
Multi-view Architecting
-

Customer

objectives

Application Functional Conceptual Realization

Threads of Reasoning

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Buskerud University College, Philips Research

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway
gaudisite@gmail.com

Abstract

The development of large SW-intensive products needs to take requirements of multiple stakeholders into account.
A design of such a system has to address functional and quality requirements adequately. However, for most of
the required qualities no straight-forward design method exists even for a single quality.
A multi-view architecting model is described based upon a decomposition of an architecture in 5 architectural
views, ranging from customer objectives to realization. It is the task of the architect to keep these views consistent
and to balance design decisions in the perspective of the stakeholder needs.
We derived this model from our experience in developing software intensive industrial products, 2 cases are
described from the medical domain.

This paper has been written as part of the ”Composable” project in Philips and the Gaudí project.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.0 status: finished September 3, 2020



1 Introduction
The decomposition of an architecture in 5 views, as
depicted in figure 1, separates a number of concerns
(the what and how of the customer or problem domain
and the what and how of the product or solution
domain), which increases insight and overview and
helps amongst others to focus communication between
stakeholders.

Customer

objectives

Application Functional Conceptual Realization

Threads of Reasoning

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Figure 1: From Customer to Realization, 5 architectural
views

A decomposition is a blessing in disguise, the
structure and insight created by the decomposition
belong to the blessing part, while a new problem
is introduced: many stakeholders forget the cross-
view relationships. Multi-view architecting tackles this
problem by searching for a limited set of integrating-
views, which cover the most essential relations between
stakeholder needs and technology solutions. These
integrating views are visualized in figure 1 in an inter-
weaved fashion.

The more customer oriented views are inherently
at a multi-disciplinary level. At the conceptual level
design choices start to appear which involve implemen-
tation technologies and hence allocation to software
or hardware. The system architecture defines these
choices, while the software architecture describes the
software concepts and realization. In this article we
focus on the relation of customer needs to software
realization.

In this article first a historic case is presented to illus-
trate a mult-view way of working. Then the historic
way of working is rationalized into a reference model,
which can be used as a starting point for developing a
multi-view architecting method. A first step in creating
this method is taken by showing heuristic checklists for
issues per view. A second case is presented to illustrate

the model.

2 Multiple Views in a Medical
Imaging Workstation

The Medical Imaging Workstation development as
described here took place from 1990 until 1996 [3]. The
main functionality of these workstations is processing,
viewing and printing of medical images, acquired by
different scanners and X-ray systems. The workstations
form a family of products, which are sharing a platform
of common functions.

The development documentation of the Medical
Imaging Workstation consisted of functional specifica-
tions and designs per application, low level designs per
module and so-called ”system level aspect design speci-
fications” to describe integrating concerns. The aspect
documents described integral stakeholder concerns or
the requirements analysis, system qualities and design
concerns. These aspect documents are the predecessor
of the threads of reasoning described later in this article.
Figure 2 shows the top layers of this documentation.

FS cardio
FS 

vascular
FS dental

Functional

specifications

design 

cardio

design 

vascular

design 

dental
Design

specifications

Memory Resource 

Usage

CPU Resource 

Usage

Safety Design

Aspect

designs

Typical 

cases

Hazard

analysis

Requirement

analysis

documents

Figure 2: The toplayers of the documentation for the
Medical Imaging Workstation.

The first release counted 5 aspect documents. At
the time of the third release in 1996 some 15 aspect
documents with an average size of 6 pages were used.
These documents covered the most essential views for
this product family. The aspect document structure
evolved in time, the increase from 5 to 15 documents is
partly the addition of new views, while the number also
increased due to refactoring of aspects. Some aspects
might disappear, for instance the disk usage aspect was

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 1



quite relevant in 1992 with disks of less than 1 Gbyte,
while it is a non-issue in this age with disks of 40 Gbyte
or more.

The memory usage apect is detailed here as an
example, because it played a dominant role in
the architecture of the system. Traditionally all
software dominated developments for medical products
had severe performance problems after significant
functional extension. The introduction of many new
technologies at the same time made performance
(throughput and response time) a high-risk issue.

The memory usage aspect has to be balanced with
the processing power usage aspect, because memory
and processing power interfere with each other. For
that reason a part of the processing power aspect is
described as well.

A safety aspect was also described for this product,
however safety is much less of a concern for this
product, compared to the Medical Image Acquisition
product described later on. A workstation has no
physical contact with the patient, nor high power or
mechanical dangers are involved.

