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Chapter 1

Introduction to System
Performance Design

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

1.1 Introduction

This article discusses a typical example of a performance problem during the creation
of an additional function in an existing system context. We will use this example
to formulate a problem statement. The problem statement is then used to identify
ingredients to address the problem.

1.2 What if ...

Let’s assume that the application asks for the display of 3 ·3 images to be displayed
“instanteneously”. The author of the requirements specification wants to sharpen
this specification and asks for the expected performance of feasible solutions. For
this purpose we assume a solution, for instance an image retrieval function with
code that looks like the code in Figure 1.1. How do we predict or estimate the
expected performance based on this code fragment?

If we want to estimate the performance we have to know what happens in the
system in the retrieve_image function. We may have a simple system, as shown in



Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images 

instanteneous
design

design

or

Figure 1.1: Image Retrieval Performance

Figure 1.2, where the retrieve_image function is part of a user interface process.
This process reads image data directly form the hard disk based store and renders
the image directly to the screen. Based on these assumptions we can estimate
the performance. This estimation will be based on the disk transfer rate and the
rendering rate.

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Figure 1.2: Straight Forward Read and Display

However, the system might be slightly more complex, as shown in Figure 1.3.
Instead of one process we now have multiple processes involved: database, user
interface process and screen server. Process communication becomes an additional
contribution to the time needed for the image retrieval. If the process communi-
cation is image based (every call to retrieve_image triggers a database access and a
transfer to the screen server) then 2 · 9 process communications takes place. Every
process communication costs time due to overhead as well as due to copying image
data from one process context to another process context. Also the database access
will contribute to the total time. Database queries cost a significant amount of time.

The actual performance might be further negatively impacted by the overhead
costs of the meta-information. Meta-information is the describing information of
the image, typically tens to hundreds of attributes. The amount of data of meta-
information, measured in bytes, is normally orders of magnitude smaller than the
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 1.3: More Process Communication

amount of pixel data. The initial estimation ignores the cost of meta-information,
because the of amount of data is insignificant. However, the chosen implemen-
tation does have a significant impact on the cost of meta-information handling.
Figure 1.4 shows an example where the attributes of the meta-information are inter-
nally mapped on COM objects. The implementation causes a complete “factory”
construction for every attribute that is retrieved. The cost of such a construction
is 80µsec. With 100 attributes per image we get a total construction overhead of
9 · 100 cdot80µs = 72ms. This cost is significant, because it is in the same order
of magnitude as image transfer and rendering operations.

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta
------

---------

--------

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 1.4: Meta Information Realization Overhead

Figure 1.5 shows I/O overhead as a last example of potential hidden costs. If
the granularity of I/O transfers is rather fine, for instance based on image lines, then
the I/O overhead becomes very significant. If we assume that images are 5122, and
if we assume tI/O = 1ms, then the total overhead becomes 9 · 512 · 1ms ≈ 4.5s!
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Figure 1.5: I/O overhead

1.3 Problem Statement

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Figure 1.6: Non Functional Requirements Require System View

In the previous section we have shown that the performance of a new function
cannot directly be derived from the code fragment belonging to this function. The
performance depends on many design and implementation choices in the SW layers
that are used. Figure 1.6 shows the conclusions based on the previous What if
examples.

Figure 1.7 shows the factors outside our new function that have impact on the
overall performance. All the layers used directly or indirectly by the function have
impact, ranging from the hardware itself, up to middleware providing services. But
also the neighboring functions that have no direct relation with our new function
have impact on our function. Finally the environment including the user have
impact on the performance.

Figure1.8 formulates a problem statement in terms of a challenge: How to
understand the performance of a function as a function of underlying layers and
surrounding functions expressed in a manageable number of parameters? Where
the size and complexity of underlying layers and neighboring functions is large
(tens, hundreds or even thousands man-years of software).
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Figure 1.7: Function in System Context
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MW, OS, HW >> 100 Manyear : very complex

Challenge: How to understand MW, OS, HW

with only a few parameters

Figure 1.8: Challenge

1.4 Summary

We have worked through a simple example of a new application level function.
The performance of this function cannot be predicted by looking at the code of the
function itself. The underlying platform, neighboring applications and user context
all have impact on the performance of this new function. The underlying platform,
neighboring applications and user context are often large and very complex. We
propose to use models to cope with this complexity.

1.5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. Most of the material is based on material from the EXARCH course created
by Ton Kostelijk and Gerrit Muller.
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Summary of Introduction to Problem

Resulting System Characteristics cannot be deduced from local code.

Underlying platform, neighboring applications and user context:

have a big impact on system characteristics

are big and complex

Models require decomposition, relations and representations to analyse.

