Module Modeling and Analysis: Application and Life Cycle Modeling

by Gerrit Muller HSN-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module addresses Modeling and Analysis Fundamentals of Application.

March 27, 2021 status: planned version: 0.3

Module Content

goal of this module

Tangible understanding of the customer enterprise and life cycle aspects

Provide useful views on customer application

Simplify and demystify customer concerns

content of this module

Example financial computations

views on customer application:

stakeholders and concerns

simple cost models

simple life cycle models

exercise

Make context and application models

Where are we in the Course?

Modeling and Analysis: Application Models

University of South-Eastern Norway-NISE by Gerrit Muller

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The enterprise and its application is a complex system in itself. Specification and design decisions can have a significant impact on this system. We show a number of relevant application models with the purpose to be able to reason about specification and design in relation to the impact on the enterprise.

Distribution

and unchanged.

This article or presentation is written as part of the Gaudí project. The Gaudí project

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an

open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete March 27, 2021 status: planned version: 0.1

logo

TBD

Understanding Usage and Life Cycle Context

High Level Visual Models

- + value chain
- + map of competitors, partners, suppliers
- + context diagram
- + stakeholder diagram
- + infrastructure diagram
- + aspect diagrams e.g. security, data integrity, ...
- + customer key driver graph
- + life cycle key driver graph

commercial financial legal strategic tactical operational social technical

relations beyond actual system!

Simplified Web Shop Value Chain

Simplistic Customer Key Driver Graph

Example Assessment of Design Choices

What is the impact at enterprise level?

Example Zero Order Problem Statement

How does the picture cache design impact

Zero Order Cost Model

```
total cost = f + s(v) + p * v + g * v
where
f = fixed base cost
s = service cost, see below
p = personnel cost including overheads
v = volume
g = goods flow handling
```

```
service cost s(v) = b + c * v
where
b = fixed base cost
c = cost / volume
v = volume
all including provider margin
```


Example Low Volume, Labor Intensive, Shop

low volume, labor intensive, shop

fixed costs and personnel cost dominate: service cost changes have negligible impact on total cost!

total cost = f + s(v) + p * v + g * v
where
f = fixed base cost
s = service cost, see below
p = personnel cost including overheads
v = volume
g = goods flow handling

service cost s(v) = b + c * v
where
b = fixed base cost
c = cost / volume
v = volume
all including provider margin

Example High Volume, Highly Automated, Shop

high volume, highly automated, shop

variable service costs dominate: service cost changes have big impact on total cost!

f

s = service cost, see below

total cost = f + s(v) + p * v + g * v

p = personnel cost including overheads

v = volume

where

g = goods flow handling

f = fixed base cost

f = 1M p = 0.01 v = 100M g = 0.01 s(100k) = 101k

b = 1M c = 0.1 10M

1M

1M

1M

1M

variable service

fixed base

personnel

goods flow

fixed base

service

service cost s(v) = b + c * v
where
b = fixed base cost
c = cost / volume
v = volume
all including provider margin

1k

Conclusion Zero Order Models

Very simple, very coarse, zero order models

provide insight in relevance of

specification and design issues.

These models are used to identify relevant issues

Modeling and Analysis: Life Cycle Models

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Products and enterprises evolve over time. This presentation explores the impact of these changes on the system and on the business by making (small and simple) models of life cycle aspects.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

March 27, 2021 status: preliminary

draft

version: 0.7

Product Related Life Cycles

System Life Cycle

Approach to Life Cycle Modeling

Identify potential life cycle changes and sources					
Characterize time aspect of changes	how often how fast				
Determine required effort	amount type				
Determine impact of change on system and context	performance reliability				
Analyse risks	business				

see reasoning

What May Change During the Life Cycle?

business volume

product mix

product portfolio

product attributes (e.g. price)

customers

personnel

suppliers

application, business processes

et cetera

www.homes4sale.com

www.apple.com/itunes/

www.amazon.com

www.ebay.com

www.shell.com

www.stevens.edu

www.nokia.com

stock market

insurance company

local Dutch cheese shop

Simple Model of Data Sources of Changes

version: 0.7 March 27, 2021

Data Sources of Web Server

Example Product Portfolio Change Books

product portfolio characteristics selection depends on business

life cycle changes determined by business characteristics

new books per year

UK (1)	206k (2005)	107k (1996)
USA(2)	172k (2005)	68k (1996)
China(3)		101k (1994)
India(21)		12k (1996)

source: http://en.wikipedia.org/wiki/Long_tail

source: http://en.wikipedia.org/wiki/Books_published_per_country_per_year

Example Customer Change

internet: broadband penetration

			growth in
	Q1 '04	Q2 '04	Q2 '04
Asia Pacific total	48M	54M	12.8%
China	15M	19M	26.1%
India	87k	189k	116.8%

http://www.apira.org/download/world_broadband_statistics_q2_2004.pdf

What is the expected growth of # customers?

What is the impact on system and infrastructure?

What is the impact on CRM (Customer Relation Management)?

What is the impact on customer, sales support staff?