2.1 The Memory Usage Aspect in the
Thread of Reasoning

Stakeholders Quality

Attributes

Design

Concerns

Technical

Structures and

Mechanisms

Clinical

Technician

Response

time

Throughput

Cost

Constraints

Memory

Usage

Processing

Power

usage

Bulk Memory

management

Fine grain memory

management

Caching

Processing

Pipeline

Department

manager

paging

allocation

fragmentation

Application Functional Conceptual

Figure 3: Medical Imaging Workstation: Memory
Usage Aspect in the Thread of Reasoning

Figure 3 shows the memory resource usage. The
value of the viewing functionality is directly related
to the response time of the system, while the value
of the print function is determined by the throughput.
The available resources are constrained by the costprice
of the hardware. The clinical technician, who is

the daily user of such a system is mainly concerned
with the system performance (response time and
throughput), while the department manager as budget
owner is mainly interested in a reasonable costprice and
throughput.

The quality attributes throughput and response time
are transformed into the design concern ”resource
budgets”, especially processor and memory. The
memory usage point of view is concerned about
the behavior of the virtual memory system, the
memory allocation strategy, and memory fragmentation
behavior. The processor resource usage is concerned
about the amount of CPU time needed for the requested
operation.

In this product the memory usage is designed to
minimize the activation of virtual memory. Memory
budgets are applied which constrain the total amount of
memory used to the order of available physical memory.

A bulk memory management mechanism imple-
ments the memory allocation. The budget is
defined as configuration parameters for the memory
allocation. Control over the fragmentation behavior is
obtained by separating the fine grain memory allocation
and the bulk memory management, and by taking
explicit defragmentation measures in the bulk memory
management.

An Image Cache mechanism on top of the memory
allocation optimizes the use of the limited amount of
memory. This cache is also of importance for the
processor load, re-use of images in the cache lowers
the processor load. This relation shows the trade-off
between design concerns to achieve the required system
qualities. Reserving more memory for the cache lowers
the processor load, but increases the required amount of
memory.

The use of an image processing pipeline, with
cached intermediate images, is taking this trade-off
even further.

3 Multi-view Architecting Model
In every view dominating issues are present, which
can be classified as domain specific or more generic.
Figure 4 shows typical dominating issues per view.

The rationale in an architecture is expressed in a
reasoning from left to right: What is needed in the
customer business to how is the product realized. The

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 2



domain specific

generic

Application Functional Conceptual RealizationCustomer

business

keydrivers

context

constraints

stakeholder

concerns

application 

domain 

entities & 

operations

functions

feautures

system

qualities

functional 

blocks

SW 

components

design

concerns

technical

structures 

and

mechanisms

Figure 4: Issues per view

keydrivers in the customer business are realized by
domain specific entities and operations. The keydrivers
are constrained by the context, for instance economic
constraints (material cost, operational cost) or environ-
mental or political constraints. Hence these context
constraints influence the realization of the keydrivers by
entities and operations.

Figure 5 shows the relations for the issues per views
in the customer business and application views. The
issues in the next views have similar relations.

domain specific

generic

ApplicationCustomer

business

keydrivers

context

constraints

stakeholder

concerns

application 

domain 

entities & 

operations

w
it
h

in

in
flu

e
n
ce

s

realized by

determine

w
it
h

re
s
p

e
c
t 
to

Figure 5: Zooming in on the relations between the
issues in the Customer Business and Application views

Real world products have a large amount of details
which play a role. Figure 6 shows the amount of detail
per view that inherently play a role. The documentation
contains a subset of all these details, which is shown
as explicit facts. The challenge in complex product
creation is to address the relevant issues, because it is
impossible to address all facts in a reasonable amount
of time.

The explicit facts from Realization to Conceptual
to Functional are abstractions, which explain the large

10
3

10
6

10
9

10
12

10
15

Customer

business

Application Functional Conceptual Realization

Explicit specified

Inherently present

Components

Interfaces

Parameters

Construction

elements

statements

gates

etcetera

Functions

Qualities

Values

1 Domain

Entities

Operations

Key drivers

Complementors

Competition

Figure 6: Number of explicit facts and inherent details
per view

reduction. The realization view is often described
at statement level, gates, netlists et cetera. Todays
products have descriptions of multi-million lines of
code, multi-million gates et cetera.

The conceptual view abstracts this to classes or
components, interfaces and parameters. Typical
systems have multi-thousand classes and tens of
thousands methods and parameters. Not all these
facts are conceptual by nature, however the order of
magnitude in total is tens of thousands.

