Module Execution Architecture approach and concepts

by Gerrit Muller University of South-Eastern Norway-NISE
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The module Execution architecture approach and concepts addresses an incre-
mental approach to design an execution architecture. A set of concepts is intro-
duced and illustrated, which is useful in the hands on phase of the course.

Distribution | 0go
This article or presentation is written as part of the Gaudi project. The Gaudi project

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an September 1 ’ 2020 TB D
open creation process. This document is published as intermediate or nearly mature version status: p|anned

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 0

An incremental execution architecture design approach

by Gerrit Muller University of South-Eastern Norway-NISE
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

An incremental design approach for the execution architecture is described. The
method is based on identification of the most critical requirement from both user
as well as technical point of view. The implementation itself is based on quantified
budgets. The creation, modification and verification of the budget is discussed.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project

philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an September 1 ’ 2020
open creation process. This document is published as intermediate or nearly mature version status: draft

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 1.0

Positioning in CAFCR

What does Customer need
in Product and Why?

Product
How
Customer Customer Product
What How What
Customer Application Functional Conceptual Realization
objectives
SMART execution architecture
diverse + timing design
complex requirements| |threads allocation
fuzzy + external interrupts scheduling
" timers synchronization
INterfaces gueues decoupling

performance

models models
analysis analysis
simulations simulations
measurements measurements

expectations
needs

An incremental execution architecture design approach seversion: 1.0
. eptember 1, 2020
3 Gerrit Muller EAAandCAFCR ESI

Incremental approach

measure determine most
evaluate Important and critical
analyse requirements

‘i‘

model
simulate analyse constraints
build proto and design options

An incremental execution architecture design approach seversion: 1.0
. ptember 1, 2020
4 Gerrit Muller EAAspiral ESI

Decomposition of system TR in HW and SW

most and hardest %
TR handled by HW hardware %
TR new control TRs) i
S
)
£
NS I%D

system i
TR s software

)

—
A

An incremental execution architecture design approach seversion: 1.0
. eptember 1, 2020
5 Gerrit Muller EAAhwswRequirements ESI

Quantification steps

10 30 100 300
| | | |
back of the order of magnitude
envelope 30 300
guestimates
benchmark, 50 P00
spreadsheet calibrated estimates
calculation < >
70 140
measure, cr ey
analyze, feaSJE'“ty
simulate 90 115
cycle

accurate 99.999 =p<4¢—100.001

An incremental execution architecture design approach Sep\{eerﬁ%'e??'z&%
6 Gerrit Muller BWMAquantificationSteps ES I

Budget based design

SRS '
can be more complex Ebom 838
than additions = oS

1:proc

feedback | ‘

B

tover

tdisp measurements
new (proto)
tover
system
model 30 v
micro benchmarks
i V4aa Laisp S aggregated functions
applications
Q\O fover_| 20 profiles
D I,I,I" — | Ty 25 traces
-f <>
< . Ttotal 55
design
measurements estimates; budget
existing system simulations

micro benchmarks
aggregated functions
applications

An incremental execution architecture design approach seversion: 1.0
. ptember 1, 2020
7 Gerrit Muller EAAbudget ESI

Execution architecture concepts

by Gerrit Muller University of South-Eastern Norway-NISE
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The execution architecture determines largely the realtime and performance
behavior of a system. Hard real time is characterized as "missing a deadline”
will result in system failure, while soft real time will result "only” in dissatisfaction.
An incremental design approach is described. Concepts such as latency,
response time and throughput are illustrated. Design considerations and recom-
mendations are given such as separation of concerns, understandability and
granularity. The use of budgets for design and feedback is discussed.

\\\\\\\\\\\\\\\

Distribution
September 1, 2020
This article or presentation is written as part of the Gaudi project. The Gaudi project . Fand
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an status: pre“mmary complex ety
open creation process. This document is published as intermediate or nearly mature version draft '''''''''

to get feedback. Further distribution is allowed as long as the document remains complete

and unchanged. version: 1.1

simple is better

Execution Architecture

dead lines

other architecture

Execution architecture concepts

9 Gerrit Muller

September 1, 2020

CVexecutionArchitecture

timing, throughput views
requirements
functional execution
model architecture | process
receive » demux taSk
! { oy thread |||
process -
interrupt
handlers
: execution architecture
hardware repository | issyes:
CPU | | DSP H RAM structure
{ [pp— concurrency
tuner | | drive — SChedu“n_g)
Cr | | Boery synchronisation
foundation hardware mUtuaI eXC|USIOn
[ongses | | pstaction priorities.
granularity
version: 1.1

