
Medical Imaging in Chronological Order
-

legend

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard Sun workstationDOR
HC

interf

RC

interf

 SunOS, SunView

NIXRC

driver

HC

driver

DOR

driver

Spool HCU Store Image Gfx UI DB
PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools Print Store View Cluster

operating system

hardware

application functions

user interface

connected system

SW infrastructure

toolbox

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The chronological events of the product creation of the medical imaging
workstation are discussed. The growth in functionality and size from prototype
to product is shown. Typical problems in this period are explained.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.2 status: finished June 21, 2020

1 Project Context

Philips Medical Systems is a very old company, dating back to 1896 when the
first X-ray tubes were manufactured. Many imaging modalities have been added
to the portfolio later, such as Ultra Sound, Nuclear Medicaid, Computed Tomog-
raphy and Magnetic Resonance Imaging. Since the late seventies the management
was concerned by the growing effort to develop the viewing functionality of these
systems. Many attempts have been made to create a shared implementation of the
viewing functionality, with failures and partial successes.

In 1987 a new attempt was started by composing a team, that had the charter
to create a Common Viewing platform to be used in all the modalities. This team
had the vision that a well designed set of SW components running on standard
workstation hardware would be the solution. In the beginning of 1991 many
components had been built. For demonstration purposes a Basic Application was
developed. The Basic Application makes all lower level functionality available via
a rather technology-oriented graphical user interface. The case description starts at
this moment, when the Basic Application is shown to stakeholders within Philips
Medical Systems.

2 Introduction

The context of the first release of Medical Imaging is shown in Section 1. The
chronological development of the first release of the medical imaging workstation
is described in Section 3. Sections 4 and 5 zoom in on two specific problems
encountered during this period.

3 Development of Easyvision RF

The new marketing manager of the Common Viewing group was impressed by
the functionality and performance of the Basic Application. He thought that a
stand alone product derived from the Basic Application would create a business
opportunity. The derived product was called Easyvision, the first release of the
product was called Easyvision R/F. This first release would serve the URF X-ray
market. The Common Viewing management team decided to create Easyvision RF
in the beginning of 1991.

The enthusiasm of the marketing people for the Basic Application was based
on the wealth of functionality that was shown. It provided all necessary viewing
functions and even more. Figure 1 shows the chronology, and the initial marketing
opinion. Marketing also remarked: ”Normally we have to beg for more function-
ality, but now we have the luxury to throw out functionality”. The addition of

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 1

basic application

toolboxes

100 kloc

interactive viewing

marketing opinion:

"All the functionality is available,

we only have to provide a clinical UI"

Easyvision RF

integrated product

360 kloc

print server +

communication +

interactive viewing

1991 19931992

performance

problems

IQ

problems

Figure 1: Chronological overview of the development of the first release of the
Easyvision

viewing software to the conventional modality products1 was difficult for many
reasons, such as legacy code and architecture, and safety and related testing require-
ments. The Easyvision did not suffer from the legacy, and the self sustained product
provided a good means to separate the modality concerns from the image handling
concerns.

This perception of a nearly finished product, which only needed some user
interface tuning and some functionality reduction, proved to be a severe underes-
timation. The amount of code in the 1991 Basic Application was about 100 kloc
(kloc = thousand lines of code, including comments and empty lines), while the
product contained about 360 kloc.

user interfacecommunication

data base

export print
optical

storage

optical disk

drive
printerdisk drivenetwork

UI devices

system

monitor

Unix

daemons

software

process

associated

hardware

control and

data flow

remote systems

and users
user

user

user control
import

legend

Figure 2: The functionality present in the Basic Application shown in the process
decomposition. The light colored processes were added to create the Easyvision

The Basic Application provided a lot of viewing functionality, but the Easyvision
1Modality products are products that use one imaging technique such as Ultra Sound, X-ray or

Magnetic Resonance Imaging

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 2

as a product required much more functionality. The required additional function-
ality was needed to fit the product in the clinical context, such as:

• interfacing with modalities, including remote operation from the modality
system

• storage on optical discs

• printing on film

Figure 2 shows in the process decomposition what was present and what was
missing in the 1991 code. From this process decomposition it is clear that many
more systems and devices had to be interfaced. Figures 2 and 3 are explained
further in Chapter ??.