Web Shop Content Update

Web Shop Content Change Effort

prepare	prepare	prepare
change 1	change 2	change n

review input select info layout&cosmetics check-in verify verify change 1 change n

inspect source inspect result

commit changes

$$effort_{changes} = n_{changes}^*(t_{prepare} + t_{verify}) + t_{commit}$$

n _{changes} per day	10	100	1000
effort _{changes}	1 uur	10 uur	100 uur
#fte	0.1	1	12

with
$$t_{prepare} = 4 \text{ min}$$

$$t_{verify} = 2 min$$

$$t_{commit} = 1 min$$

Example of Client Level Changes

Example of Time Scale Model for Changes

Web Shop Security and Changes

Web Shop Reliability and Changes

new faults = average fault density * #changes

	severity	hit probability	detection probability
Jansen iso Janssen	low	high	low
operator iso sales repr	high	high	medium

Simplistic Financial Computations for System Architects.

by Gerrit Muller USN-SE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This document explains how simple financial estimates can be made by system architects. These simplistic estimates are useful for an architect to perform sanity checks on proposals and to obtain understanding of the financial impact of proposals. Note that architects will never have full fledged financial controller know how and skills. These estimates are zero order models, but real business decisions will have to be founded on more substantial financial proposals.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

March 27, 2021

status: preliminary

draft

version: 1.3

Product Margin = Sales Price - Cost

Margin per product.
The margin over the sales volume,
must cover the fixed costs, and generate profit

transportation, insurance, royalties per product, ...

Cost per product, excluding fixed costs

purchase price of components may cover development cost of supplier

Profit as function of sales volume

Investments, more than R&D

financing

marketing, sales

training sales&service

NRE: outsourcing, royalties

research and development

business dependent: pharmaceutics industry sales cost >> R&D cost

strategic choice: NRE or per product

including:
staff, training, tools, housing
materials, prototypes
overhead
certification

often a standard staffing rate is used that covers most costs above:

R&D investment = Effort * rate

Income, more than product sales only

other recurring income

services

options, accessories

products

income_{service}

sales price_{option} * volume_{option}
options

sales price_{product} * volume _{product}

license fees pay per movie

content, portal updates maintenance

The Time Dimension

	Y1 Q1	Y1 Q2	Y1 Q3	Y1 Q4	Y2 Q1	Y2 Q2	Y2 Q3
investments	100k\$	400k\$	500k\$	100k\$	100k\$	60k\$	20k\$
sales volume (units)	-	-	2	10	20	30	30
material & labour costs	-	-	40k\$	200k\$	400k\$	600k\$	600k\$
income	-	-	100k\$	500k\$	1000k\$	1500k\$	1500k\$
quarter profit (loss)	(100k\$)	(400k\$)	(440k\$)	200k\$	500k\$	840k\$	880k\$
cumulative profit	(100k\$)	(500k\$)	(940k\$)	(740k\$)	(240k\$)	600k\$	1480k\$

cost price / unit = 20k\$ sales price / unit = 50k\$ variable cost = sales volume * cost price / unit
income = sales volume * sales price / unit
quarter profit = income - (investments + variable costs)

The "Hockey" Stick

Stacking Multiple Developments

Fashionable financial yardsticks

Return On Investments (ROI)

Net Present Value

Return On Net Assets (RONA) leasing reduces assets, improves RONA

turnover / fte outsourcing reduces headcount, improves this ratio

market ranking (share, growth) "only numbers 1, 2 and 3 will be profitable"

in high tech segments 10% or more R&D investment / sales

cash-flow fast growing companies combine profits with negative cash-flow, risk of bankruptcy

The application view

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The purpose of the application view is described. A number of methods or models is given to use in this view: stakeholder and concerns, context diagram, static entity relationship models and dynamic flow models.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

March 27, 2021

status: preliminary

draft

version: 0.2

Application view overview

Application

Functional

 \mathbf{C} onceptual

Realisation

Stakeholders and concerns MRI scanner

government cost of care

financial dir. cash flow cost of op.

insurance cost of care administration patient id invoice

general practitioner patient

ref. physician diagnosis treatment

radiologist diagnosis reimburstment

nurse patient ease of work

patient comfort health

family support

inspection quality

operator ease of use

facility man. space service supp.

maintainer accessibility safety

cleaner accessibility safety

legend

administrative

clinical

patient

support

IT dep. conformance security

Context of motorway management system

Example of simple TV application model

Examples of dynamic models

Productivity and Cost models

Cost Of Ownership model

Dynamics of an URF examination room

Make a context diagram:

What other related systems and applications are used?

How do these relate with our system

Visualize the context as diagram

Make supporting diagrams for main application views

Reflection on Exercise

- + Context diagram lift insight to a higher level
- Our system or application is only a fraction of the customers world
- Application models can become too generic or abstract

Summary Fundamentals of Application

Conclusions

Real requirements are driven by understanding of the customer's application

Complexity of finance is no excuse for ignoring all financial aspects; simplified models provide a lot of insight

Techniques, Models, Heuristics of this module

Simplistic financial models

TBD