Figure 1.9: Summary of Problem Introduction
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Chapter 2

Modeling and Analysis
Fundamentals of Technology

ra
n
d
o
m

 d
a
ta

 p
ro

c
e
s
s
in

g

p
e

rf
o

rm
a

n
c
e

 in
 o

p
s
/s

data set size
in bytes

10
3

10
6

10
9

10
12

10
15

L1

cache

L3

cache

main

memory

hard

disk

disk

farm

robotized

media

10
9

10
3

10
6

2.1 Introduction

Figure 2.1 provides an overview of the content. In this article we discuss generic
know how of computing technology. We will start with a commonly used decom-
position and layering. We provide figures of merit for several generic computing
functions, such as storage and communication. Finally we discuss caching as
example of a technology that is related to storage figures of merit. We will apply
the caching in a web shop example, and discuss design considerations.

content of this presentation

generic layering and block diagrams

typical characteristics and concerns

figures of merit

example of picture caching in web shop application 

Figure 2.1: Overview Content Fundamentals of Technology



When we model technology oriented design questions we often need feasi-
bility answers that are assessed at the level of non functional system requirements.
Figure 2.2 shows a set of potential technology questions and the required answers
at system level.

working range

dependencies

realization variability

scalability

required analysis :

How do parameters result in NFR's?

relevant non functional 

requirements

parameters in design 

space

system

design

latency
time from start

to finish

throughput
amount of information per time

transferred or processed

footprint (size)
amount of data&code

stored

message format
(e.g. XML)

network medium
(e.g. ethernet, ISDN)

communication protocol
(e.g. HTTPS, TCP)

Figure 2.2: What do We Need to Analyze?

From design point of view we need, for example, information about the working
range, dependencies, variability of the actual realization, or scalability.

2.2 Computing Technology Figures of Merit

In information and communication systems we can distinguish the following generic
technology functions:

storage ranging from short term volatile storage to long term persistent storage.
Storage technologies range from solid state static memories to optical disks
or tapes.

communication between components, subsystems and systems. Technologies
range from local interconnects and busses to distributed networks.

processing of data, ranging from simple control, to presentation to compute intensive
operations such as 3D rendering or data mining. Technologies range from
general purpose CPUs to dedicated I/O or graphics processors.

presentation to human beings, the final interaction point with the human users.
Technologies range from small mobile display devices to large “cockpit”
like control rooms with many flat panel displays.

Figure 2.3 shows these four generic technologies in the typical layering of
a Service Oriented Architecture (SOA). In such an architecture the repositories,
the bottom-tier of this figure, are decoupled from the business logic that is being
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data 

base

server

web 

server

client client

network

network

client

screen screen screen

presentation

computation

communication

storage

legend

Figure 2.3: Typical Block Diagram and Typical Resources

handled in the middle layer, called web server. The client tier is the access and
interaction layer, which can be highly distributed and heterogeneous.

The four generic technologies are recursively present: within a web-server, for
example, communication, storage and processing are present. If we would zoom
in further on the CPU itself, then we would again see the same technologies.

fast

volatile

archival

persistent

robotized

optical media

tape

disks

disk arrays

disk farms

main memory

processor cache

L1 cache

L2 cache

L3 cache

sub ns

ns

n kB

n MB

la
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nc
y

ca
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ci
ty

tens ns n GB

n*100 GB

n*10 TB

n PB

ms

>s

Figure 2.4: Hierarchy of Storage Technology Figures of Merit

For every generic technology we can provide figures of merit for several charac-
teristics. Figure 2.4 shows a table with different storage technologies. The table
provides typical data for latency and storage capacity. Very fast storage technologies
tend to have a small capacity. For example, L1 caches, static memory as part of
the CPU chip, run typically at processor speeds of several GHz, but their capacity
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is limited to several kilobytes. The much higher capacity main memory, solid state
dynamic RAM, is much slower, but provides Gigabytes of memory. Non solid
state memories use block access: data is transferred in chunks of many kilobytes.
The consequence is that the access time for a single byte of information gets much
longer, milliseconds for hard disks. When mechanical constructions are needed
to transport physical media, such as robot arms for optical media, then the access
time gets dominated by the physical transport times.
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Figure 2.5: Performance as Function of Data Set Size

Figure 2.5 shows the same storage figures of merit in a 2-dimensional graph.
The horizontal axis shows the capacity or the maximum data set size that we can
store. The vertical axis shows the latency if we axis a single byte of information
in the data set in a random order. Note that both axes are shown as a logarithmic
scale, both axes cover a dynamic range of many orders of magnitude! The resulting
graph shows a rather non-linear behavior with step-like transitions. We can access
data very fast up to several kilobytes; the access time increases significantly when
we exceed the L1 cache capacity. This effect repeats itself for every technology
transition.

