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Abstract

This presentation addresses the fundamentals of measuring: What and how to
measure, impact of context and experiment on measurement, measurement errors,
validation of the result against expectations, and analysis of variation and credi-
bility.
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1 introduction

Measurements are used to calibrate and to validate models. Measuring is a specific
knowledge area and skill set. Some educations, such as Physics, extensively teach
experimentation. Unfortunately, the curriculum of studies such as software engineering
and computer sciences has abstracted away from this aspect. In this paper we will
address the fundamentals of modeling.

content
What and How to measure
Impact of experiment and context on measurement
Validation of results, a.0. by comparing with expectation
Consolidation of measurement data

Analysis of variation and analysis of credibility

Figure 1: Presentation Content

Figure [1| shows the content of this paper. The crucial aspects of measuring are
integrated into a measuring approach, see the next section.
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2 Measuring Approach

what

1. What do we need to know?

2. Define quantity to be measured. initial model
3. Define required accuracy purpose
4A. Define the measurement circumstances fe.g. by use cases
4B. Determine expectation historic data or estimation

4C. Define measurement set-up

5. Determine actual accuracy uncertainties, measurement error

6. Start measuring

7. Perform sanity check expectation versus actual outcome

how

Figure 2: Measuring Approach: What and How

The measurement approach starts with preparation and fact finding and ends
with measurement and sanity check. Figure 2] shows all steps and emphasizes the
need for iteration over these steps.

1. What do we need? What is the problem to be addressed, so what do we need
to know?

2. Define quantity to be measured Articulate as sharp as possible what quantity
needs to be measured. Often we need to create a mental model to define this
quantity.

3. Define required accuracy The required accuracy is based on the problem to be
addressed and the purpose of the measurement.

4A. Define the measurement circumstances The system context, for instance the
amount of concurrent jobs, has a big impact on the result. This is a further
elaboration of step 1 What do we need?.

4B. Determine expectation The experimentator needs to have an expectation of
the quantity to be emasured to design the experiment and to be able to assess
the outcome.

4C. Define measurement set-up The actual design of the experiment, from input
stimuli, measurement equipment to outputs.

Note that the steps 4A, 4B and 4C mutually influence each other.
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5. Determine actual accuracy When the set-up is known, then the potential measurement
errors and uncertainties can be analyzed and accumulated into a total actual
accuracy.

6. Start measuring Perform the experiment. In practice this step has to be repated
many times to “debug” the experiment.

7. Perform sanity check Does the measurement result makes sense? Is the result
close to the expectation?

In the next subsections we will elaborate this approach further and illustrate
the approach by measuring a typical embedded controller platform: ARM9 and
VxWorks.

2.1 What do we need?

The first question is: “What is the problem to be addressed, so what do we need to
know?” Figure |3| provides an example. The problem is the need for guidance for
concurrency design and task granularity. Based on experience the designers know
that these aspects tend to go wrong. The effect of poor concurrency design and
task granularity is poor performance or outrageous resource consumption.

guidance of
concurrency design and
task granularity

estimation of total lost CPU
time due to
context switching

What:
context switch time of
4.| VxWorks running on ARM9

test program
VxWorks
operating system
ARM 9
200 MHz CPU
100 MHz bus (computing) hardware

Figure 3: What do We Need? Example Context Switching

The designers know, also based on experience, that context switching is costly
and critical. They have a need to estimate the total amount of CPU time lost due to
context switching. One of the inputs needed for this estimation is the cost in CPU
time of a single context switch. This cost is a function of the hardware platform,
the operating system and the circumstances. The example in Figure [3]is based on
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the following hardware: ARM9 CPU running internally at 200 MHz and externally
at 100 MHz. The operating system is VxWorks. VxWorks is a real-time executive
frequently used in embedded systems.

2.2 Define quantity to be measured.

What (original): What (more explicit):
context switch time of The amount of lost CPU time,
VxWorks running on ARM9 due to context switching on

VxWorks running on ARM9
on a heavy loaded CPU

tcontext switch = tscheduler + tp1, loss |
egend
|:| Scheduler
D Process 1
tpl, no switching D Process 2
— time —»

tpl, before tscheduler tp2,|oss th tscheduler tp1|loss tp1, after

%/—/
p2 pre-empts pl pl resumes
= lost CPU time

Figure 4: Define Quantity by Initial Model

As need we have defined the CPU cost of context switching. Before setting up
measurements we have to explore the required quantity some more so that we can
define the quantity more explicit. In the previous subsection we already mentioned
shortly that the context switching time depends on the circumstances. The a priori
knowledge of the designer is that context switching is especially significant in busy
systems. Lots of activities are running concurrently, with different periods and
priorities.

