Module 30, Architectural Reasoning Introduction

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module introduces Architectural Reasoning using Conceptual Modeling.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

April 3, 2023 status: draft version: 1.3

SEMA System Modeling and Analysis Course

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The SEMA course System Modeling and Analysis is a 5 day course. Core of the course is Architectural Reasoning Using Conceptual Modeling. This course uses the CAFCR+ model with 6 views. Qualities connect all views. Threads-of-reasoning capture the architectural reasoning across views and qualities. Conceptual models visualize and capture the context, the system and its design. Quantification is a means to make problem and solution space tangible.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

April 3, 2023 status: draft version: 0.5

Course Program

day 1	introduction to modeling	exploring the case
day 2	sample customer space	functions and parts
day 3	customer space analysis	quantification and concepts
day 4	business and life cycle	integration and reasoning
day 5	modeling	wrap-up

Preparation for the Course

During the SEMA course you work in teams of about 3 persons. Smaller teams (even single persons) are acceptable as well.

Every team preferably works on a real part of a system with some real development that goes on.

We start to model the status quo of the system and then we will model and analyze a change or addition that is being considered.

As preparation for the course I ask you the following:

- Look if the other participants are working on similar systems, such that you can work as team.
- Pick as team a system/component/function/project you will use during the course.
- For this system/component/function/project collect information about: who is the
 customer, what does the customer need, how is the system used, what technologies
 are used in the system, what are the main technological challenges et cetera. You do
 not have to be an expert when you come to the course, but you need to have some
 feeling for the system you will be working on during the course and presumably also in
 the 10 week project.
- If you are preparing your master project, then the master project case is probably a good option. This will boost your master project.

Assignments during the Course

1. elevator Customer Realization unctional Conceptual **A**pplication **+** Life cycle objectives 2. exploring the case 3. story telling 5. dynamic behavior 4. use case 6. block diagram 7. context and workflow 9. budget based design 8 customer key driver graph 11. business plan 10. concept selection 12. change analysis 13. line of reasoning 14. thread of reasoning 15. quantified chain of models 16. credibility and accuracy

Course Material Introduction

core

SEMA System Modeling and Analysis Course

http://www.gaudisite.nl/info/SEMAcourse.info.html

SEMA Basic Philosophy

http://www.gaudisite.nl/info/SEMAbasics.info.html

Physical Models of an Elevator

http://www.gaudisite.nl/info/ElevatorPhysicalModel.info.html

optional

Teaching conceptual modeling at multiple system levels using multiple views

http://www.gaudisite.nl/CIRP2014_Muller_TeachingConceptualModeling.pdf

Understanding the human factor by making understandable visualizations

http://www.gaudisite.nl/info/UnderstandingHumanFactorVisualizations.info.html

Dynamic Range of Abstraction Levels in Architecting

http://www.gaudisite.nl/info/DynamicRangeAbstractionLevels.info.html

Course Material CAFCR Scan

core

SEMA Method Overview

http://www.gaudisite.nl/info/SEMAmethodOverviewSlides.pdf

Short introduction to basic "CAFCR" model

http://www.gaudisite.nl/info/BasicCAFCR.info.html

InitialCAFCRscan

http://www.gaudisite.nl/info/InitialCAFCRscan.info.html

optional

Architectural Reasoning Explained

http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf

Architectural Reasoning

http://www.gaudisite.nl/ArchitecturalReasoning.html

Iteration How To

http://www.gaudisite.nl/info/IterationHowTo.info.html

Modeling and Analysis: Iteration and Time-boxing

http://www.gaudisite.nl/info/MAiterationAndTimeboxing.info.html

Course Material Sample CA

core

Story How To

http://www.gaudisite.nl/info/StoryHowTo.info.html

Use Case How To

http://www.gaudisite.nl/info/UseCases.info.html

optional

Story Telling in Medical Imaging

http://www.gaudisite.nl/info/MIstories.info.html

Course Material Design Fundamentals

core

System Partitioning Fundamentals

http://www.gaudisite.nl/info/SystemPartitioningFundamentals.info.html

optional

Basic Working Methods of a System Architect

http://www.gaudisite.nl/info/BasicWorkingMethodArchitect.info.html

SubSea Modeling Example

http://www.gaudisite.nl/SubSeaModelingExampleSlides.pdf

Course Material Customer Space Analysis

core

Methods to Explore the Customer Perspective

http://www.gaudisite.nl/info/MethodsToExploreTheCustomerPerspective.info.html

Key Drivers How To

http://www.gaudisite.nl/info/KeyDriversHowTo.info.html

optional

Medical Imaging Workstation: CAF Views

http://www.gaudisite.nl/info/MlviewsCAF.info.html

Course Material Conceptual Design

core

Modeling and Analysis: Budgeting

http://www.gaudisite.nl/info/MAbudgeting.info.html

Concept Selection, Set Based Design and Late Decision Making

http://www.gaudisite.nl/info/ConceptSelectionSetBased.info.html

optional

The Tool Box of the System Architect

http://www.gaudisite.nl/info/ToolBoxSystemArchitect.info.html

Course Material Business and Life Cycle

core

Simplistic Financial Computations for System Architects.

http://www.gaudisite.nl/info/SimplisticFinancialComputations.info.html

Modeling and Analysis: Life Cycle Models

http://www.gaudisite.nl/info/MAlifeCycle.info.html

optional

How to present architecture issues to higher management

http://www.gaudisite.nl/info/ArchitectManagementInteraction.info.html

Course Material Integration and Reasoning

core

Qualities as Integrating Needles

http://www.gaudisite.nl/info/QualityNeedles.info.html

Threads of Reasoning

http://www.gaudisite.nl/info/ThreadsOfReasoning.info.html

Threads of reasoning illustrated by medical imaging case

http://www.gaudisite.nl/PresentationMITORSlides.pdf

Course Material Modeling

core

Modeling and Analysis: Reasoning Approach

http://www.gaudisite.nl/info/MAreasoningApproach.info.html

Modeling and Analysis: Analysis

http://www.gaudisite.nl/info/MAanalysis.info.html

optional

Modeling and Analysis: Measuring

http://www.gaudisite.nl/info/MAmeasuring.info.html

ASP Python Exercise

http://www.gaudisite.nl/info/ASPpythonExercise.info.html

Course Material Wrap-up

core

Consolidating Architecture Overviews

http://www.gaudisite.nl/info/ConsolidatingArchitectureOverviewsSlides.pdf

SEMA Homework Assignment

http://www.gaudisite.nl/info/SEMAhomeworkAssigmentSlides.pdf

optional

Guidelines for Visualization

http://www.gaudisite.nl/info/VisualizationGuidelines.info.html

Granularity of Documentation

http://www.gaudisite.nl/info/DocumentationGranularity.info.html

Light Weight Review Process

http://www.gaudisite.nl/info/LightWeightReview.info.html

Cookbook A3 Architecture Overview by Daniel Borches

http://www.gaudisite.nl/BorchesCookbookA3architectureOverview.pdf

How to Create an Architecture Overview

http://www.gaudisite.nl/info/OverviewHowTo.info.html

Gerrit Muller

SEMA Basic Philosophy

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This presentation explains the basic philosophy behind the SEMA course. The SEMA course in the first place is a course that provides an approach to architectural reasoning. Core to architectural reasoning is the ability to make conceptual models and to use them in conjunction. The course discusses how to make conceptual mdoels, how to get input, and how to use them for analysis. Modeling is put in broader perspective, such as model evolution, simuation, and validation.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

April 3, 2023 status: draft version: 0.3

You will mostly be working!