The communication figures of merit are shown in the same way in Figure 2.6.
In this table we show latency, frequency and distance as critical characteristics.
The latency and the distance have a similar relationship as latency and capacity
for storage: longer distance capabilities result in longer latencies. The frequency
behavior, which relates directly to the transfer capacity, is different. On chip very
high frequencies can be realized. Off chip and on the printed circuit board these
high frequencies are much more difficult and costly. When we go to the long-
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Figure 2.6: Communication Technology Figures of Merit

distance networks optical technologies are being used, with very high frequencies.

2.3 Caching in Web Shop Example

back

office

server

mid 

office 

server

client client

network

network

client

screen screen screen

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

100 ms

10 ms

1 s

100 ns

1 ms

cache 

miss 

penalty

1 ms

10 µs

10 ms

1 ns

100 ns

cache hit 
performance

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory
typical cache 2 orders

of magnitude faster

Figure 2.7: Multiple Layers of Caching

The speed differences in storage and communication often result in the use of a
cache design pattern. The cache is a local fast storage, where frequently used data
is stored to prevent repeated slow accesses to slow storage media. Figure 2.7 shows
that this caching pattern is applied at many levels within a system, for example:

network layer cache to avoid network latencies for distributed data. Many commu-
nication protocol stacks, such as http, have local caches.

file cache as part of the operating system. The file cache caches the stored data
itself as well as directory information in main memory to speed up many file
operations.
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application cache application programs have dedicated caches based on appli-
cation know how.

L1, L2, L3 memory caches A multi-level cache to bridge the speed gap between
on-chip speed and off chip dynamic memory.

virtual memory where the physical main memory is cache for the much slower
virtual memory that resides mostly on the hard disk.

Note that in the 3-tier SLA approach these caches are present in most of the tiers.

project risk

performance

response time

life cycle

cost

latency penalty once

overhead once

processing once

limit storage needs to fit

in fast local storage

low latency

low latency

less communication

design parameters

caching algorithm

storage location

cache size

chunk size

format

in (pre)processed format

larger chunks

local storage

fast storage

frequently used subset
long latency

mass storage

resource intensive

processing

overhead

communication

long latency

communication

Figure 2.8: Why Caching?

In Figure 2.8 we analyze the introduction of caches somewhat more. At the left
hand side we show that long latencies of storage and communication, communi-
cation overhead, and resource intensive processing are the main reasons to introduce
caching. In the background the project needs for performance and cost are seen as
driving factors. Potential performance problems could also be solved by over-
dimensioning, however this might conflict with the cost constraints on the project.

The design translates these performance reasons into a number of design choices:

frequently used subset enable the implementation to store this subset in the low
capacity, but faster type of memory.

fast storage relates immediately to low latency of the storage itself

local storage gives low latency for the communication with the storage (sub)system

larger chunks reduces the number of times that storage or communication latency
occurs and reduces the overhead.

cache in (pre)processed format to reduce processing latency and overhead

These design choices again translate in a number of design parameters:

• caching algorithm
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• storage location

• cache size

• chunk size

• format
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client client

network

network

client

screen screen screen
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ERP

customer 

relations
financial
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consumer

browse products

order

pay

track

customer relation

management

update catalogue

advertize

after sales support

enterprise

logistics

finance

product management

customer managment

Figure 2.9: Example Web Shop

As an example of caching we look at a web shop, as shown in Figure 2.9.
Customers at client level should be able to browse the product catalogue, to order
products, to pay, and to track the progress of the order. Other stakeholders at
client level have logistics functions, financial functions, and can do product and
customer management. The web server layer provides the logic for the exhibition
of products, the sales and order intake, the order handling, the stock handling, and
the financial bookkeeping. Also at the web server layer is the logic for customer
relation management, the update of the product catalogue, the advertisements, and
the after sales support. The data base layer has repositories for product descrip-
tions, logistics and resource planning, customer relations, and financial information.

We will zoom in on the product browsing by the customers. During this
browsing customers can see pictures of the products in the catalogue. The originals
of these pictures reside in the product catalogue repository in the data base layer.
The web server determines when and how to show products for customers. The
actual pictures are shown to many customers, who are distributed widely over the
country.

The customers expect a fast response when browsing. Slow response may
result in loss of customer attention and hence may cause a reduced sales. A picture
cache at the web server level decreases the load at web server level, and at the same
time improves the response time for customer browsing. It also reduces the server
load of the data base.
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Figure 2.10: Impact of Picture Cache
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Figure 2.11: Risks of Caching

So far, the caching appears to be a no-brainer: improved response, reduces
server loads, what more do we want? However, Figure 2.11 shows the potential
risks of caching, caused mostly by increased complexity and decreased trans-
parency. These risks are:

• The robustness for application changes may decrease, because the assump-
tions are not true anymore.

• The design becomes specific for this technology, impacting the ability to
benefit from technology improvements.