legend

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard Sun workstationDOR
HC

interf

RC

interf

 SunOS, SunView

NIXRC

driver

HC

driver

DOR

driver

Spool HCU Store Image Gfx UI DB
PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools Print Store View Cluster

operating system

hardware

application functions

user interface

connected system

SW infrastructure

toolbox

Figure 3: The functionality present in the Basic Application shown in the
construction decomposition. The light colored components were added to create
the Easyvision

Figure 3 also shows what was present and what was missing in the Basic Appli-
cation, but now in the construction decomposition. Here it becomes clear that also
the application-oriented functionality was missing. The Basic Application offered
generic viewing functionality, exposing all functionality in a rather technical way
to the user. The clinical RF user expects a very specific viewing interaction, that is
based on knowledge of the RF application domain.

The project phases from the conception of a new product to the introduction in
the market is characterized by many architectural decisions. Architecting methods
are valuable means in this period. Characteristic for an immature architecting
process is that several crises occur in the integration. As shown in Figure 1 both a
performance and a (image quality related) safety crisis happened in that period.

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 3

4 Performance Problem

The performance of the system at the end of 1991 was poor, below expectation.
One of the causes was the extensive use of memory. Figure 4 shows the perfor-
mance of the system as a function of the memory used. It is also indicates that a
typically loaded system at that moment used about 200 MByte. Systems which use
much more memory than the available physical memory decrease significantly in
performance due to the paging and swapping to get data from the slow disk to the
fast physical memory and vice versa.

total measured memory usage

p
e

rf
o

rm
a

n
c
e

physical

memory
paging to disk

MB64 200

codeOS data bulk data
fragmen-

tation

MB0 memory usage

Figure 4: Memory usage half way R1

The analysis of additional measurements resulted in a decomposition of the
memory used. The decomposition and the measurements are later used to allocate
memory budgets. Figure 5 shows how the problem of poor performance was
tackled, which is explained in much more detail in Chapter ??. The largest gains
were obtained by the use of shared libraries, and by implementing an anti-fragmentation
strategy for bulk data. Smaller gains were obtained by tuning, and analyzing the
specific memory use more critical.

Figure 6 shows the situation per process. Here the shared libraries are shown
separate of the processes. The category other is the accumulation of a number
of small processes. This figure shows that every individual process did fit in the
available amount of memory. A typical developer tests one process at a time. The
developers did not experience a decreased performance caused by paging, because
the system is not paging if only one process is active. At the time of integration,
however, the processes are running on the same hardware concurrently and then
the performance is suddenly very poor.

Many other causes of performance problems have been found. All of these are
shown in the annotated overlay on the software process structure in Figure 7.

Many of the performance problems are related to overhead, for instance for

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 4

measured

code

OS

data

bulk data

fragmen-
tation

budget

anti-fragmenting

 budget based

awareness,

measurement

DLLs

tuning

200

MB

74

MB

Figure 5: Solution of memory performance problem
s
h

a
re

d
 l
ib

ra
ri
e

s

U
I

c
o

m
m

u
n

ic
a

ti
o

n

s
e

rv
e

r
s
to

ra
g

e
 s

e
rv

e
r

p
ri
n

t
s
e

rv
e

r

o
th

e
r

U
N

IX10

20

30

0

budget per process (right column)

10

MByte

measured (left column)

d
at
a

co
d
e

20

Figure 6: Visualization per process

I/O and communication. A crucial set of design choices is related to granularity:
a fine grain design causes a lot of overhead. Another related design choice is the
mechanism to be used: high level mechanisms introduce invisible overheads. How
aware should an application programmer be of the underlying design choices?

For example, accessing patient information might result in an implicit trans-
action and query on the database. Building a patient selection screen by repeatedly
calling such a function would cause tens to hundreds of transactions. With 25 ms
per transaction this would result in seconds of overhead only to obtain the right
information. The response becomes even worse if many layers of information have
to be retrieved (patient, examination, study, series, image), resulting in even worse
response time.

The rendering to the screen poses another set of challenges. The original Basic
Application was built on Solaris 1, with the SunView windowing system. This
system was very performance efficient. The product moved away from SunView,
which was declared to be obsolete by the vendor, to the X-windowing system.
The application and the windowing are running in separate processes. As a conse-

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 5

user interfacecommunication

data base

export print
optical

storage

optical disk

drive
printerdisk drivenetwork

UI devices

remote systems

and users
user

data base granularity

information model layering

process communication overhead

active data granularity, update

graphics updates

framebuffer access

I/O overhead

network I/O

overhead

processing

file I/O

overhead

Figure 7: Causes of performance problems, other than memory use

quence all screen updates cause process communication overhead, including several
copy operations of screen bitmaps. This problem was solved by implementing an
integrated X-compatible screen manager running in the same process as the appli-
cation, called Nix2.