Figured|defines the quantity to be measured as the total cost of context switching.
This total cost is not only the overhead cost of the context switch itself and the
related administration, but also the negative impact on the cache performance. In
this case the a priori knowledge of the designer is that a context switch causes
additional cache loads (and hence also cache pollution). This cache effect is the
term 7,1 joss in Figure Ef} Note that these effects are not present in a lightly loaded
system that may completely run from cache.
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~10%

/

number of

/ .
guidance of estimation of total context switches
A depends on application
concurrency | | lost CPU time
design and task due to cost of context
granularity context switching .
switch

depends on OS and HW

purpose drives required accuracy

Figure 5: Define Required Accuracy

2.3 Define required accuracy

The required accuracy of the measurement is determined by the need we originally
formulated. In this example the need is the ability to estimate the total lost CPU
time due to context switching. The key word here is estimate. Estimations don’t
require the highest accuracy, we are more interested in the order of magnitude. If
we can estimate the CPU time with an accuracy of tens of percents, then we have
useful facts for further analysis of for instance task granularity.

Low resolution ( ~ us - ms)
Easy access
Lot of instrumentation

High resolution ( ~ 10 ns)
requires
HW instrumentation

B

|/O | o Logic analyzer /
Oscilloscope
HW High resolution ( ~ 10 ns)
CPU - T
Timer Cope with limitations:
- Duration (16 / 32 bit
counter)

- Requires Timer Access

Figure 6: How to Measure CPU Time?

The relevance of the required accuracy is shown by looking at available measurement
instruments. Figure [6] shows a few alternatives for measuring time on this type
of platforms. The most easy variants use the instrumentation provided by the
operating system. Unfortunately, the accuracy of the operating system timing is
often very limited. Large operating systems, such as Windows and Linux, often
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provide 50 to 100 Hz timers. The timing resolution is then 10 to 20 milliseconds.
More dedicated OS-timer services may provide a resolution of several microseconds.
Hardware assisted measurements make use of hardware timers or logic analyzers.
This hardware support increases the resolution to tens of nanoseconds.

2.4 Define the measurement circumstances

Mimick relevant real world characteristics

real world experimental set-up
many concurrent processes, with a pre- Q
empts
# instructions >> |-cache N
. S S
N
# data >> D-cache S no other
Sedl Y & CPU activities
i -
-.. C
.. auses

tpl, before tscheduler 1:p2,loss tp2 tscheduler tpl,loss 1:pl, after

pl resumes

P2 pre-empts p1 = lost CPU time

Figure 7: Define the Measurement Set-up

We have defined that we need to know the context switching time under heavy
load conditions. In the final application heavy load means that we have lots of
cache activity from both instruction and data activities. When a context switch
occurs the most likely effect is that the process to be run is not in the cache. We
lose time to get the process back in cache.

Figure [7] shows that we are going to mimick this cache behavior by flushing
the cache in the small test processes. The overall set-up is that we create two small
processes that alternate running: Process P2 pre-empts process P1 over and over.

2.5 Determine expectation

Determining the expected outcome of the measurement is rather challenging. We
need to create a simple model of the context switch running on this platform.
Figures [§] and [ provide a simple hardware model. Figure [I0] provides a simple
software model. The hardware and software models are combined in Figure [TT]
After substitution with assumed numbers we get a number for the expected outcome,

see FigurdI2]
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200 MHz 100 MHz
Instruction
T cache e
CPU onb-ﬁI;lp m%r:;)ry memory
Data .
cache
cache line size:
i 8 32-bit words
Gl PCB

Figure 8: Case: ARM9 Hardware Block Diagram

Figure [§] shows the hardware block diagram of the ARM9. A typical chip
based on the ARM9 architecture has anno 2006 a clock-speed of 200 MHz. The
memory is off-chip standard DRAM. The CPU chip has on-chip cache memories
for instruction and data, because of the long latencies of the off-chip memory

access. The memory bus is often slower than the CPU speed, anno 2006 typically
100 MHz.