• The robustness for changing context (e.g. scalability) is reduced

• The design is not robust for concurrent applications
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• Failure modes in exceptional user space may occur

All of these technical risks translate in project risks in terms of cost, effort and
performance.

Gerrit Muller
Modeling and Analysis Fundamentals of Technology
March 6, 2021 version: 0.5

University of South-Eastern Norway-NISE

page: 15



2.4 Summary

Conclusions

Technology characteristics can be discontinuous

Caches are an example to work around discontinuities

Caches introduce complexity and decrease transparancy

Techniques, Models, Heuristics of this module

Generic block diagram: Presentation, Computation, 

Communication and Storage

Figures of merit

Local reasoning (e.g. cache example)

Figure 2.12: Summary

Figure 2.12 shows a summary of this paper. We showed a generic block
diagram with Presentation, Computation, Communication and Storage as generic
computing technologies. Technology characteristics of these generic technologies
have discontiuous characteristics. At the transition from one type of technology
to another type of technology a steep transition of characteristics takes place. We
have provided figures of merit for several technologies. Caches are an example
to work around these discontinuities. However, caches introduce complexity and
decrease the transparancy of the design. We have applied local reasoning graphs
to discuss the reasons of introduction of caches and the related design parameters.
later we applied the same type of graph to discuss potential risks caused by the
increased complexity and decreased transparancy.
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Chapter 3

Modeling and Analysis:
Measuring

measured 
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noise resolution

value

measurement

error
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rather than a single value

-ε2

+ε1
-ε2

measurement 

instrument

system 

under study

3.1 introduction

Measurements are used to calibrate and to validate models. Measuring is a specific
knowledge area and skill set. Some educations, such as Physics, extensively teach
experimentation. Unfortunately, the curriculum of studies such as software engineering
and computer sciences has abstracted away from this aspect. In this paper we will
address the fundamentals of modeling.

Figure 3.1 shows the content of this paper. The crucial aspects of measuring
are integrated into a measuring approach, see the next section.



content

What and How to measure

Impact of experiment and context on measurement

Validation of results, a.o. by comparing with expectation

Consolidation of measurement data

Analysis of variation and analysis of credibility

Figure 3.1: Presentation Content
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3.2 Measuring Approach

how

what

1. What do we need to know?

2. Define quantity to be measured.

4A. Define the measurement circumstances fe.g. by use cases

3. Define required accuracy

5. Determine actual accuracy

4C. Define measurement set-up

4B. Determine expectation

6. Start measuring

7. Perform sanity check expectation versus actual outcome

uncertainties, measurement error

historic data or estimation

initial model

purpose

it
e

ra
te

Figure 3.2: Measuring Approach: What and How

The measurement approach starts with preparation and fact finding and ends
with measurement and sanity check. Figure 3.2 shows all steps and emphasizes the
need for iteration over these steps.

1. What do we need? What is the problem to be addressed, so what do we need
to know?

2. Define quantity to be measured Articulate as sharp as possible what quantity
needs to be measured. Often we need to create a mental model to define this
quantity.

3. Define required accuracy The required accuracy is based on the problem to be
addressed and the purpose of the measurement.

4A. Define the measurement circumstances The system context, for instance the
amount of concurrent jobs, has a big impact on the result. This is a further
elaboration of step 1 What do we need?.

4B. Determine expectation The experimentator needs to have an expectation of
the quantity to be emasured to design the experiment and to be able to assess
the outcome.

4C. Define measurement set-up The actual design of the experiment, from input
stimuli, measurement equipment to outputs.

Note that the steps 4A, 4B and 4C mutually influence each other.
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5. Determine actual accuracy When the set-up is known, then the potential measurement
errors and uncertainties can be analyzed and accumulated into a total actual
accuracy.

6. Start measuring Perform the experiment. In practice this step has to be repated
many times to “debug” the experiment.

7. Perform sanity check Does the measurement result makes sense? Is the result
close to the expectation?

In the next subsections we will elaborate this approach further and illustrate
the approach by measuring a typical embedded controller platform: ARM9 and
VxWorks.

3.2.1 What do we need?

The first question is: “What is the problem to be addressed, so what do we need to
know?” Figure 3.3 provides an example. The problem is the need for guidance for
concurrency design and task granularity. Based on experience the designers know
that these aspects tend to go wrong. The effect of poor concurrency design and
task granularity is poor performance or outrageous resource consumption.