One Case during the course and the home work assigment

Work in teams if possible

Select a case close to your day-to-day practice

Learning by Doing

Some theory, apply on case

Case = System of interest + developing organization + some innovative change

Choice of case is critical!

Our Primary Interest

developing organization

architect

system of interest

Context, Zoom-out and Zoom-in

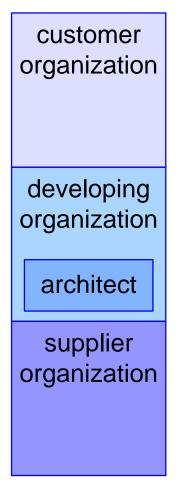
customer organization

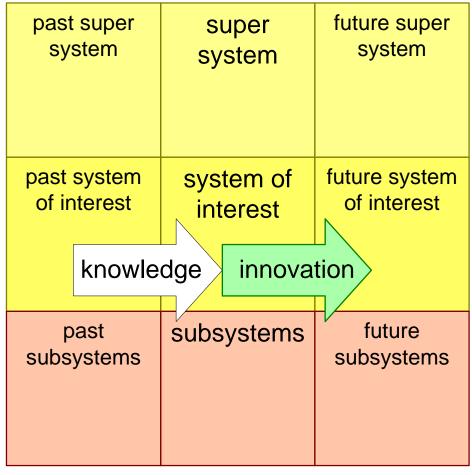
developing organization

architect

supplier organization

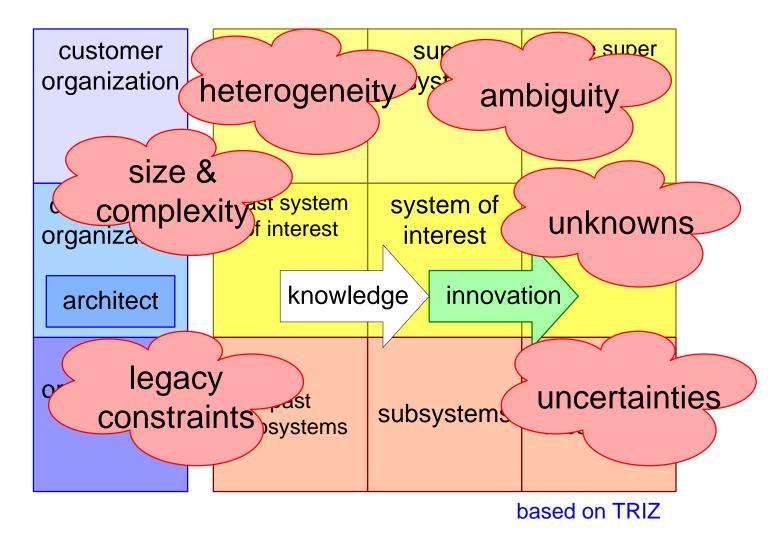
super system


system of interest

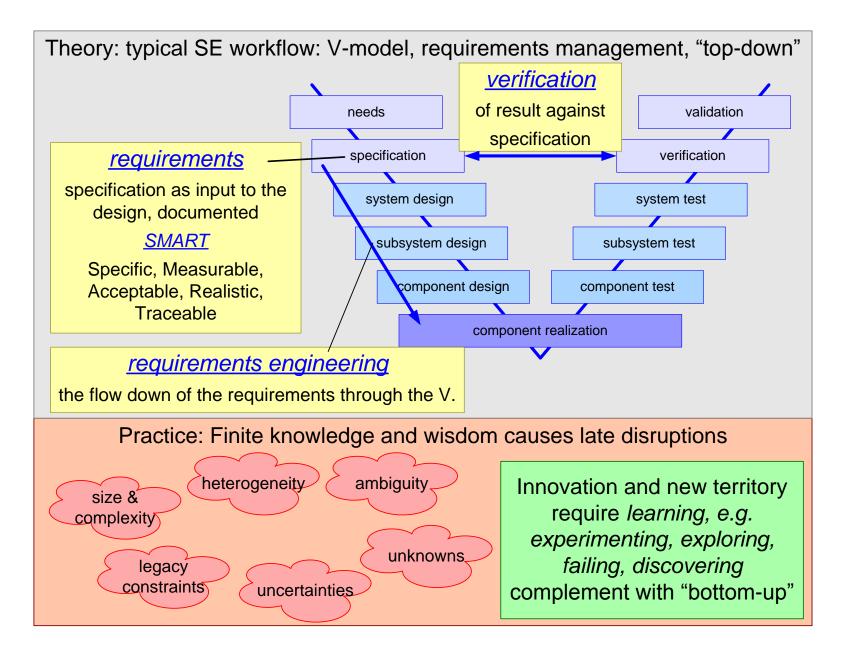

subsystems

Adding the Time Dimension

past current future

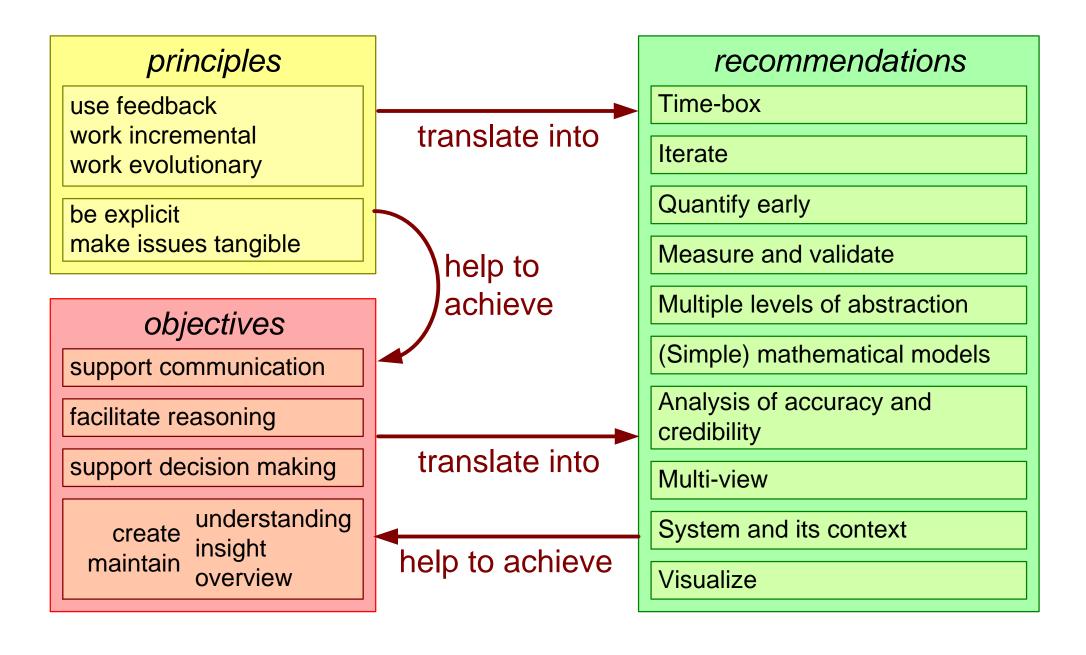


based on TRIZ



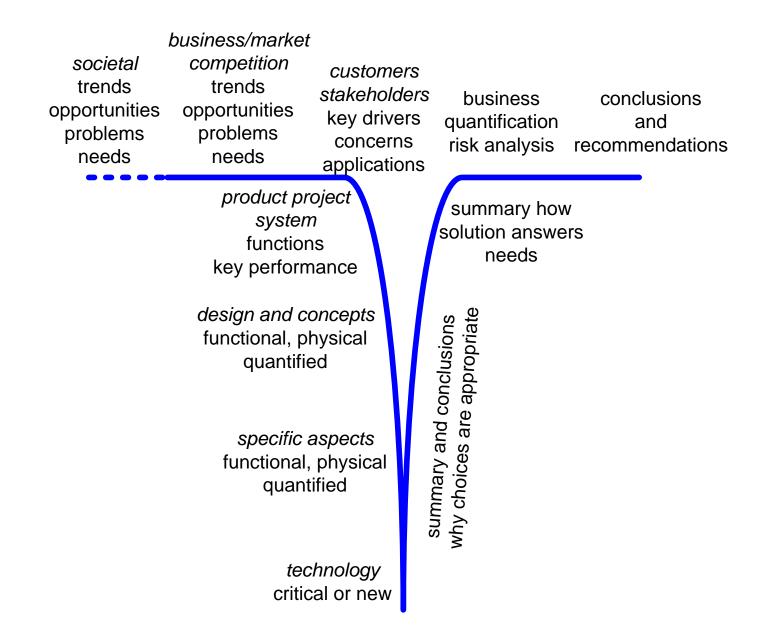
past current future

From Theory to Practice



version: 0.3 April 3, 2023

SEMABtheorySE



Recommendations as Common Thread

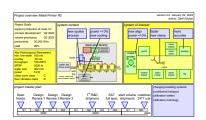
Final Delivery: Presentation to Top Management

Project Overview How To

by Gerrit Muller USN-SE

e-mail: gaudisite@gmail.com

www.gaudisite.nl


Abstract

A project overview shows the overview of a project on a single slide or sheet. The overview helps the team to share the same understanding of scope, objectives, and timeline.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

April 3, 2023 status: draft version: 0.2

Project Overview Canvas

Project Title

meta information, e.g. version, date author, owner