The functional view abstracts further to a black box
description of the system, in terms of functions and
quantified qualities like performance. Quite often this
specification level is limited to a reasonable communi-
catable amount, in the order of hundreds of functions
and values.

At the other side of the diagram is the customer
business and application view, which is from product
creation point of view the context. These views need
to be made explicit as far as needed to understand the
context. This means that the customer business view
is reduced to a small explicit abstraction in terms of
keydrivers, competition and complementors.

Some more explicit data is needed of how the
customer works, in order to understand the role of our
product in the context. The entities in the domain are
modeled as well as the operations performed on or by
these entities. Hundreds or even thousands of entities

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 3



can be present. For example the DICOM information
model for medical equipment consists of this order of
magnitude.

The amount of inherently present facts in every view
is orders of magnitude larger. For instance in the
realization view the real behavior is always dynamic
and the amount of inherent details is proportional
with the product of amongst others the state space,
the amount of statements and the amount of relations
between statements, configurations and parameters.

In all other views the same kind of combinatorial
explosion determines the diffrence between explicit
specified and inherently present details. While at the
context side the ratio of inherently present to explicit
specified details increases much more, due to the fact
that our explicit facts where highly abstracted. In the
context views somewhere the individual consumers are
present as ”detail”, with todays population of billions of
people the number of inherently present facts becomes
quite large.

Figure 7 shows a network of relations for specific
individual issues. For architectures of real products
the amount of issues is several orders of magnitude
larger than shown here, see figure 6. This large quantity
forces the architect in an approach of focusing on the
most important (from customer point of view) and most
critical (from technical point of view) issues. In practice
this means that the architect spends a significant amount
of time in a limited set of threads of reasoning. Figure 7
shows one thread of reasoning as a bold set of relations.

domain specific

Application Functional Conceptual RealizationCustomer

business

generic

Figure 7: Network of issue relations with one thread of
reasoning in bold

3.1 Activities in multi-view architecting
Figure 8 shows the main activities of multi-view archi-
tecting. These activities are part of the responsi-
bility of the system architect, see [4]. As mentioned
above these activities address the challenge of creating
an immensely complex product for an even more
complex environment, within a limited amount of time.
A continuous concern is the level of conciseness,
pragmatism is required to keep the conciseness at a
workable level, without loosing the critical details.

RealizationFunctional Conceptual

C
u

s
to

m
e

r

b
u

s
in

e
s
s

A
p

p
lic

a
ti
o

n

4. Balance Macroscopic and Microscopic

3. Maintain

Consistency
1. Decompose

2. Determine

Integrating

Threads

Figure 8: Activities in multi-view architecting

3.1.1 Decompose

Every view requires one or more decompositions. For
instance the functional view is often decomposed in
functional requirements and quality or non-functional
requirements. Kruchten [1] and Soni (referentie?)
show specific decompositions for the conceptual and
realization views in SW architecture.

3.1.2 Determine integrating threads

The decomposition in main views and the further
decomposition fragments the system. Likewise repson-
sibilities are scattered and many decisions are taken
within a limited scope. Integrating threads make the
reasoning in a broader perspective explicit.

The most difficult aspect of determining the
integrating threads is the selection of a limited, approx-

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 4



imately 5 in the first generation, set of threads. For
professional products as described in this article about
50 threads are required to obtain a reasonable coverage
of the system. The know-how, skills, manpower and
time constraints require a pragmatic trade-off between
coverage and timeliness1 The main criteria for selection
are:

• Important for customer and the business

• Critical with respect to technical realization

These criteria can be phrased as: focus on the
important, for instance valuable customer issues and
create a thread if the technical implementation is
critical, for instance risky or costly.

3.1.3 Maintain consistency

The repeated decompositions in different views can
easily introduce inconsistencies. The explicit thread
of reasoning helps to detect inconsistencies accross
views. Note that this is by far not waterproof, since the
threads of reasoning by far do not cover all issues in all
views. A verification and feedback process is essential
to detect inconsistencies as early as possible.

Note also that the threads of reasoning can be
mutually inconsistent. By looking along the main
decomposition direction some of these inconsistencies
are detected.

3.1.4 Balance

Balancing is one the main responsibilities of an
architect. Balancing is required at every design level,
from microscopic level, statements for instance, up to
macroscopic level, business key drivers for instance.

