Modeling and Analysis: Budgeting

by Gerrit Muller TNO-ESI, HSN-NISE

e-mail: gaudisite@gmail.com www.gaudisite.nl

Abstract

This presentation addresses the fundamentals of budgeting: What is a budget, how to create and use a budget, what types of budgets are there. What is the relation with modeling and measuring.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

August 21, 2020 status: preliminary draft version: 1.0

content of this presentation

What and why of a budget

How to create a budget (decomposition, granularity, inputs)

How to use a budget

A budget is

a quantified instantation of a model

A budget can

prescribe or describe the contributions

by parts of the solution

to the **System quality** under consideration

- to make the design explicit
- to provide a baseline to take decisions
- to specify the requirements for the detailed designs
- to have guidance during integration
- to provide a baseline for verification
- to manage the design margins explicitly

Visualization of Budget Based Design Flow

step

1A measure old systems	micro-benchmarks, aggregated functions, applications
1B model the performance starting with old s	systems flow model and analytical model
1C determine requirements for new system	response time or throughput
2 make a design for the new system	explore design space, estimate and simulate
3 make a budget for the new system:	models provide the structure measurements and estimates provide initial numbers specification provides bottom line
4 measure prototypes and new system	micro-benchmarks, aggregated functions, applications profiles, traces
5 Iterate steps 1B to 4	

Budgets Applied on Waferstepper Overlay

Budgets Applied on Medical Workstation Memory Use

memory budget in Mbytes	code	obj data	bulk data	total
shared code User Interface process database server print server optical storage server communication server UNIX commands compute server	11.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	3.0 3.2 1.2 2.0 2.0 0.2 0.5 0.5	12.0 3.0 9.0 1.0 4.0 0 6.0	11.0 15.3 6.5 10.5 3.3 6.3 0.5 6.8 0.8
application SW total UNIX Solaris 2.x	13.4	12.6	35.0	61.0 10.0
file cache total				3.0 74.0

Power Budget Visualization for Document Handler

Alternative Power Visualization

fact finding	through details	3			
aggregate to end-to-end performance					
search for appropriate abstraction level(s)					
from coars	e quesstimate				
	e guessimate	to reliable prediction			
from typica	case				
	to bou	undaries of requirement space			
from static	from static understanding				
		to dynamic understanding			
from stead	v state				
nom stead	to initialization	n, state change and shut down			
from old sy	stem				
to prototype					
		to actual implementation			
		time►			
start	later	only if needed			

- resource use (CPU, memory, disk, bus, network)
- timing (response, latency, start up, shutdown)
- productivity (throughput, reliability)
- Image Quality parameters (contrast, SNR, deformation, overlay, DOF)
- cost, space, time

static	dynamic
typical case	worst case
global	detailed
approximate	accurate

is the budget based on wish, empirical data, extrapolation, educated guess, or expectation?

A budget is a quantified instantiation of a model

A budget can prescribe or describe the contributions by parts of the solution to the system quality under consideration

A budget uses a decomposition in tens of elements

The numbers are based on historic data, user needs, first principles and measurements

Budgets are based on models and estimations

Budget visualization is critical for communication

Budgeting requires an incremental process

Many types of budgets can be made; start simple!

The Boderc project contributed to Budget Based Design. Especially the work of

Hennie Freriks, Peter van den Bosch (Océ),

Heico Sandee and Maurice Heemels (TU/e, ESI)

has been valuable.

