Module 33, Architectural Reasoning Design Fundamentals

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module discusses fundamental design methods and techniques, especially partitioning, interface, behavior, and quantified performance design.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 1.2

System Partitioning Fundamentals

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The fundamental concepts and approach system partitioning are explained. We look at physical decomposition and functional decomposition in relation to supply chain, lifecycle support, project management, and system specification and design.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0.2

Parts, Dynamics, Characteristics

Engineering

Example Physical Decomposition

Partitioning is Applied Recursively

Software plus Hardware Decomposition

Guidelines for Partitioning

the part is cohesive

functionality and technology belongs together

the coupling with other parts is minimal minimize interfaces

the part is selfsustained for production and qualification can be in conflict with cost or space requirements

clear ownership of part

e.g. one department or supplier

How much self-sustained?

control SW

application SW

HMI SW

control electronics

control interface

cooling

EMC shielding

main function qualification support

adjustment support

power stabilization

power conversion

power distribution production support

mechanical package

How self sustained should a part be? trade-off:

cost/speed/space optimization

logistics/lifecycle/production flexibility clarity

Decoupling via Interfaces

The Ideal Modularity

System is composed

by using standard interfaces

limited catalogue of variants (e.g. cost performance points)

System Creation

Simplistic Functional SubSea Example

Functional Decomposition

How does the system work and operate? Functions describe what rather than how. Functions are verbs. Input-Process-Output paradigm. Multiple kinds of flows: physical (e.g. hydrocarbons) information (e.g. measurements) control At lower level one part ~= one function pump pumps, compressor compresses, controller controls At higher level functions are complex interplay of physical parts e.g. regulating constant flow, pressure and temperature

Quantification

Size	2.4m *	0.7m	* 1.3m
0.20			

Weight 1450 Kg

Cost 30000 NoK

Reliability MTBF 4000 hr

Throughput 3000 l/hr

Response time 0.1 s

Accuracy +/- 0.1%

many characteristics of a system, function or part can be quantified

Note that quantities have a **unit**

How about the <characteristic> of the <component> when performing <function>?

Example Technical Budget

Example of A3 overview

Visualizing Dynamic Behavior

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Dynamic behavior manifests itself in many ways. Architects need multiple complementary visualizations to capture dynamic behavior effectively. Examples are capturing information, material, or energy flow, state, time, interaction, or communication.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

July 3, 2023

status: preliminary

draft

version: 0

Overview of Visualizations of Dynamic Behavior

Example Functional Model of Information Flow

"Cartoon" Workflow

Workflow as Functional Model

Workflow as Timeline

Swimming Lane Example

Example Signal Waveforms

Example Time Line with Functional Model

Information Centric Processing Diagram

Example State Diagram

Flow of Light (Physics)

Dynamic Behavior is Multi-Dimensional

How does the system work and operate?

Functions describe what rather than how.

Functions are verbs.

Input-Process-Output paradigm.

Multiple kinds of flows:

physical (e.g. hydrocarbons, goods, energy)

information (e.g. measurements, signals)

control

Time, events, cause and effect

Concurrency, synchronization, communication

multi-dimensional information and dynamic behavior

Exercise Dynamic Behavior

Capture the **dynamic behavior** of the **internals** of your system in **multiple** diagrams.

Diagrams that capture dynamic behavior are among others:

- Functional flow (of control or information, material or goods, or energy)
- Activity or sequence diagrams (e.g. with "swimming lanes")
- State diagrams

Exercise Block Diagram

Make a set of **block diagrams** capturing the **static parts** and **interfaces**.

Ensure coverage of the entire system, e.g. including service, training, production, etc.

Show both **hardware** and **software**

Good block diagrams have in the order of 10 to 20 blocks

Design Fundamentals

Parts, Dynamics, Characteristics

Decoupling via Interfaces

Dynamic Behavior

Question Generator

How about the **<characteristic>**of the **<component>**when performing **<function>**?