The balance between integrating views is a concern
during the selection of the integrating views. For
instance functionality or performance oriented threads
need to be complemented with cost or power
constrained threads. Ideally both aspects are covered
in one thread, for instance performance cost ratio.

1For many people this may sound dangerous and irresponsible.
However most people do not realize that many systems are developed,
where most people are not even aware of the integrating concerns! At
the other hand systems, where a large coverage is pursued, are often
not successfull due to lack of feedback.

3.2 Pitfalls in multi-view architecting
The list of activities can be complemented by a list of
pitfalls, as shown in table 1

• too few views

• completeness

• general formalization

Table 1: Pitfalls in multi-view architecting

3.2.1 Too few views

As a counterexample we sketch the situation when
working with a one-dimensional approach. Take, for
instance, a naïve object-oriented approach working only
with objects, classes and relations. For the application
domain, domain objects are identified. These domain
objects are detailed to describe the precise functionality
of a product. These objects are extended with design
objects to address design issues. The design objects
are implemented as classes and instances. Traceability
links show the derivation of one workflow to the next.
The number of objects is growing from workflow to
workflow. The implemented system is just a network
of classes. The entire structure of objects within
and between workflows becomes strongly coupled by
functional dependencies and therefore hard to manage
and evolve.

As a consequence of such a one-dimensional
approach issues like functional structure or subsystems
can only be handled as adornments of certain domain
objects. In the same way, error handling and initial-
ization only refer to sets of design objects, which
represent the according design decisions.

The proposed multi-view architecting approach
allows dealing with each of the issues within the
relevant workflow within a specific view.

3.2.2 Completeness

Another pitfall is the pursuit of completeness. Often an
attempt is made to document requirements completely
to have a sound basis for further development steps.
Completeness is aimed for to gain complete certainty
that the right work is being performed.

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 5



The problem with this attempt is that a criterion for
completeness is hard to define and that most devel-
opment work is done in an evolving context. Large
extensive documents easily become outdated and they
are hard to keep up to date.

A multi-view approach addresses the issue of
certainty by approaching the workflows from multiple
viewpoints. Complete certainty is an illusion. It is
better to look for early feedback on the work performed
and to adjust it, if necessary. This leads to an incre-
mental way of developing.

3.2.3 General Formalization

The executable system is completely formal. To
improve the development quality often such rigor is
already pursued in early development phases. For
instance by describing requirements using a formal
notation.

Formalization of requirements should only be used
were requirements are available in a precise form.
Formality of representations grows as the devel-
opment moves from requirements to design. A set
of lightweight notations is preferable to one heavy
notation.

The use of formal models in early development such
as executable simulations may be very useful for feasi-
bility analysis. In general, formalization should be used
for well-defined problems with specific scope where it
can make a specific contribution.

3.3 Evolution and Feedback in multi-view
architecting

Compare
Product

Creation

Business

bottomline

requirement

Measured

result

Figure 9: The product creation process of a complex
product requires continuous feedback

The scope and complexity of today’s products are
so large that no single human being can oversee and

understand the system completely. The limits of human
know-how and skills require an approach which takes
care of these limits. A very effective apporach is via
continuous feedback, as shown in figure 9.

Working incremental enables obtaining feedback to
control the next incremental development steps. It is
crucial to have both a criterium for success as well as
a measure of the result to compare with the success
criterium. The success criterium as well as the measure
for success must be very close to the "real-world" objec-
tives. For instance measuring customer satisfaction
is better than measuring system performance, while
measuring system performance is better than measuring
module performance et cetera.

Typical bottomline business requirements are related
to financial parameters like cashflow, margin, return
on investment, but also future oriented parameters like
innovative power and potential and satisfied customer
base.

time

fu
n
ct
io
n
al
it
y

p
er
fo
rm

an
ce

Generation1 Generation2 Generation3

Figure 10: Succesive product generations increase the
functionality and performance stepwise.

The feedback control mechanism is applied within a
product generation as well as from one generation to the
next generation. Figure 10 show the normal stepwise
increase of functionality and performance for succesive
product generations. The views and integrating threads
should evolve together with the product family. From
one generation to the next the thread structure should
be refactored and extended. The number of threads will
more or less increase proportional with the generations,
increasing the coverage of the system.