- N o < wn © ~ [ee]
memory memory 3 3 8 T T T T B
request response £ € 2 2 g g g ¢
o 2zodes——— PP

data XXX XXX
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- 38 cycles >

memory access time in case of a cache miss
200 Mhz, 5 ns cycle: 190 ns

Figure 9: Key Hardware Performance Aspect

Figure [9) shows more detailed timing of the memory accesses. After 22 CPU
cycles the memory responds with the first word of a memory read request. Normally
an entire cache line is read, consisting of 8 32-bit words. Every word takes 2 CPU cycles
=1 bus cycle. So after 22 + 8 x 2 = 38 cycles the cache-line is loaded in the CPU.
Figure 10 shows the fundamental scheduling concepts in operating systems.
For context switching the most relevant process states are ready, running and
waiting. A context switch results in state changes of two processes and hence
in scheduling and administration overhead for these two processes.

Figure [TT]elaborates the software part of context switching in five contributing
activities:

e save state P1

e determine next runnable task
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New Scheduler Terminated

\c‘reate dispatch et
—_—

Ready Running
B ——————
10 or everﬁ\ interrupt Wait
completion (I/O I event)
Waiting

Figure 10: OS Process Scheduling Concepts

simple SW model of context switch:
save state P1 Estimate how many
determine next runnable task ) .
e . instructions and memory accesses
update scheduler administration

load state P2 are needed per context switch
run P2

input data HW- Calculate the estimated time

tARM instruction = 5 NS
tmemory access = 190 NS needed per context switch

Figure 11: Determine Expectation

e update scheduler administration
e load state P2
e run P2

The cost of these 5 operations depend mostly on 2 hardware depending parameters:
the numbers of instruction needed for each activity and the amount of memory
accesses per activity. From the hardware models, Figure [9] we know that as
simplest approximation gives us an instruction time of 5ns (= 1 cycle at 200 MHz)
and memory accesses of 190ns. Combining all this data together allows us to
estimate the context switch time.

In Figure[I2]we have substituted estimated number of instructions and memory
accesses for the 5 operations. The assumption is that very simple operations require
10 instructions, while the somewhat more complicated scheduling operation requires
scanning some data structure, assumed to take 50 cycles here. The estimation is
now reduced to a simple set of multipications and additions: (10 4+ 50 + 20 +
10 + 10)instructions - 5ns + (1 + 2 + 1 + 1 + 1)memoryaccesses - 190ns
= 500ns(instructions) + 1140ns(memoryaccesses) = 1640ns To add some

Gerrit Muller University of South-Eastern Norway-SE
Modeling and Analysis: Measuring page: 8
March 6, 2021 version: 1.2



2
S =8
o 5 %
S EQ
® © 8
£ E®
simple SW model of context switch:
10 1 save state P1 Estimate how many
50 2 determine next runnable task . .
- . instructions and memory accesses
20 1 update scheduler administration
10 1 load state P2 are needed per context switch
10 1, run P2
100 6
IREERGIE Calculate the estimated time
500 ns | tarminstruction = 5 NS .
1140 ns, | tremoraccess = 190 ns needed per context switch
1640 ns
round up (as margin) gives expected tcontext switch = 2 US

Figure 12: Determine Expectation Quantified

margin for unknown activities we round this value to 2us.

2.6 Define measurement set-up

Task 1 Task 2

Time Stamp End
Cache Flush

Time Stamp Begin
Context Switch
Time Stamp End
Cache Flush

Time Stamp Begin
Context Switch
Time Stamp End
Cache Flush

Time Stamp Begin

Context Switch Time Stamp End

Cache Flush
Time Stamp Begin
Context Switch

Figure 13: Code to Measure Context Switch

Figure T3] shows pseudo code to create two alternating processes. In this code
time stamps are generated just before and after the context switch. In the process
itself a cache flush is forced to mimick the loaded situation.

Figure [I4]shows the CPU use as function of time for the two processes and the
scheduler.
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Figure 14: Measuring Context Switch Time

2.7 Expectation revisited

Once we have defined the measurement set-up we can again reason more about
the expected outcome. Figure |15]is again the CPU activity as function of time.
However, at the vertical axis the CPI (Clock cycles Per Instruction) is shown. The
CPI is an indicator showing the effectiveness of the cache. If the CPl is close to 1,
then the cache is rather effective. In this case little or no main memory acceses are
needed, so the CPU does not have to wait for the memory. When the CPU has to
wait for memory, then the CPI gets higher. This increase is caused by the waiting
cycles necessary for the main memory accesses.