Project Goals

specific and quantified

system context

- visualization (drawing, block diagram, 3D model, or photo) of the system context
- indication of changes in the context

system of interest

- visualization (drawing, block diagram, 3D model, or photo) of the system
- indication of changes in the system of interest

Key Performance Parameters

specific and quantified

project master plan with timeline

- timeline with 5 to 10 milestones, especially deliverables
- specific and quantified

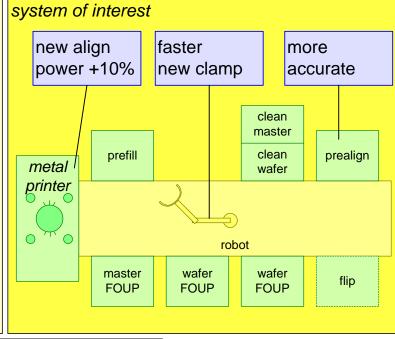
optional information, e.g.

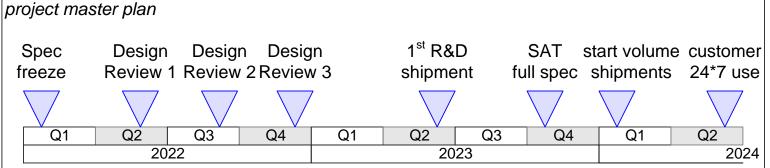
- enabling systems
- stakeholders
- external or internal interfaces
- constraints, e.g. applicable legislation

Example Project Overview

Project overview Metal Printer R2


version 2.0. January 22, 2023 author: Gerrit Muller


Project Goals
support production of node 1C
process development Q2 2022
volume production Q2 2023
productivity 30,000 W/m


yield 95%

Key Performance Parameters

min. line width 100 nm overlay 30 nm throughput 100 WPH MTBF 2000 hr wafer size 300 mm power 5 kW clean room class C floor vibration class D

changing enabling systems conditioned transport calibration wafers calibration metrology

Project Overview Canvas

Project Title

meta information, e.g. version, date author, owner

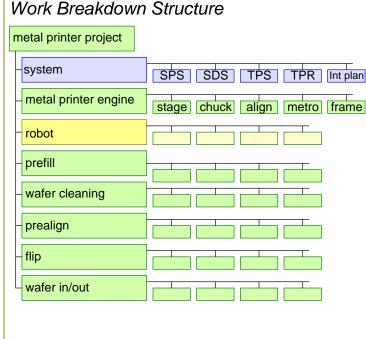
Work Breakdown Structure

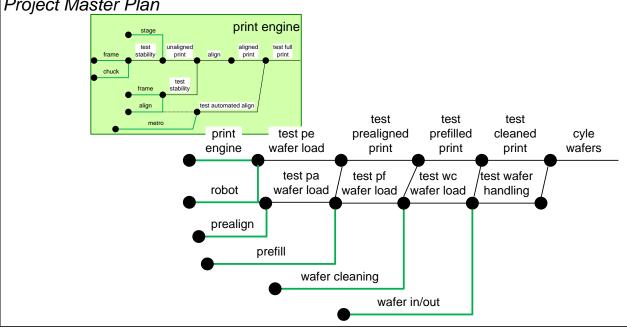
- visualization
- builds upon the Product Breakdown Structure