Interactive graphics require a fast response. The original brute force method to
regenerate always the entire graphics object was too slow. The graphics implemen-
tation had to be redesigned, using damage area techniques to obtain the required
responsiveness.

5 Safety

The clinical image quality can only be assessed by clinical stakeholders. Clinical
stakeholders start to use the system, when the performance, functionality and relia-
bility of the system is at a reasonable level. This reasonable level is achieved after
a lot of integration effort has been spent. the consequence is that image quality
problems tend to be detected very late in the integration. Most image quality
problems are not recognized by the technology-oriented designers. The technical
image quality (resolution, brightness, contrast) is usually not the problem.

Figure 8 shows a typical image quality problem that popped up during the
integration phase. The pixel value x, corresponding to the amount of X-ray dose
received in the detector, has to be transformed into a grey value f(x) that is used
to display the image on the screen. Due to discretization of the pixel values to
8 bits false contours become visible. For the human eye an artefact is visible
between pixels that are mapped on a single grey value and neighboring pixels that
are mapped on the next higher grey value. It is the levelling effect caused by the
discretization that becomes visible as false contour. This artefact is invisible if

2A Dutch play on words: niks means nothing

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 6

x
f(
x)

false

contour

10 bits pixel value

8 bits pixel value

Figure 8: Image quality and safety problem: discretization of pixel values causes
false contouring

the natural noise is still present. Concatenation of multiple processing steps can
strongly increase this type of artifacts.

for user readability the font-size was

determined "intelligently"; causing a dangerous

mismatch between text and image
URF monitor output:

fixed size letters at fixed grid

tumor>

EV output: scaleable fonts in graphics overlay

tumor>

Figure 9: Safety problem caused by different text rendering mechanisms in the
original system and in Easyvision

The original design of the viewing toolboxes provided scaling options for textual
annotations, with the idea that the readability can be guaranteed for different viewport
sizes. A viewport is a part of the screen, where an image and related information
are shown. This implementation of the annotations on the X-ray system, however,
conflicts in a dangerous way with this model of scalable annotations, see Figure 9.

The annotations in the X-ray room are made on a fixed character grid. Sometimes
the ’>’ and ’<’ characters are used as arrows, in the figure they point to the tumor.
The text rendering in the medical imaging workstation is not based on a fixed
character grid; often the texts will be rendered in variable-width characters. The
combination of interface and variable-width characters is already quite difficult.
The font scaling destroys the remaining part of the text-image relationship, with
the immediate danger that the annotation is pointing to the wrong position.

The solution that has been chosen is to define an encompassing rectangle at the

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 7

interface level and to render the text in a best fit effort within this encompassing
rectangle. This strategy maintains the image-text relationship.

6 Summary

The development of the Easyvision RF started in 1991, with the perception that
most of the software was available. During the developement phase it became clear
that a significant amount of functionality had to be added in the area of printing.
Chapter ?? will show the importance of the printing fumctionality. Performance
and safety problems popped up during the integration phase. Chapter ?? will show
the design to cope with these problems.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 1.2, date: March 16, 2004, 2003 changed by: Gerrit Muller

• added short explanation the term ”modality products”
• changed status to finished

Version: 1.1, date: February 27 2004, 2003 changed by: Gerrit Muller
• added section ”Summary”
• added short explanation of the figure memory use per process.
• changed status to concept

Version: 1.0, date: October 30, 2003 changed by: Gerrit Muller
• added section Project context
• fine-tuned text
• changed status to draft

Version: 0.1, date: September 29, 2003 changed by: Gerrit Muller
• fine-tuned text

Version: 0, date: May 21, 2003 changed by: Gerrit Muller
• Created by refactoring ”Threads of reasoning in the medical imaging case”

Gerrit Muller
Medical Imaging in Chronological Order
June 21, 2020 version: 1.2

University of South-Eastern Norway-NISE

page: 8

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

	Project Context
	Introduction
	Development of Easyvision RF
	Performance Problem
	Safety
	Summary