Figure [I3] clearly shows that every change from the execution flow increases
(worsens) the CPI. So the CPU is slowed down when entering the scheduler. The
CPI decreases while the scheduler is executing, because code and data gets more
and more from cache instead of main memory. When Process 2 is activitated the
CPI again worsens and then starts to improve again. This pattern repeats itself for
every discontinuity of the program flow. In other words we see this effect twice
for one context switch. One interruption of P1 by P2 causes two context swicthes
and hence four dips of the cache performance.

2.8 Determine actual accuracy

Measurement results are in principle a range instead of a single value. The signal to
be measured contains some noise and may have some offset. Also the measurement
instrument may add some noise and offset. Note that this is not limited to the
analog world. For instance concurrent background activities may cause noise as
well as offsets, when using bigger operating systems such as Windows or Linux.
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[ ] Scheduler
@ @ [ ] Process 1
[ ] Process 2

Clock cycles Per Instruction (CPI)

Time

Based on figure diagram
by Ton Kostelijk

Figure 15: Understanding: Impact of Context Switch

The (limited) resolution of the instrument also causes a measurement error. Known
systematic effects, such as a constant delay due to background processes, can be
removed by calibration. Such a calibration itself causes a new, hopefully smaller,
contribution to the measurement error.

Note that contributions to the measurement error can be stochatic, such as
noise, or systematic, such as offsets. Error accumulation works differently for
stochatic or systematic contributions: stochatic errors can be accumulated quadratic

Etotal = \/5% + 5%, while systematic errors are accumulated linear €,44; = €1 +£2.

Figure [17| shows the effect of error propagation. Special attention should be
paid to substraction of measurement results, because the values are substracted
while the errors are added. If we do a single measurement, as shown earlier
in Figure then we get both a start and end value with a measurement error.
Substracting these values adds the errors. In Figure|17|the provided values result
in tguration = 4 + / — 4us. In other words when substracted values are close to
zero then the error can become very large in relative terms.

The whole notion of measurement values and error ranges is more general than
the measurement sec. Especially models also work with ranges, rather than single
values. Input values to the models have uncertainties, errors et cetera that propagate
through the model. The way of propagation depends also on the nature of the error:
stochastic or systematic. This insight is captured in Figure [I§]
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system measured measurement value + a l
under study signal instrument _£2
/ measurement
offset calibration error
characteristics

measurements have
stochastic variations and I +€1
systematic deviations I -£2
resulting ina range
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time

value

Figure 16: Accuracy: Measurement Error

tduration = tend - tstart systematic errors: add linear
tstart = 10 +/' 2 IJ.S stochastic errors: add quadratic
tend = 14 +/' 2 HS

tduration =4+- 7 US

Figure 17: Accuracy 2: Be Aware of Error Propagation

2.9 Start measuring

At OS level a micro-benchmark was performed to determine the context switch
time of a real-time executive on this hardware platform. The measurement results
are shown in Figure [I9] The measurements were done under different condi-
tions. The most optimal time is obtained by simply triggering continuous context
switches, without any other activity taking place. The effect is that the context
switch runs entirely from cache, resulting in a 2us context switch time. Unfortu-
nately, this is a highly misleading number, because in most real-world applications
many activities are running on a CPU. The interrupting context switch pollutes
the cache, which slows down the context switch itself, but it also slows down the
interrupted activity. This effect can be simulated by forcing a cache flush in the
context switch. The performance of the context switch with cache flush degrades
to 10us. For comparison the measurement is also repeated with a disabled cache,
which decreases the context switch even more to 50us. These measurements show
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Measurements have
stochastic variations and systematic deviations

resulting in a range rather than a Single value.

The inputs of modeling,
"facts", assumptions, and measurement results,

also have Stochastic variations and systematic deviations.

Stochastic variations and systematic deviations
propagate (add, amplify or cancel) through the model

resulting in an output range.

Figure 18: Intermezzo Modeling Accuracy

ARM9 200 MHz tcontext switch
as function of cache use

cache setting teontext switch
From cache 2 us

After cache flush 10 pys
Cache disabled 50 ps

Figure 19: Actual ARM Figures

the importance of the cache for the CPU load. In cache unfriendly situations (a
cache flushed context switch) the CPU performance is still a factor 5 better than in
the situation with a disabled cache. One reason of this improvement is the locality
of instructions. For 8 consecutive instructions “only” 38 cycles are needed to load
these 8 words. In case of a disabled cache 8 % (22 + 2 x 1) = 192 cycles are needed
to load the same 8 words.