Project Master Plan

PERT plan with major milestones

project organization


- allocation of roles
- specific additions or deviations



Example Project Overview

 Metal Printer
 version 0.1, 2023-02-11 author: Gerrit Muller

 Work Breakdown Structure
 Project Master Plan

project organization

Project Leader: P.L. Eader

Product Manager: P.M. Anager

Architect: Archie Tect

Case Selection

Determine the system of interest

Define your organization

Determine an innovative change to be architected

Sketch the System-of-Interest

Sketch the System-of-Interest in its context

- Show some of the internals of the system-of-interest
- Indicate the boundary of the system-of-interest

Physical Models of an Elevator

by Gerrit Muller University of South-Eastern Norway-NISE

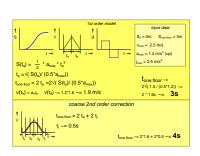
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

An elevator is used as a simple system to model a few physical aspects. We will show simple kinematic models and we will consider energy consumption. These low level models are used to understand (physical) design considerations. Elsewhere we discuss higher level models, such as use cases and throughput, which complement these low level models.

Distribution


This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

April 3, 2023

status: preliminary

draft

version: 0.4

Learning Goals

To understand the need for

- various views, e.g. physical, functional, performance
- mathematical models
- quantified understanding
- assumptions (when input data is unavailable yet) and later validation
- various visualizations, e.g. graphs
- understand and hence model at multiple levels of abstraction
- starting simple and expanding in detail, views, and solutions gradually, based on increased insight

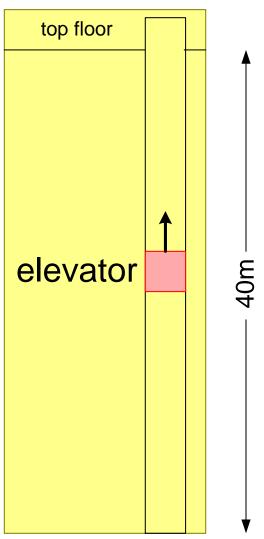
To see the value and the limitations of these conceptual models

To appreciate the complementarity of conceptual models to other forms of modeling, e.g. problem specific models (e.g. structural or thermal analysis), SysML models, or simulations

warning

This presentation starts with a trivial problem.

Have patience!


Extensions to the trivial problem are used to illustrate many different modeling aspects.

Feedback on correctness and validity is appreciated

The Elevator in the Building

building

inhabitants want to reach their destination fast and comfortable

building owner and service operator have economic constraints: space, cost, energy, ...

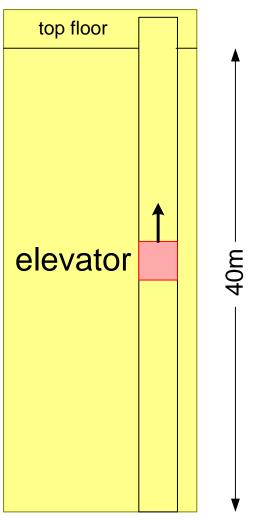
Elementary Kinematic Formulas

$$S_t$$
 = position at time t

$$v = \frac{dS}{dt}$$

$$v_t$$
 = velocity at time t

 a_t = acceleration at time t


 j_t = jerk at time t

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

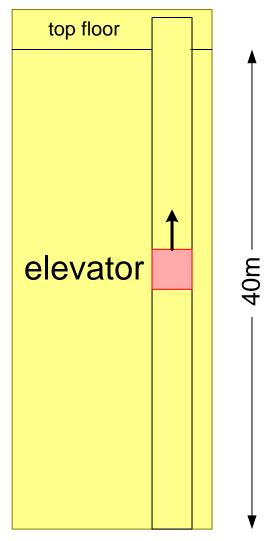
Initial Expectations

building

What values do you expect or prefer for these quantities? Why?

 $t_{top\ floor} = time\ to\ reach\ top\ floor$

 v_{max} = maximum velocity


 $a_{max} = maximum acceleration$

 $j_{max} = maximum jerk$

Initial Estimates via Googling

building

Google "elevator" and "jerk":

$$t_{top floor} \sim = 16 s$$

 $v_{max} \sim = 2.5 \text{ m/s}$

 $a_{max} \sim = 1.2 \text{ m/s}^2 \text{ (up)}$

relates to motor design and energy consumption

 $j_{max} \sim = 2.5 \text{ m/s}^3$ relates to control design

humans feel changes of forces high jerk values are uncomfortable

12% of gravity;

weight goes up

numbers from: http://www.sensor123.com/vm_eva625.htm CEP Instruments Pte Ltd Singapore

Exercise Time to Reach Top Floor Kinematic

input data

$$S_0 = 0m \qquad \qquad S_t = 40m$$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$i_{max} = 2.5 \text{ m/s}^3$$

elementary formulas

$$v = -\frac{dS}{dt}$$
 $a = -\frac{dv}{dt}$ $j = -\frac{da}{dt}$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$

exercises

 $t_{top\ floor}$ is time needed to reach top floor without stopping

Make a model for t_{top floor} and calculate its value

Make 0^e order model, based on constant velocity

Make 1^e order model, based on constant acceleration

What do you conclude from these models?

Models for Time to Reach Top Floor

input data

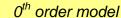
$$S_0 = 0m$$
 $S_{top floor} = 40m$

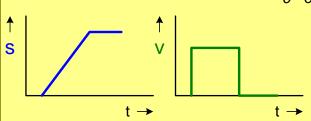
$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

elementary formulas

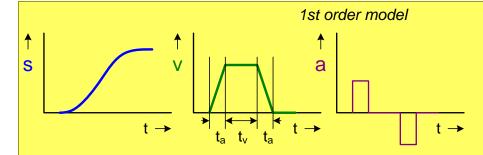

$$v = \frac{dS}{dt}$$


$$a = \frac{dv}{dt}$$

$$j = \frac{da}{dt}$$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$



$$S_{top floor} = v_{max} * t_{top floor}$$

$$t_{top floor} = S_{top floor} / v_{max}$$

$$t_{top\ floor} = 40/2.5 = 16s$$

$$t_a \sim 2.5/1.2 \sim 2s$$

$$S(t_a) \sim = 0.5 * 1.2 * 2^2$$

$$S(t_a) \sim = 2.4 m$$

$$t_v \sim = (40-2*2.4)/2.5$$

$$t_{v} \sim = 14s$$

$$t_{top floor} \sim = 2 + 14 + 2$$

$$t_{top\ floor} \sim = 18s$$

$$t_{top floor} = t_a + t_v + t_a$$
 $S_{linear} = S_{top floor} - 2 * S(t_a)$

$$t_a = v_{max} / a_{max}$$

$$S(t_a) = \frac{1}{2} * a_{max} * t_a$$

$$t_v = S_{linear} / v_{max}$$

Conclusions Move to Top Floor

Conclusions

v_{max} dominates traveling time

The model for the large height traveling time can be simplified into:

$$t_{travel} = S_{travel} / v_{max} + (t_a + t_j)$$

Exercise Time to Travel One Floor

input data

$$S_0 = 0m$$
 $S_{top floor} = 40m$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

