a dynamic budget can be made. A dynamic budget uses situationally
determined data to describe the budget in that situation. For instance, the amount
of memory used in the system may vary widely depending on the function or the
mode of the system. The budget in such a case can be made mode-dependent.

2.2.6 Example of overlay budget for wafersteppers

process

overlay

80 nm

reticule

15 nm

matched

machine

60 nm

process

dependency

sensor

5 nm

matching

accuracy

5 nm

single

machine

30 nm

lens

matching

25 nm

global

alignment

accuracy

6 nm

stage

overlay

12 nm

stage grid

accuracy

5 nm

system

adjustment

accuracy

2 nm

stage Al.

pos. meas.

accuracy

4 nm

off axis pos.

meas.

accuracy

4nm

metrology

stability

5 nm

alignment

repro

5 nm

position

accuracy

7 nm

frame

stability

2.5 nm

tracking

error phi

75 nrad

tracking

error X, Y

2.5 nm

interferometer

stability

1 nm

blue align

sensor

repro

3 nm

off axis

Sensor

repro

3 nm

tracking

error WS

2 nm

tracking

error RS

1 nm

Figure 2.5: Example of a quantified understanding of overlay in a waferstepper

Figure 2.5 shows a graphical example of an “overlay” budget for a wafer-
stepper. This figure is taken from the System Design Specification of the ASML
TwinScan system, although for confidentiality reasons some minor modifications
have been applied.

The goal of the overlay budget is:

• to provide requirements for subsystems and components.

• to enable measurements of the actual contributions to the overlay during the
design and integration process, on functional models or prototypes.

• to get early feedback of the overlay design by measurements.

The steps taken in the creation, use and validation of the budget follow the
description of Figure 2.4. This budget is based on a model of the overlay function-
ality in the waferstepper (step 1B). The system engineers made an explicit model
of the overlay. This explicit model captures the way in which the contributions
accumulate: quadratic summation for purely stochastic, linear addition for systematic
effects and some weighted addition for mixed effects. The waferstepper budget is
created by measuring the contributions in an existing system (step 1A). At the same
time a top-down budget is made, because the new generation of machines needs

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 18

a much better overlay specification than the old generation (step 1C). In discus-
sions with the subsystem engineers, design alternatives are discussed to achieve
the required improvements (step 2 and 3). The system engineers also strive for
measurable contributions. The measurability of contributions influences the subsystem
specifications. If needed the budget or the design is changed on the basis of this
feedback (step 4).

Two visualizations were used for the overlay budget: tables and graphs, as
shown in Figure 2.5.

The overlay budget plays a crucial role in the development of wafersteppers.
The interaction between the system and the customer environment is taken into
account in the budget. However, many open issues remain at this interface level,
because the customer environment is outside the scope of control and a lot of
customer information is highly confidential. The translation of this system level
budget into mono-disciplinary design decisions is still a completely human activity
with lots of interaction between system engineers and mono-disciplinary engineers.

2.2.7 Example of memory budget for Medical Imaging Workstation

The goal of the memory budget for the medical imaging workstation is to obtain
predictable and acceptable system performance within the resource constraints
dictated by the cost requirements. The steps taken to create the budget follow
the order as described in Figure 2.4. The visualization was table based.

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Figure 2.6: Example of a memory budget

The rationale behind the budget can be used to derive guidelines for the creation
of memory budgets. Figure 2.6 shows an example of an actual memory budget for a
medical imaging workstation from Philips Medical Systems. This budget decom-
poses the memory into three different types of memory use: code (”read only”
memory with the program), object data (all small data allocations for control and

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 19

bookkeeping purposes) and bulk data (large data sets, such as images, which is
explicitly managed to fit the allocated amount and to prevent memory fragmen-
tation). The difference in behavior of these three memory types is an important
reason to separate into different budget entries. The operating system and the
system infrastructure, at the other hand, provide means to measure these three types
at any moment, which helps for the initial definition, for the integration, and for
the verification.

The second decomposition direction is the process. The number of processes
is manageable, since processes are related to specific development teams. Also in
this case the operating system and system infrastructure support measurement at
process level.

The memory budget played a crucial role in the development of this workstation.
The translation of this system level budget into mono-disciplinary design decisions
was, as in the case of overlay in wafersteppers, a purely human activity. The
software discipline likes to abstract away from physical constraints, such as memory
consumption and time. A lot of room for improvement exists at this interface
between system level design and mono-disciplinary design.

2.2.8 Example of power budget visualizations in document handling

Visualizations of a budget can help to share the design issues with a large multi-
disciplinary team. The tables and graphs, as shown in the previous subsections,
and as used in actual practice, contain all the information about the resource use.
However the hot spots are not emphasized. The visualization does not help to see
the contributions in perspective. Some mental activity by the reader of the table or
figure is needed to identify the design issues.

Figure 2.7 shows a visualization where at the top the physical layout is shown
and at the bottom the same layout is used, however the size of all units is scaled
with the allocated power contribution. The bottom visualization shows the power
foot print of the document handler units.