SN EsI

Fuzzy customer view on real time

<+— hard real time soft real time —
disastrous . . .
s dissatisfaction
human device loss of limited waiting
safety safety functionality throughput time
loss of losﬁ of q
Information eye_ an-
coordination
Eyecion archiecturs concept IS\ "ESslI

Smartening requirements

Limited set of hard real time cases Precise form of the distribution
‘ IS not important.
O
Q

Be aware of systematic effects

Worst case must fit

h No exception allowed

time=—p-
20 ms

Well defined set of performance critical cases

A

S Typical within desired time,
= limited exceptions allowed.

Exceptions may not result in
functional failure
90%

T m ot
200 ms 500 ms

Execution architecture concepts version: 1.1

—
) September 1, 2020
11 Gerrit Muller EACsmarteningRequirements m ES I

Latency

telephone

——|oNg distance cONNECtiONm——-

telephone

bla bla bla

perceived delay

=

¢ -
connection connection
latency latency
—> - — -
speak bla bla bla
listen reaction
speak reaction |
listen bla bla bla i
time—»
Execution architecture concepts version: 1.1 —
12 Gerrit Muller September 1, 2020 m ESI

Response Time

channel
N\ J
/13‘3/@
<—total response time—
<zap repetition—»|
remote visual open for next new
control zap feedback respons channel

. S S

visual feedback time

Execution architecture Concepts s version: 1.1
. eptember 1, 2020
13 Gerrit Muller EACresponseTime ES I

Throughput

>r> > > >r> speakers
-}
4 N
> tuner ¥ > > >

> tuner P> > > e \’ pip)

processing screen
TV
throughput:

+ processing steps/frame
+ frames/second
+ concurrent streams

Execution architecture concepts seversion: 1.1
. ptember 1, 2020
14 Gerrit Muller EACthroughput ES I

Gross versus Nett

bus bandwidth, processor load [memory usage]
useful macroscopic views, be aware of microscopic behavior

A margin

loss = not
schedulable depends on design

overhead _
bus, OS, depends strongly on granularity

scheduling

function 4

gross

function 3 application overhead is still
In this "nett" number

nett———

function 2

function 1

Execution architecture concepts soversion: 1.1
: eptember 1, 2020
15 Gerrit Muller EACbrutoVsNetto ES I

Design recommendations separation of concerns

soft Real Time

v 4 v 4

decoupling —» queues or buffers

7 process as unit of execution

clear single demarcation
\ between hard and soft

minimize /

= ==influence======--

/ performance

HW HW HW
\ f hard Real Time
minimal
shared
resources

% manage
tension

separation

k cost

explicit

Execution architecture concepts
16 Gerrit Muller

. I
version: 1.1
September 1, 2020
EACseparation

Design recommendations understandability

hard real time systems
should be explainable
with a few A4 diagrams

_—g%

overview is based on
understanding many
(critical) detalls

complex reality;
many details,
many relations

!

simulation

reasoning must
be possible

to combine or
not to combine?

limited use of tasks,
threads, priorities

simulation: additional means
If declared indispensable this is
often a symptom of poor models

simple Is better

Execution architecture concepts
17 Gerrit Muller

version: 1.1
September 1, 2020

EACunderstandability

SN EsI

Granularity considerations

unitof unit of - unit of
. or L or .
buffering - synchronization .~ Pprocessing

video line > ->|-> ->|-> ->|-> >
- pixel
fine grain: coarse grain:
flexible rigid
high overhead low overhead

unit of
/O

Execution architecture concepts seversion: 1.1
. ptember 1, 2020
18 Gerrit Muller EACgranularity ES I