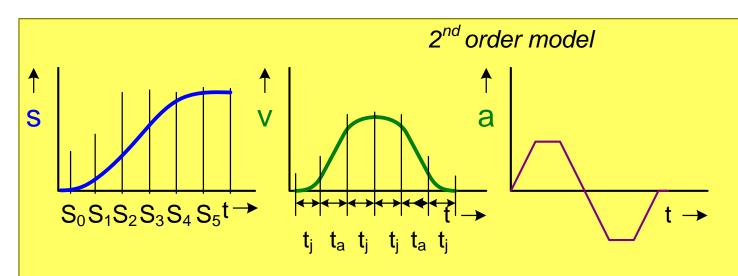
$$j_{max} = 2.5 \text{ m/s}^3$$

elementary formulas

$$v = -\frac{dS}{dt}$$
 $a = -\frac{dv}{dt}$ $j = -\frac{da}{dt}$

Position in case of uniform acceleration:

$$S_t = S_0 + v_0 t + \frac{1}{2} a_0 t^2$$


exercise

Make a model for tone floor and calculate it

What do you conclude from this model?

2nd Order Model Moving One Floor

input data

$$S_0 = 0m$$

$$S_{one floor} = 3m$$

$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

$$t_{one floor} = 2 t_a + 4 t_j$$

$$t_j = a_{max} / j_{max}$$

$$S_1 = 1/6 * j_{max} t_j^3$$

$$v_1 = 0.5 j_{max} t_j^2$$

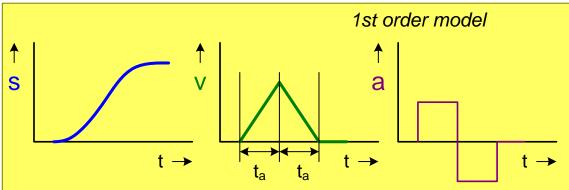
$$S_2 = S_1 + v_1 t_a + 0.5 a_{max} t_a^2$$

$$V_2 = V_1 + a_{\text{max}} t_a$$

$$S_3 = S_2 + v_2 t_j + 0.5 a_{max} t_j^2 - 1/6 j_{max} t_j^3$$

$$S_3 = 0.5 S_t$$

$$t_i \sim 1.2/2.5 \sim 0.5$$
s


$$S_1 \sim 1/6 * 2.5 * 0.5^3 \sim 0.05 m$$

$$v_1 \sim 0.5 * 2.5 * 0.5^2 \sim 0.3 m/s$$

et cetera

1st Order Model Moving One Floor

$$S(t_a) = \frac{1}{2} * a_{max} * t_a^2$$

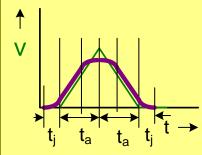
$$t_a = \sqrt{(S(t_a)/(0.5^*a_{max}))}$$

$$t_{one floor} = 2 t_a = 2\sqrt{(S(t_a)/(0.5*a_{max}))}$$

$$V(t_a) = a_m t_a$$
 $V(t_a) \sim 1.2 \cdot 1.6 \sim 1.9 \text{ m/s}$

input data

$$S_0 = 0m$$
 $S_{one floor} = 3m$


$$v_{max} = 2.5 \text{ m/s}$$

$$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$$

$$j_{max} = 2.5 \text{ m/s}^3$$

tone floor ~=
$$2\sqrt{(1.5/(0.5*1.2))}$$
 ~= $2*1.6s$ ~= **3s**

coarse 2nd order correction

$$t_{one floor} = 2 t_a + 2 t_j$$

$$t_i \sim = 0.5s$$

$$t_{one floor} \sim 2*1.6 + 2*0.5 \sim 4$$

Conclusions

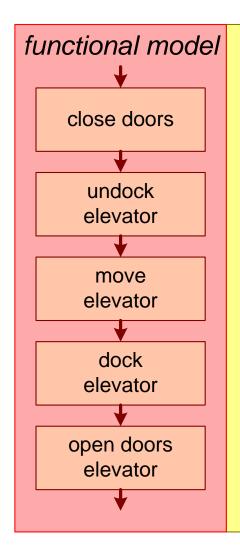
a_{max} dominates travel time

The model for small height traveling time can be simplified into:

$$t_{travel} = 2 \sqrt{(S_{travel}/0.5 a_{max}) + t_j}$$

Exercise Elevator Performance

exercise


Make a model for t_{top floor}

Take door opening and docking into account

What do you conclude from this model?

