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Abstract

The module Execution architecture approach and concepts addresses an incre-
mental approach to design an execution architecture. A set of concepts is intro-
duced and illustrated, which is useful in the hands on phase of the course.
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An incremental execution architecture design approach

by Gerrit Muller  University of South-Eastern Norway-NISE
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

An incremental design approach for the execution architecture is described. The
method is based on identification of the most critical requirement from both user
as well as technical point of view. The implementation itself is based on quantified
budgets. The creation, modification and verification of the budget is discussed.
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Positioning in CAFCR
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Incremental approach

measure determine most
evaluate Important and critical
analyse requirements
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model
simulate analyse constraints
build proto and design options
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Decomposition of system TR in HW and SW
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Quantification steps
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Budget based design
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Execution architecture concepts

by Gerrit Muller  University of South-Eastern Norway-NISE
e-mail: gaudisite@Rgmail.com

www.gaudisite.nl

Abstract

The execution architecture determines largely the realtime and performance
behavior of a system. Hard real time is characterized as "missing a deadline”
will result in system failure, while soft real time will result "only” in dissatisfaction.
An incremental design approach is described. Concepts such as latency,
response time and throughput are illustrated. Design considerations and recom-
mendations are given such as separation of concerns, understandability and
granularity. The use of budgets for design and feedback is discussed.
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Execution Architecture
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Fuzzy customer view on real time
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Smartening requirements

Limited set of hard real time cases Precise form of the distribution
‘ IS not important.
O
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Be aware of systematic effects
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Latency
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Response Time
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Throughput
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Gross versus Nett

bus bandwidth, processor load [memory usage]
useful macroscopic views, be aware of microscopic behavior
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Design recommendations separation of concerns

soft Real Time

v 4 v 4

decoupling —» queues or buffers

7 process as unit of execution

clear single demarcation
\ between hard and soft

minimize /

= ==influence======--

/ performance

HW HW HW
\ f hard Real Time
minimal
shared
resources

% manage
tension

separation

k cost

explicit

Execution architecture concepts
16 Gerrit Muller

. I
version: 1.1
September 1, 2020
EACseparation



Design recommendations understandability

hard real time systems
should be explainable
with a few A4 diagrams
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Granularity considerations
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Design patterns

synchronous

safety critical, reliable, subsystems

very low overhead
predictable
understandable

works best in total separation
does not work for multiple rhythms

thread based

Asynchronous applications and
services

separation of timing concerns
sharing of resources (no wait)

poor understanding of concurrency
danger of high overhead

timer based /f \ Interrupt based

regular rhythm; I/Oﬁhand HW events

B

separation of timing concerns

low "tunable" overhead
understandable definition of interrupts determines:

overhead, understandability
fast rhythms significant overhead
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Synchronous design
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Actual timing on logarithmic scale
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Typical micro benchmarks for timing aspects

database
network,
/O

high level
construction

low level
construction

basic
programming

OS

HW

Infrequent operations,
often time-intensive

start session
finish session

open connection
close connection

component creation
component destruction

object creation
object destruction

memory allocation
memory free

task, thread creation

power up, power down
boot

often repeated
operations

perform transaction
query

transfer data

method invocation
Same Scope
other context

method invocation

function call
loop overhead

basic operations (add, mul, load, store)

task switch
interrupt response

cache flush
low level data transfer
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The transfer time as function of blocksize
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Example of a memory budget

memory budget in Mbytes code obj data bulk data  total

shared code 11.0 11.0
User Interface process 0.3 3.0 12.0 15.3
database server 0.3 3.2 3.0 6.5
print server 0.3 1.2 9.0 105
optical storage server 0.3 2.0 1.0 3.3
communication server 0.3 2.0 4.0 6.3
UNIX commands 0.3 0.2 0 0.5
compute server 0.3 0.5 6.0 6.8
system monitor 0.3 0.5 0 0.8
application SW total 13.4 12.6 35.0 61.0
UNIX Solaris 2.x 10.0
file cache 3.0
total 74.0
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Complicating factors and measures

complications measures

cache considered margin
bus allocation explicit behavior
memory management architecture rules
garbage collection monitoring, logging
memory (buffer, storage) fragmentation pool management
non preemptable OS activities feedback to architect
"hidden" dependencies (ie [dead]locks) flipover simulation

systematic "coincidences", avalanche triggers

Instable response, performance
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