(computing) hardware

operating system

ARM 9

200 MHz CPU

100 MHz bus

VxWorks

test program

What:

context switch time of

VxWorks running on ARM9

estimation of total lost CPU 

time due to

context switching

guidance of

concurrency design and 

task granularity

Figure 3.3: What do We Need? Example Context Switching

The designers know, also based on experience, that context switching is costly
and critical. They have a need to estimate the total amount of CPU time lost due to
context switching. One of the inputs needed for this estimation is the cost in CPU
time of a single context switch. This cost is a function of the hardware platform,
the operating system and the circumstances. The example in Figure 3.3 is based on
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the following hardware: ARM9 CPU running internally at 200 MHz and externally
at 100 MHz. The operating system is VxWorks. VxWorks is a real-time executive
frequently used in embedded systems.

3.2.2 Define quantity to be measured.

What (original):

context switch time of

VxWorks running on ARM9

tp2tp1, before tscheduler

Process 1

Process 2

Scheduler

What (more explicit):

The amount of lost CPU time,

due to context switching on

VxWorks running on ARM9

on a heavy loaded CPU

tschedulertcontext switch = tp1, loss+

tscheduler tp1, after

tp1, no switching

tp1,losstp2,loss

p2 pre-empts p1 p1 resumes

= lost CPU time

legend

time

Figure 3.4: Define Quantity by Initial Model

As need we have defined the CPU cost of context switching. Before setting up
measurements we have to explore the required quantity some more so that we can
define the quantity more explicit. In the previous subsection we already mentioned
shortly that the context switching time depends on the circumstances. The a priori
knowledge of the designer is that context switching is especially significant in busy
systems. Lots of activities are running concurrently, with different periods and
priorities.

Figure 3.4 defines the quantity to be measured as the total cost of context
switching. This total cost is not only the overhead cost of the context switch itself
and the related administration, but also the negative impact on the cache perfor-
mance. In this case the a priori knowledge of the designer is that a context switch
causes additional cache loads (and hence also cache pollution). This cache effect
is the term tp1,loss in Figure 3.4. Note that these effects are not present in a lightly
loaded system that may completely run from cache.
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estimation of total 

lost CPU time 

due to

context switching

guidance of

concurrency 

design and task 

granularity
cost of context 

switch
depends on OS and HW

number of 

context switches
depends on application

purpose drives required accuracy

~10%

Figure 3.5: Define Required Accuracy

3.2.3 Define required accuracy

The required accuracy of the measurement is determined by the need we originally
formulated. In this example the need is the ability to estimate the total lost CPU
time due to context switching. The key word here is estimate. Estimations don’t
require the highest accuracy, we are more interested in the order of magnitude. If
we can estimate the CPU time with an accuracy of tens of percents, then we have
useful facts for further analysis of for instance task granularity.

CPU
HW 

Timer

I/O

 

Logic analyzer / 
Oscilloscope

High resolution ( ~ 10 ns)

Cope with limitations:

- Duration (16 / 32 bit

  counter)

- Requires Timer Access

High resolution ( ~ 10 ns)

requires 

HW instrumentation
OS-

Timer

OS

Low resolution ( ~ µs - ms)

Easy access

Lot of instrumentation

Figure 3.6: How to Measure CPU Time?

The relevance of the required accuracy is shown by looking at available measurement
instruments. Figure 3.6 shows a few alternatives for measuring time on this type
of platforms. The most easy variants use the instrumentation provided by the
operating system. Unfortunately, the accuracy of the operating system timing is
often very limited. Large operating systems, such as Windows and Linux, often
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provide 50 to 100 Hz timers. The timing resolution is then 10 to 20 milliseconds.
More dedicated OS-timer services may provide a resolution of several microseconds.
Hardware assisted measurements make use of hardware timers or logic analyzers.
This hardware support increases the resolution to tens of nanoseconds.

3.2.4 Define the measurement circumstances

experimental set-up

tp2tp1, before tscheduler tscheduler tp1, aftertp1,losstp2,loss

p2 pre-empts p1
p1 resumes

= lost CPU time

P1 P2

real world

many concurrent processes, with

# instructions >> I-cache

# data >> D-cache

pre-
empts

causes

ca
ch

e 
flu

sh

no other

CPU activities

Mimick relevant real world characteristics

Figure 3.7: Define the Measurement Set-up

We have defined that we need to know the context switching time under heavy
load conditions. In the final application heavy load means that we have lots of
cache activity from both instruction and data activities. When a context switch
occurs the most likely effect is that the process to be run is not in the cache. We
lose time to get the process back in cache.

Figure 3.7 shows that we are going to mimick this cache behavior by flushing
the cache in the small test processes. The overall set-up is that we create two small
processes that alternate running: Process P2 pre-empts process P1 over and over.