Design patterns

synchronous

safety critical, reliable, subsystems

very low overhead
predictable
understandable

works best in total separation
does not work for multiple rhythms

thread based

Asynchronous applications and
services

separation of timing concerns
sharing of resources (no wait)

poor understanding of concurrency
danger of high overhead

timer based /f \ Interrupt based

regular rhythm; I/Oﬁhand HW events

B

separation of timing concerns

low "tunable" overhead
understandable definition of interrupts determines:

overhead, understandability
fast rhythms significant overhead

Execution architecture concepts
19 Gerrit Muller

. I
version: 1.1
September 1, 2020
EACdesignPatterns

Synchronous design

HW | input for t, input for th. input for tn.» input for th.s
SW | calculate t, calculate t, calculate tp.1 calculate tp.»
HW execute t,., ﬂ execute t,.1 ﬂ execute t, ﬂ execute ty.q ﬂ

setting t.+1 | double buffer:

v full decoupling of calculation and execution
clk — setting t,

:

HW

Execution architecture concepts seversion: 1.1
. ptember 1, 2020
20 Gerrit Muller EACsynchronousDesign ES I

Actual timing on logarithmic scale

Q
XN
0o o\\
. .\ée’ '\6®
application \2\,\} ;\\(& \23}
needs ' o Q
SR N
light
travels
1cm

(ps) (ns) (uS) (ms) (St

’\:«A . 0Q \6
R @ &S O
'\90 \\'§ @ & &
N & ,\@Q’ &
& & N O &
Q& ¥ @&
& & & &
N % EW\ o
N o Y q ~<\°\

107° 107° 10° 1073 1

| | | | ' |
Q \
N O ©
@ 9 & &° e &
¥ o N N Q QO
Y % =) \rb' (Q < AN 66
@ NS S . A O > &
& NG <" < NS &S from
N @ & & Q\\ & QQ\ & low level to high level
L S RN | N R ° processing times
< &
{ l
(7]
\QJ;\\@ *@(\é %Q’Q*
from | high level @*0 v & & o@* N o
rom low to high leve v RIS & S @ ©
storage/network ¥ N N G\QQ' QJ\@ & (\e@ ,Qfa?q &
© & i © &
v Q‘?& & NS NN
NN K@ fz&Q P K @
6\@

Execution architecture concepts
21 Gerrit Muller

. [
version: 1.1
September 1, 2020
RVtimeAxis

Typical micro benchmarks for timing aspects

database
network,
/O

high level
construction

low level
construction

basic
programming

OS

HW

Infrequent operations,
often time-intensive

start session
finish session

open connection
close connection

component creation
component destruction

object creation
object destruction

memory allocation
memory free

task, thread creation

power up, power down
boot

often repeated
operations

perform transaction
query

transfer data

method invocation
Same Scope
other context

method invocation

function call
loop overhead

basic operations (add, mul, load, store)

task switch
interrupt response

cache flush
low level data transfer

Execution architecture concepts

22 Gerrit Muller

version: 1.1
September 1, 2020
RVuTimingBenchmarks

SN EsI

The transfer time as function of blocksize

1
= - optimal block-SIZE rate
toverhea<¢ block

. -
SlZze

Execution architecture concepts s version: 1.1
. eptember 1, 2020
23 Gerrit Muller RVparametrizedTransferRate ES I

Example of a memory budget

memory budget in Mbytes code obj data bulk data total

shared code 11.0 11.0
User Interface process 0.3 3.0 12.0 15.3
database server 0.3 3.2 3.0 6.5
print server 0.3 1.2 9.0 105
optical storage server 0.3 2.0 1.0 3.3
communication server 0.3 2.0 4.0 6.3
UNIX commands 0.3 0.2 0 0.5
compute server 0.3 0.5 6.0 6.8
system monitor 0.3 0.5 0 0.8
application SW total 13.4 12.6 35.0 61.0
UNIX Solaris 2.x 10.0
file cache 3.0
total 74.0

Execution architecture concepts soversion: 1.1
. eptember 1, 2020
24 Gerrit Muller RVmemoryBudgetTable ES I

Complicating factors and measures

complications measures

cache considered margin
bus allocation explicit behavior
memory management architecture rules
garbage collection monitoring, logging
memory (buffer, storage) fragmentation pool management
non preemptable OS activities feedback to architect
"hidden" dependencies (ie [dead]locks) flipover simulation

systematic "coincidences", avalanche triggers

Instable response, performance

Execution architecture COﬂCeptS s version: 1.1
. eptember 1, 2020
25 Gerrit Muller EACcomplicationsMeasures ES I