Elevator Performance Model

performance model

$$t_{top floor} = t_{close} + t_{undock} + t_{move} + t_{dock} + t_{open}$$

assumptions

$$t_{close} \sim = t_{open} \sim = 2s$$

$$t_{undock} \sim = 1s$$

$$t_{dock} \sim = 2s$$

$$t_{\text{move}} \sim = 18s$$

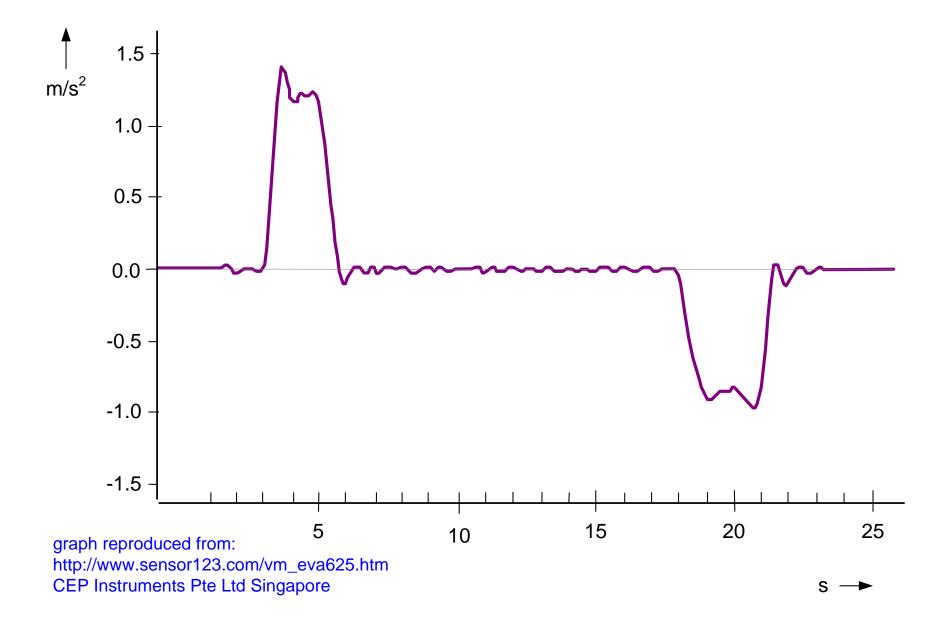
outcome

$$t_{top floor} \sim = 2 + 1 + 18 + 2 + 2$$

$$t_{top floor} \sim = 25s$$

Conclusions Performance Model Top Floor

Conclusions

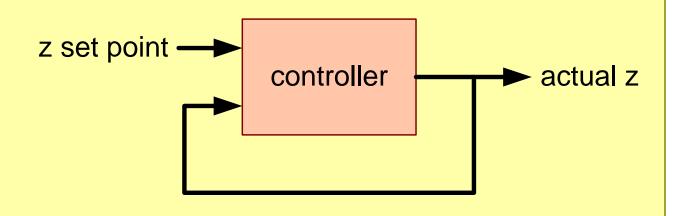

The time to move is dominating the traveling time.

Docking and door handling is significant part of the traveling time.

$$t_{top\ floor} = t_{travel} + t_{elevator\ overhead}$$

Measured Elevator Acceleration

Theory versus Practice


What did we ignore or forget?

acceleration: up <> down 1.2 m/s² vs 1.0 m/s²

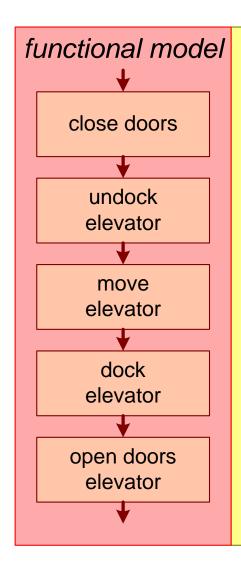
slack, elasticity, damping et cetera of cables, motors....

controller impact

.

Exercise Time to Travel One Floor

exercise


Make a model for tone floor

Take door opening and docking into account

What do you conclude from this model?

Elevator Performance Model

performance model one floor (3m)

$$t_{\text{one floor}} = t_{\text{close}} + t_{\text{undock}} + t_{\text{move}} + t_{\text{dock}} + t_{\text{open}}$$

assumptions

$$t_{close} \sim = t_{open} \sim = 2s$$

$$t_{undock} \sim = 1s$$

$$t_{dock} \sim = 2s$$

$$t_{\text{move}} \sim = 4s$$

outcome

$$t_{one floor} \sim = 2 + 1 + 4 + 2 + 2$$

$$t_{one floor} \sim = 11 S$$

Conclusions Performance Model One Floor

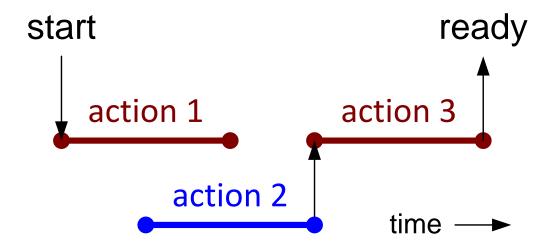
Conclusions

Overhead of docking and opening and closing doors is dominating traveling time.

Fast docking and fast door handling has significant impact on traveling time.

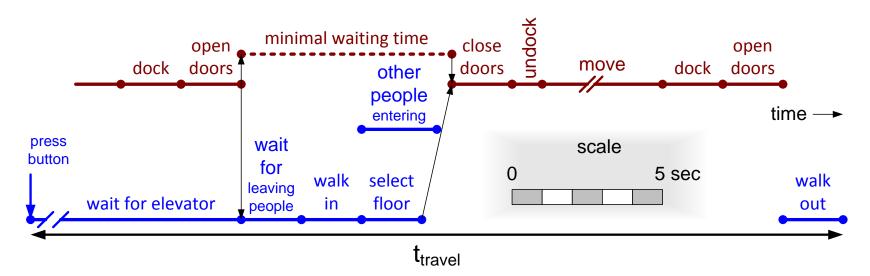
$$t_{\text{one floor}} = t_{\text{travel}} + t_{\text{elevator overhead}}$$

Exercise Time Line


Exercise

Make a time line of people using the elevator.

Estimate the time needed to travel to the top floor.


Estimate the time needed to travel one floor.

What do you conclude?