3.2.5 Determine expectation

Determining the expected outcome of the measurement is rather challenging. We
need to create a simple model of the context switch running on this platform.
Figures 3.8 and 3.9 provide a simple hardware model. Figure 3.10 provides a
simple software model. The hardware and software models are combined in Figure 3.11.
After substitution with assumed numbers we get a number for the expected outcome,
see Figure3.12.
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PCB
chip

CPU

Instruction

cache

Data

cache

memory
on-chip 

bus

cache line size:

8  32-bit words

memory 

bus

200 MHz 100 MHz

Figure 3.8: Case: ARM9 Hardware Block Diagram

Figure 3.8 shows the hardware block diagram of the ARM9. A typical chip
based on the ARM9 architecture has anno 2006 a clock-speed of 200 MHz. The
memory is off-chip standard DRAM. The CPU chip has on-chip cache memories
for instruction and data, because of the long latencies of the off-chip memory
access. The memory bus is often slower than the CPU speed, anno 2006 typically
100 MHz.
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request w
o

rd
 1

w
o

rd
 7

w
o

rd
 4

w
o

rd
 3

w
o

rd
 2

w
o

rd
 8

w
o

rd
 6

w
o

rd
 5

38 cycles

memory access time in case of a cache miss

200 Mhz, 5 ns cycle: 190 ns

data

memory

response

22 cycles

Figure 3.9: Key Hardware Performance Aspect

Figure 3.9 shows more detailed timing of the memory accesses. After 22
CPU cycles the memory responds with the first word of a memory read request.
Normally an entire cache line is read, consisting of 8 32-bit words. Every word
takes 2 CPU cycles = 1 bus cycle. So after 22+ 8 ∗ 2 = 38 cycles the cache-line is
loaded in the CPU.

Figure 3.10 shows the fundamental scheduling concepts in operating systems.
For context switching the most relevant process states are ready, running and
waiting. A context switch results in state changes of two processes and hence
in scheduling and administration overhead for these two processes.

Figure 3.11 elaborates the software part of context switching in five contributing
activities:

• save state P1
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New

Running

Waiting

Ready

Terminated

interrupt

create

exit

Scheduler

dispatch

IO or event

completion 

Wait

(I/O / event)

Figure 3.10: OS Process Scheduling Concepts

input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch

Figure 3.11: Determine Expectation

• determine next runnable task

• update scheduler administration

• load state P2

• run P2

The cost of these 5 operations depend mostly on 2 hardware depending parameters:
the numbers of instruction needed for each activity and the amount of memory
accesses per activity. From the hardware models, Figure 3.9, we know that as
simplest approximation gives us an instruction time of 5ns (= 1 cycle at 200 MHz)
and memory accesses of 190ns. Combining all this data together allows us to
estimate the context switch time.

In Figure 3.12 we have substituted estimated number of instructions and memory
accesses for the 5 operations. The assumption is that very simple operations require
10 instructions, while the somewhat more complicated scheduling operation requires
scanning some data structure, assumed to take 50 cycles here. The estimation is
now reduced to a simple set of multipications and additions: (10 + 50 + 20 +

Gerrit Muller
Modeling and Analysis: Measuring
March 6, 2021 version: 1.2

University of South-Eastern Norway-SE

page: 25



input data HW:

tARM instruction = 5 ns

tmemory access = 190 ns

simple SW model of context switch:

save state P1

determine next runnable task

update scheduler administration

load state P2

run P2

Estimate how many

instructions and memory accesses

are needed per context switch

Calculate the estimated time

needed per context switch
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1640 ns

tcontext switch = 2 µsround up (as margin) gives expected 

Figure 3.12: Determine Expectation Quantified

10 + 10)instructions · 5ns + (1 + 2 + 1 + 1 + 1)memoryaccesses · 190ns
= 500ns(instructions) + 1140ns(memoryaccesses) = 1640ns To add some
margin for unknown activities we round this value to 2µs.

3.2.6 Define measurement set-up

Task 2Task 1

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch
Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch Time Stamp End

Cache Flush

Time Stamp Begin

Context Switch

Figure 3.13: Code to Measure Context Switch

Figure 3.13 shows pseudo code to create two alternating processes. In this code
time stamps are generated just before and after the context switch. In the process
itself a cache flush is forced to mimick the loaded situation.

Figure 3.14 shows the CPU use as function of time for the two processes and
the scheduler.
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Figure 3.14: Measuring Context Switch Time

3.2.7 Expectation revisited

Once we have defined the measurement set-up we can again reason more about
the expected outcome. Figure 3.15 is again the CPU activity as function of time.
However, at the vertical axis the CPI (Clock cycles Per Instruction) is shown. The
CPI is an indicator showing the effectiveness of the cache. If the CPI is close to 1,
then the cache is rather effective. In this case little or no main memory acceses are
needed, so the CPU does not have to wait for the memory. When the CPU has to
wait for memory, then the CPI gets higher. This increase is caused by the waiting
cycles necessary for the main memory accesses.