We did estimate 2us for the context switch time, however already taking into
account negative cache effects. The expectation is a factor 5 more optimistics than
the measurement. In practice expectations from scratch often deviate a factor from
reality, depending on the degree of optimism or conservatism of the estimator. The
challenging question is: Do we trust the measurement? If we can provide a credible
explanation of the difference, then the credibility of the measurement increases.

In Figure 20 some potential missing contributions in the original estimate are
presented. The original estimate assumes single cycle instruction fetches, which
is not true if the instruction code is not in the instruction cache. The Memory
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» eXpeCted tcontext switch = 2 us
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S »8 How to explain?
S §9

2 EQ measured  teontext switch= 10 US

o o

£ EG

simple SW model of context switch: . L . .

0 1 ARG potentially missing in expectation:

50 2 determine next runnable task memory accesses due to instructions

20 1 update scheduler administration ~10 instruction memory accesses ~= 2 s
10 1 load state P2 memory management (MMU context)

10 1 run P2 complex process model (parents,

+ permissions)

100 6 bookkeeping, e.g performance data

input data HW: X . .
layering (function calls, stack handling)
500 ns | tarminstruction = 5 NS L i
the combination of above issues

1140 ns tmemory access = 190 Ns

1640ns However, measurement seems to make sense

Figure 20: Expectation versus Measurement

Management Unit (MMU) might be part of the process context, causing more state
information to be saved and restored. Often may small management activities take
place in the kernel. For example, the process model might be more complex than
assumed, with process hierarchy and permissions. May be hierarchy or permis-
sions are accessed for some reasons, may be some additional state information is
saved and restored. Bookkeeping information, for example performance counters,
can be maintained. If these activities are decomposed in layers and components,
then additional function calls and related stack handling for parameter transfers
takes place. Note that all these activities can be present as combination. This
combination not only cummulates, but might also multiply.

toverhead = Ncontext switch * tcontext switch
teontext switch = 10US teontext switch = 2US
ncontextlswitch CPU load
- oa
(S ) toverhead Co?/ghleoa?j‘d toverhead overhead
500 5ms 0.5% 1ms 0.1%
5000 50ms 5% 10ms 1%
50000 | 500ms 50% | 100ms 10%
Figure 21: Context Switch Overhead
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Figure [21] integrates the amount of context switching time over time. This
figure shows the impact of context switches on system performance for different
context switch rates. Both parameters t.ontertswitch ANd Neontertswiteh €an easily
be measured and are quite indicative for system performance and overhead induced
by design choices. The table shows that for the realistic number of t.opntextswitch =
10us the number of context switches can be ignored with 500 context switches per
second, it becomes significant for a rate of 5000 per second, while 50000 context
switches per second consumes half of the available CPU power. A design based
on the too optimistic teontextswiteh = 2445 would assess 50000 context switches as
significant, but not yet problematic.

2.10 Perform sanity check

In the previous subsection the actual measurement result of a single context switch
including cache flush was 10us. Our expected result was in the order of magnitude
of 2us. The difference is significant, but the order of magnitude is comparable.
In geenral this means that we do not completely understand our system nor our
measurement. The value is usable, but we should be alert on the fact that our
measurement still introduces some additional systematic time. Or the operating
system might do more than we are aware of.

One approach that can be taken is to do a completely different measurement
and estimation. For instance by measuring the idle time, the remaining CPU time
that is avaliable after we have done the real work plus the overhead activities. If we
also can measure the time needed for the real work, then we have a different way
to estimate th overhead, but now averaged over a longer period.

2.11 Summary of measuring Context Switch time on ARM9

We have shown in this example that the goal of measurement of the ARM9 VxWorks
combination was to provide guidance for concurrency design and task granularity.
For that purpose we need an estimation of context switching overhead.

We provided examples of measurement, where we needed context switch overhead
of about 10% accuracy. For this measurement the instrumentation used toggling of
a HW pin in combination with small SW test program. We also provided simple
models of HW and SW layers to be able to determine an expectation. Finally we
found as measurement results for context switching on ARM9 a value of 10us.
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3 Summary

Figure [22] summarizes the measurement approach and insights.

Conclusions
Measurements are an important source of factual data.

A measurement requires a well-designed experiment.

Measurement error, validation of the result determine the credibility.

Lots of consolidated data must be reduced to essential
understanding.

Techniques, Models, Heuristics of this module
experimentation
error analysis

estimating expectations

Figure 22: Summary Measuring Approach
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