Time Line; Humans Using the Elevator

assumptions human dependent data

 $t_{wait for elevator} = [0..2 minutes]$ depends heavily on use

 $t_{wait for leaving people} = [0..20 seconds] idem$

 $t_{\text{walk in}} \sim = t_{\text{walk out}} \sim = 2 \text{ s}$

 $t_{\text{select floor}} \sim = 2 \text{ s}$

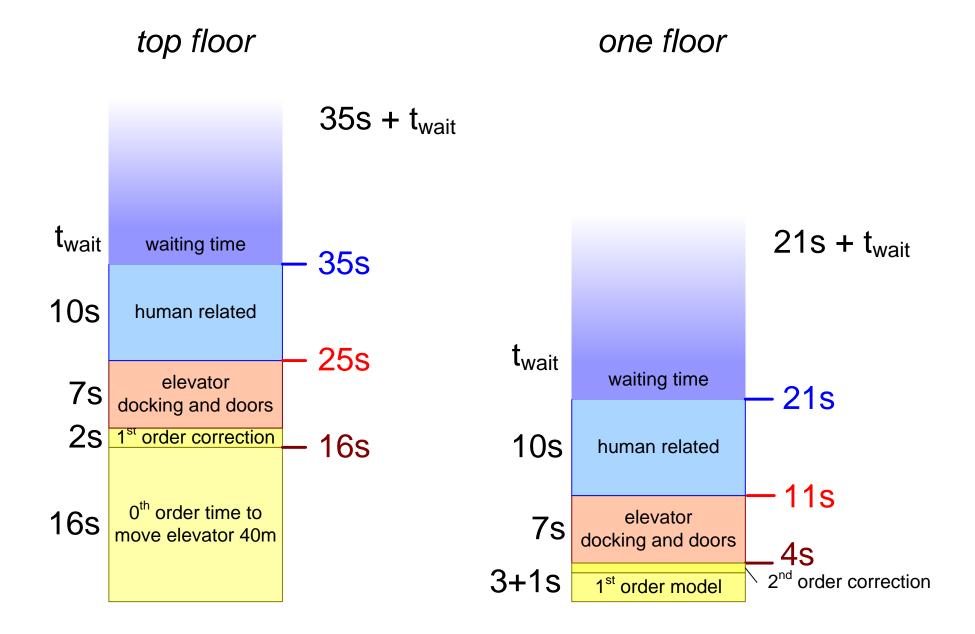
assumptions additional elevator data

t_{minimal waiting time} ~= 8s

 $t_{\text{travel top floor}} \sim = 25s$

 $t_{\text{travel one floor}} \sim = 11s$

outcome


$$t_{\text{top floor}} = t_{\text{minimal waiting time}} + \\ t_{\text{walk out}} + t_{\text{travel top floor}} + t_{\text{wait}}$$

$$t_{\text{one floor}} \sim = 8 + 2 + 11 + t_{\text{wait}}$$

 $\sim = 21 \text{ s} + t_{\text{wait}}$

$$t_{top floor} \sim = 8 + 2 + 25 + t_{wait}$$

 $\sim = 35 \text{ S} + t_{wait}$

Overview of Results for One Elevator

Conclusions

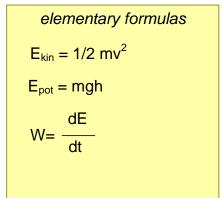
The human related activities have significant impact on the end-to-end time.

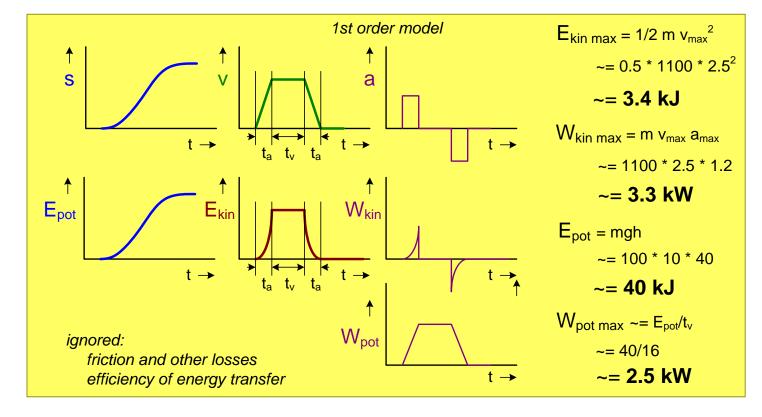
The waiting times have significant impact on the end-to-end time and may vary quite a lot.

 $t_{end-to-end} = t_{human \ activities} + t_{wait} + t_{elevator \ travel}$

Exercise Energy and Power

Exercise


Estimate the energy consumption and the average and peak power needed to travel to the top floor.


What do you conclude?

Energy and Power Model

	input data
$S_0 = 0m$	$S_t = 40 \text{m}$
$v_{max} = 2.5 \text{ m/s}$	m _{elevator} = 1000 Kg (incl counter weight)
$a_{max} = 1.2 \text{ m/s}^2 \text{ (up)}$	m _{passenger} = 100 Kg
$j_{max} = 2.5 \text{ m/s}^3$	1 passenger going up
$g = 10 \text{ m/s}^2$	

Energy and Power Conclusions

Conclusions

E_{pot} dominates energy balance

W_{pot} is dominated by v_{max}

W_{kin} causes peaks in power consumption and absorption

W_{kin} is dominated by v_{max} and a_{max}

 $E_{kin max} = 1/2 \text{ m } v_{max}^2$ ~= 0.5 * 1100 * 2.5² $\sim = 3.4 \text{ kJ}$ $W_{kin max} = m v_{max} a_{max}$ ~= 1100 * 2.5 * 1.2 ~= 3.3 kW $E_{pot} = mgh$ ~= 100 * 10 * 40 ~= 40 kJ $W_{pot max} \sim = E_{pot}/t_v$ ~= 40/16 $\sim = 2.5 \text{ kW}$

Exercise Qualities and Design Considerations

Exercise

What other qualities and design considerations relate to the kinematic models?

Conclusions Qualities and Design Considerations

Examples of other qualities and design considerations safety V_{max} V_{max} , a_{max} , i_{max} acoustic noise cage obstacles cause mechanical vibrations V_{max}, a_{max}, j_{max} vibrations air flow operating life, maintenance duty cycle,?

applicability in other domains

kinematic modeling can be applied in a wide range of domains:

transportation systems (trains, busses, cars, containers, ...)

wafer stepper stages

health care equipment patient handling

material handling (printers, inserters, ...)

MRI scanners gradient generation

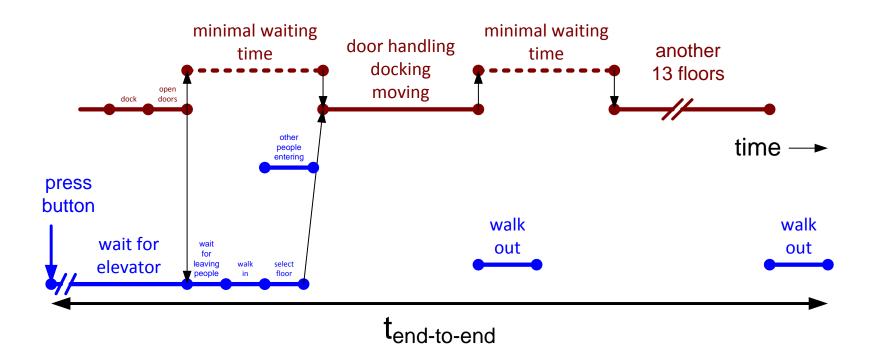
. . .

Exercise Multiple Users

Exercise

Assume that a group of people enters the elevator at the ground floor. On every floor one person leaves the elevator.

What is the end-to-end time for someone traveling to the top floor?


What is the desired end-to-end time?

What are potential solutions to achieve this?

What are the main parameters of the design space?