Figure 2.8 shows an alternative power visualization. In this visualization the
energy transformation is shown: incoming electrical power is in different ways
transformed into heat. The width of the arrows is proportional to the amount of
energy. This visualization shows two aspects at the same time: required electrical
power and required heat disposition capacity, two sides of the same coin.

2.2.9 Evolution of budget over time

Figure 2.9 shows a classification for budget types. It will be clear that already with
four different attributes the amount of different types of budgets is large. Every
type of budget might have its own peculiarities that have to be covered by the
method. For instance, worst case budgets need some kind of over-kill prevention.

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 20

paper path

scanner
and feeder

procedé

UI and
control

finisher

paper input
module

power

supplies

s
c
a

n
n

e
r

fe
e

d
e

r

U
I
a

n
d

c
o

n
tr

o
l

cooling
power supplies

paper path

procedé fi
n

is
h

e
r

p
a

p
e

r

in
p

u
t

m
o

d
u

le

size

proportional

to power

physical

layout

legend

cooling

Figure 2.7: Power Budget Visualization for Document Handler

power supplies

cooling

UI and control

paper path

paper input
module

finisher paper

procedé

electrical
power

heat

Figure 2.8: Alternative Power Visualization

Add to these different types the potential different purposes of the budget (design
space exploration, design guidance, design verification, or quality assurance) and
the amount of method variations explodes even more.

We recommend to start with a budget as simple as possible:

• coarse guesstimate values

• typical case

• static, steady state system conditions

• derived from existing systems

This is also shown in Figure 2.10. This figure adds the later evolutionary incre-
ments, such as increased accuracy, more attention for boundary conditions and

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 21

static

 is the budget based on

wish, empirical data, extrapolation,

educated guess, or expectation?

typical case

global

approximate

dynamic

worst case

detailed

accurate

Figure 2.9: What kind of budget is required?

dynamic behavior.

fact finding through details

aggregate to end-to-end performance

search for appropriate abstraction level(s)

from coarse guesstimate

to reliable prediction

from typical case

to boundaries of requirement space

from static understanding

 to dynamic understanding

from steady state

to initialization, state change and shut down

from old system

to prototype

to actual implementation

time

start later only if needed

Figure 2.10: Evolution of Budget over Time

However, some fact finding has to take place before making the budget, where
lots of details can not be avoided. Facts can be detailed technical data (memory
access speed, context switch time) or at customer requirement level (response time
for specific functions). The challenge is to mold these facts into information at
the appropriate abstraction level. Too much detail causes lack of overview and
understanding, too little detail may render the budget unusable.

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 22

2.2.10 Potential applications of budget method

For instance the following list shows potential applications, but this list can be
extended much more. At the same time the question arises whether budget-based
design is really the right submethod for these applications.

• resource use (CPU, memory, disk, bus, network)

• timing (response time, latency, start up, shutdown)

• productivity (throughput, reliability)

• image quality (contrast, signal to noise ratio, deformation, overlay, depth-of-
focus)

• cost, space, time, effort (for instance expressed in lines of code)

2.3 Summary

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution

to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and

measurements

Budgets are based on models and estimations

Budget visualization is critical for communication

Budgeting requires an incremental process

Many types of budgets can be made; start simple!

Figure 2.11: Summary of budget based design

2.4 Acknowledgements

The Boderc project contributed to the budget based design method. Figure 2.12
shows the main contributors.

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 23

The Boderc project contributed to Budget Based

Design. Especially the work of

Hennie Freriks, Peter van den Bosch (Océ),

Heico Sandee and Maurice Heemels (TU/e, ESI)

has been valuable.

Figure 2.12: Colophon

Gerrit Muller
Modeling and Analysis: Budgeting
June 21, 2020 version: 1.0

TNO-ESI, HSN-NISE

page: 24

Bibliography

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 0.4, date: 6 March, 2007 changed by: Gerrit Muller

• updated content slide
• added position slide

Version: 0.3, date: 23 February, 2007 changed by: Gerrit Muller
• added System Model
• changed status to preliminary draft

Version: 0.2, date: 5 January, 2007 changed by: Gerrit Muller
• added budgetting

Version: 0.1, date: 2 January, 2007 changed by: Gerrit Muller
• changed Module title in Modeling and Analysis: System Model
• added presentation System Model
• added light weight simulation presentation

Version: 0, date: 8 December, 2006 changed by: Gerrit Muller
• created module

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

	Modeling and Analysis: System Model
	Introduction
	Stepwise approach to system modeling
	Example system modeling of web shop
	Discussion
	Summary
	Acknowledgements

	Modeling and Analysis: Budgeting
	Introduction
	Budget-Based Design method
	Goal of the method
	Decomposition into smaller steps
	Possible order of steps
	Visualization
	Guidelines
	Example of overlay budget for wafersteppers
	Example of memory budget for Medical Imaging Workstation
	Example of power budget visualizations in document handling
	Evolution of budget over time
	Potential applications of budget method

	Summary
	Acknowledgements