Figure 3.15 clearly shows that every change from the execution flow increases
(worsens) the CPI. So the CPU is slowed down when entering the scheduler. The
CPI decreases while the scheduler is executing, because code and data gets more
and more from cache instead of main memory. When Process 2 is activitated the
CPI again worsens and then starts to improve again. This pattern repeats itself for
every discontinuity of the program flow. In other words we see this effect twice
for one context switch. One interruption of P1 by P2 causes two context swicthes
and hence four dips of the cache performance.

3.2.8 Determine actual accuracy

Measurement results are in principle a range instead of a single value. The signal to
be measured contains some noise and may have some offset. Also the measurement
instrument may add some noise and offset. Note that this is not limited to the
analog world. For instance concurrent background activities may cause noise as
well as offsets, when using bigger operating systems such as Windows or Linux.
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Figure 3.15: Understanding: Impact of Context Switch

The (limited) resolution of the instrument also causes a measurement error. Known
systematic effects, such as a constant delay due to background processes, can be
removed by calibration. Such a calibration itself causes a new, hopefully smaller,
contribution to the measurement error.

Note that contributions to the measurement error can be stochatic, such as
noise, or systematic, such as offsets. Error accumulation works differently for
stochatic or systematic contributions: stochatic errors can be accumulated quadratic
εtotal =

√
ε21 + ε22, while systematic errors are accumulated linear εtotal = ε1+ε2.

Figure 3.17 shows the effect of error propagation. Special attention should
be paid to substraction of measurement results, because the values are substracted
while the errors are added. If we do a single measurement, as shown earlier in
Figure 3.13, then we get both a start and end value with a measurement error.
Substracting these values adds the errors. In Figure 3.17 the provided values result
in tduration = 4 + / − 4µs. In other words when substracted values are close to
zero then the error can become very large in relative terms.

The whole notion of measurement values and error ranges is more general than
the measurement sec. Especially models also work with ranges, rather than single
values. Input values to the models have uncertainties, errors et cetera that propagate
through the model. The way of propagation depends also on the nature of the error:
stochastic or systematic. This insight is captured in Figure 3.18.
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Figure 3.16: Accuracy: Measurement Error

tduration =  tend -  tstart

tend

tstart = 10 +/- 2 µs

= 14 +/- 2 µs

tduration =  4 +/-   ? µs

systematic errors: add linear

stochastic errors: add quadratic

Figure 3.17: Accuracy 2: Be Aware of Error Propagation

3.2.9 Start measuring

At OS level a micro-benchmark was performed to determine the context switch
time of a real-time executive on this hardware platform. The measurement results
are shown in Figure 3.19. The measurements were done under different condi-
tions. The most optimal time is obtained by simply triggering continuous context
switches, without any other activity taking place. The effect is that the context
switch runs entirely from cache, resulting in a 2µs context switch time. Unfortu-
nately, this is a highly misleading number, because in most real-world applications
many activities are running on a CPU. The interrupting context switch pollutes
the cache, which slows down the context switch itself, but it also slows down the
interrupted activity. This effect can be simulated by forcing a cache flush in the
context switch. The performance of the context switch with cache flush degrades
to 10µs. For comparison the measurement is also repeated with a disabled cache,
which decreases the context switch even more to 50µs. These measurements show
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Figure 3.18: Intermezzo Modeling Accuracy

ARM9  200 MHz 

as function of cache use

From cache 2 µs

After cache flush 10 µs

Cache disabled 50 µs

cache setting tcontext switch

tcontext switch

Figure 3.19: Actual ARM Figures

the importance of the cache for the CPU load. In cache unfriendly situations (a
cache flushed context switch) the CPU performance is still a factor 5 better than in
the situation with a disabled cache. One reason of this improvement is the locality
of instructions. For 8 consecutive instructions ”only” 38 cycles are needed to load
these 8 words. In case of a disabled cache 8 ∗ (22+2 ∗ 1) = 192 cycles are needed
to load the same 8 words.

We did estimate 2µs for the context switch time, however already taking into
account negative cache effects. The expectation is a factor 5 more optimistics than
the measurement. In practice expectations from scratch often deviate a factor from
reality, depending on the degree of optimism or conservatism of the estimator. The
challenging question is: Do we trust the measurement? If we can provide a credible
explanation of the difference, then the credibility of the measurement increases.