Multiple Users Model

elevator data

 $t_{min \ wait} \sim = 8s$

 $t_{one floor} \sim = 11s$

 $t_{\text{walk out}} \sim = 2s$

 $n_{floors} = 40 \text{ div } 3 + 1 = 14$

 $n_{\text{stops}} = n_{\text{floors}} - 1 = 13$

outcome

$$t_{end-to-end} = n_{stops} (t_{min \ wait} + t_{one \ floor}) + t_{walk \ out} + t_{wait}$$

$$\sim = 13 * (8 + 11) + 2 + t_{wait}$$

$$\sim = 249 \ s + t_{wait}$$

$$t_{\text{non-stop}} \sim = 35 \text{ S+ } t_{\text{wait}}$$

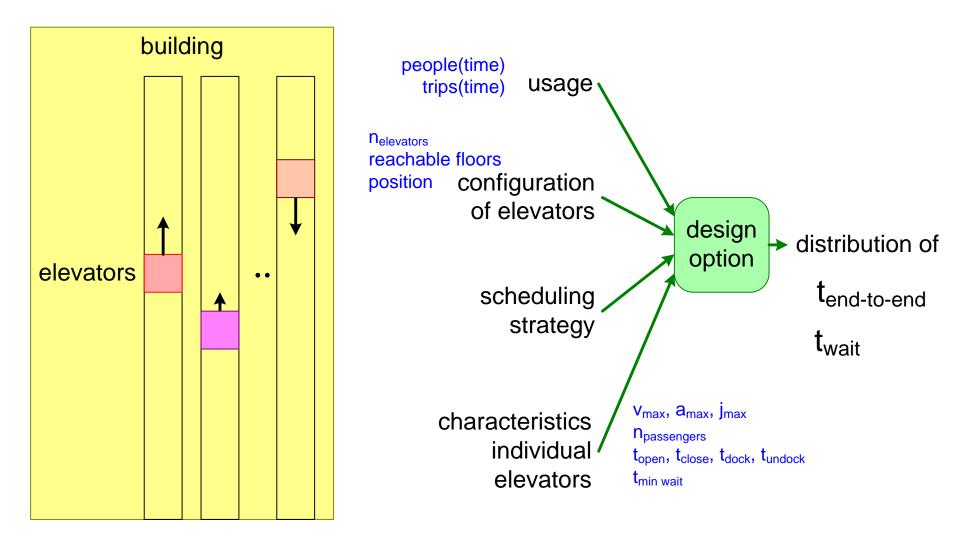
Multiple Users Desired Performance

Considerations

desired time to travel to top floor ~< 1 minute

note that $t_{wait next} = t_{travel up} + t_{travel down}$

if someone just misses the elevator then the waiting time is


missed return trip
trip down up

 $t_{end-to-end} \sim = 249 + 35 + 249 = 533s \sim = 9 \text{ minutes!}$

desired waiting time ~< 1 minute

Design of Elevators System

Design of a system with multiple elevator requires a different kind of models: oriented towards logistics

Exceptional Cases

Exceptional Cases

non-functioning elevator

maintenance, cleaning of elevator

elevator used by people moving household

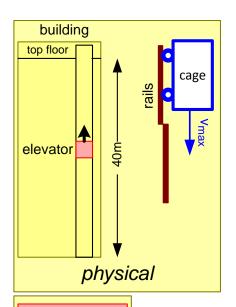
rush hour

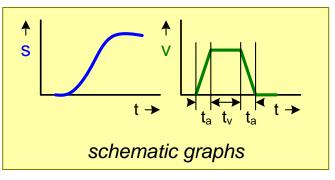
special events (e.g. party, new years eve)

special floors (e.g. restaurant)

many elderly or handicapped people

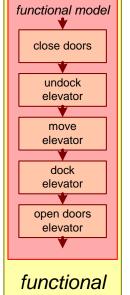
playing children

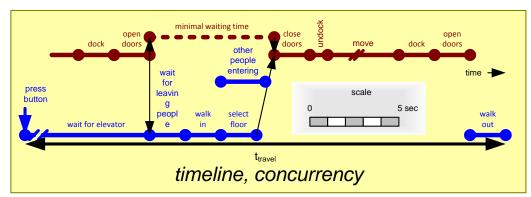


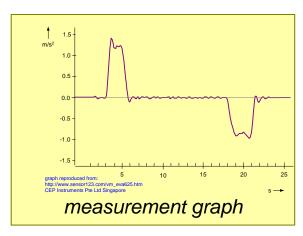

Wrap-up Exercise

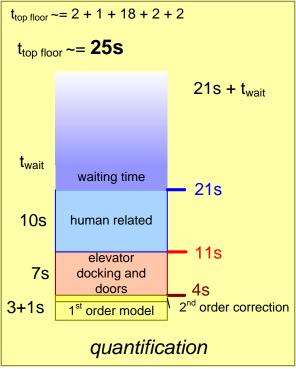
Make a list of all *visualizations* and representations that we used during the exercises

Summary of Visualizations and Representations

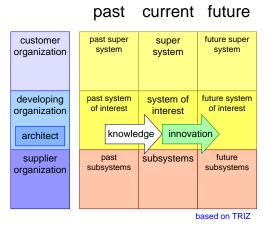


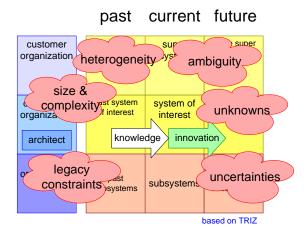



$$S_{t} = S_{0} + v_{0}t + \frac{1}{2} a_{0}t^{2}$$

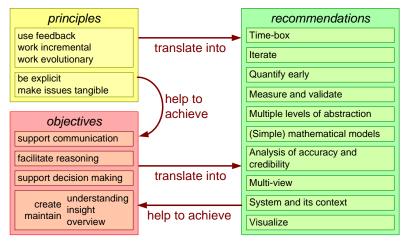

$$t_{top floor} = t_{close} + t_{undock} + t_{move} + t_{dock} + t_{open}$$

$$mathematical \ formulas$$



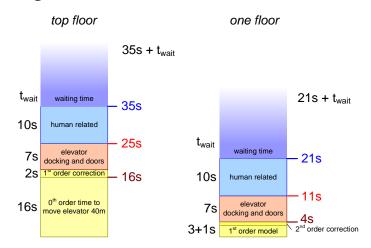


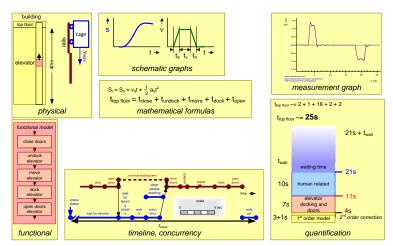
Architecting Scope and Challenges


Scope

Challenges

Recommendations


Final Top-Down Delivery


Introduction Conceptual Modeling

Zooming Out

intentionally left blank

Complementary Visualizations and Representations

intentionally left blank