In Figure 3.20 some potential missing contributions in the original estimate are
presented. The original estimate assumes single cycle instruction fetches, which
is not true if the instruction code is not in the instruction cache. The Memory
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However, measurement seems to make sense

Figure 3.20: Expectation versus Measurement

Management Unit (MMU) might be part of the process context, causing more state
information to be saved and restored. Often may small management activities take
place in the kernel. For example, the process model might be more complex than
assumed, with process hierarchy and permissions. May be hierarchy or permis-
sions are accessed for some reasons, may be some additional state information is
saved and restored. Bookkeeping information, for example performance counters,
can be maintained. If these activities are decomposed in layers and components,
then additional function calls and related stack handling for parameter transfers
takes place. Note that all these activities can be present as combination. This
combination not only cummulates, but might also multiply.

toverhead ncontext switch tcontext switch*=

ncontext switch 
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Figure 3.21: Context Switch Overhead
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Figure 3.21 integrates the amount of context switching time over time. This
figure shows the impact of context switches on system performance for different
context switch rates. Both parameters tcontextswitch and ncontextswitch can easily
be measured and are quite indicative for system performance and overhead induced
by design choices. The table shows that for the realistic number of tcontextswitch =
10µs the number of context switches can be ignored with 500 context switches per
second, it becomes significant for a rate of 5000 per second, while 50000 context
switches per second consumes half of the available CPU power. A design based
on the too optimistic tcontextswitch = 2µs would assess 50000 context switches as
significant, but not yet problematic.

3.2.10 Perform sanity check

In the previous subsection the actual measurement result of a single context switch
including cache flush was 10µs. Our expected result was in the order of magnitude
of 2µs. The difference is significant, but the order of magnitude is comparable.
In geenral this means that we do not completely understand our system nor our
measurement. The value is usable, but we should be alert on the fact that our
measurement still introduces some additional systematic time. Or the operating
system might do more than we are aware of.

One approach that can be taken is to do a completely different measurement
and estimation. For instance by measuring the idle time, the remaining CPU time
that is avaliable after we have done the real work plus the overhead activities. If we
also can measure the time needed for the real work, then we have a different way
to estimate th overhead, but now averaged over a longer period.

3.2.11 Summary of measuring Context Switch time on ARM9

We have shown in this example that the goal of measurement of the ARM9 VxWorks
combination was to provide guidance for concurrency design and task granularity.
For that purpose we need an estimation of context switching overhead.

We provided examples of measurement, where we needed context switch overhead
of about 10% accuracy. For this measurement the instrumentation used toggling of
a HW pin in combination with small SW test program. We also provided simple
models of HW and SW layers to be able to determine an expectation. Finally we
found as measurement results for context switching on ARM9 a value of 10µs.
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3.3 Summary

Figure 3.22 summarizes the measurement approach and insights.

Conclusions

Measurements are an important source of factual data.

A measurement requires a well-designed experiment.

Measurement error, validation of the result determine the credibility.

Lots of consolidated data must be reduced to essential 

understanding.

Techniques, Models, Heuristics of this module

experimentation

error analysis

estimating expectations

Figure 3.22: Summary Measuring Approach

Gerrit Muller
Modeling and Analysis: Measuring
March 6, 2021 version: 1.2

University of South-Eastern Norway-SE

page: 33



3.4 Acknowledgements

This work is derived from the EXARCH course at CTT developed by Ton Kostelijk
(Philips) and Gerrit Muller. The Boderc project contributed to the measurement
approach. Especially the work of Peter van den Bosch (Océ), Oana Florescu
(TU/e), and Marcel Verhoef (Chess) has been valuable. Teun Hendriks provided
feedback, based on teaching the Architecting System Performance course.

Gerrit Muller
Modeling and Analysis: Measuring
March 6, 2021 version: 1.2

University of South-Eastern Norway-SE

page: 34



Bibliography

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 0.6, date: 6 March, 2007 changed by: Gerrit Muller

• added position slide
Version: 0.5, date: 23 February, 2007 changed by: Gerrit Muller

• added Fundamentals of Technology
Version: 0.4, date: 11 January, 2007 changed by: Gerrit Muller

• added intermezzo sheet why MA?
Version: 0.3, date: 5 January, 2007 changed by: Gerrit Muller

• removed budgeting
Version: 0.2, date: 4 January, 2007 changed by: Gerrit Muller

• changed the title from "Fundamentals of Technology" into "Inputs and Uncertainties"
Version: 0.1, date: 5 December, 2006 changed by: Gerrit Muller

• created reader
Version: 0, date: 7 November, 2006 changed by: Gerrit Muller

• created module

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

	Introduction to System Performance Design
	Introduction
	What if ...
	Problem Statement
	Summary
	Acknowledgements

	Modeling and Analysis Fundamentals of Technology
	Introduction
	Computing Technology Figures of Merit
	Caching in Web Shop Example
	Summary

	Modeling and Analysis: Measuring
	introduction
	Measuring Approach
	What do we need?
	Define quantity to be measured.
	Define required accuracy
	Define the measurement circumstances
	Determine expectation
	Define measurement set-up
	Expectation revisited
	Determine actual accuracy
	Start measuring
	Perform sanity check
	Summary of measuring Context Switch time on ARM9

	Summary
	Acknowledgements