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 6



4 Emperical checklists

Safety

Security

Reliability

Robustness

Useability

Appeal, Appearance

Throughput or

Productivity

Response Time

Image Quality

Reproduceability

Predicatability

Accuracy

Transportability

Wearability

Storability

Manufacturability

Testability

Serviceability

Configurability

Installability

Evolvability

Portability

Upgradeability

Extendability

Maintainability

Logistics flexibility

Lead time

Standards Compliance

Cost price

Cost of operation

Interaction with environment

Power consumption

Consumption rate (water, air,

chemicals, etcetera)

Disposability

Size, weight

Resource utilization

Figure 11: Emperical checklists for for qualities in all 5
views

From our experiences in the development of software
intensive systems we compiled some checklists, shown
in figure 11 and 12.

The qualities shown in figure 11 are relevant in all
5 views. In the customer objective view the ultimate
objectives of the customer with respect to the quality
are articulated. In the application view the customer
way of working is depicted to achieve the quality.
The functional view described the product requirements
regarding this quality. The design strategy and the
choosen concepts to ensure the quality are described in
the conceptual view. Finally the realization in lines of
code, electronics circuits et cetera form the realization
view.

granularity
scoping

containment

cohesion

coupling

SW development
environment

repository

tools

infrastructure

characteristics
static

dynamic

information model
entities

relations

operations

allocation
budgets

interfaces

feedback tools
monitoring

statistics

analysis

call graphs

message tracing

object tracing
persistence

caching

versioning,

prefetching

lazy evaluation

licensing
SW keys

supply chain
outsource

co-design

buy

interoperate

source vs binary

technology choices
lifecycle

obsolesence

core, key, base

meta-functional
operational

image processing

handling calls

..

initialization
start-up

shutdown

bootstrap

discovery

negotiation

fault handling
exceptions

logs

traces

diagnostics

configuration handling

data replication

performance observation

capability query

testing
automation

special methods

harness

suites

off-line guidance

concurrency
processes

tasks

threadsconfiguration man.
packages

components

files

objects

modules

interfaces

synchronization
signalling

messaging

call-back scheduling

notification

active data

watchdogs

time-outs

locking

semaphores

transactions

checkpoints

deadlock detection

roll-back

priorities

pre-emption

identification
uniqueness

naming

data model,

registry

scoping

configuration

database

inheritance

resource

management
allocation

anti-fragmentation

garbage collection

distribution
allocation,

transparency

component,

client/Server

multi-tier model

Figure 12: Emperical checklists for SW architecture
aspects in conceptual and realization views

In the conceptual and realization view well known

styles, patterns and mechanisms are (re-)used to ensure
an appropriate quality. Figure 12 is an attempt to
capture the relevant aspects we met in a checklist.

5 Safety and Reliability for
Medical Image Acquisition

Medical image acquisition systems are used to acquire
and display images for interventional support or
diagnostics. In case of interventional usage, for
example a vascular surgeon is operating the patient
using a catheter. For this surgeon it is of the utmost
importance that he always sees what he is doing inside
the patient, i.e. the acquired images must be displayed
real-time (fluoroscopy). During acquisition, the patient
and in a much lesser degree the surgeon are exposed to a
dose of radiation. This dose must be a small as possible.
Next to interventional usage, these systems are also
used for diagnostics by radiologists, i.e. acquiring
images, applying image processing functionality, and
using them to make a diagnosis. To obtain the best
images, the image detector must be carefully positioned
with respect to the patient. For this, the acquisition
systems contain massive moving parts that can move at
high speed. Relevant views for such systems include
response-time and throughput, similar views as for
imaging workstations. We will focus here however
in this example on reliability and safety which are of
particular importance in these acquisition systems (see
figure 13).

vascular

surgeon

patient

radiologist

Stakeholders
Quality

Attributes Design Concerns
Technical Structures

and Mechanisms

reliable

fluoroscopy

radiation

dose

mechanical

safety

graceful

degradation

error handling

error prevention

safe dose

design

safe mechanical

design

independent parts

distributed error

handling

self-tests

dead-man principle

dose detection

collision detectors

power disconnection

Figure 13: Safety and Reliability Views in a Medical
Imaging Acquisition System

Two important stakeholders for the system are thus
the vascular surgeon and the radiologist. The patient

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 7



that is being examined is also a stakeholder. For the
vascular surgeon it is important that fluoroscopy is
available when using a catheter. Especially for the
patient it is important that the dose to which he/she
is exposed is limited. Furthermore, when using the
system, the physician or patient should not be hit by
mechanical parts.

This leads to the requirement that fluoroscopy must
be highly reliable. This results in a number of
design concerns. Amongst others, the system must
support graceful degradation, i.e. when one part of
the systems fails then other parts should continue as
good as possible. Especially the parts concerned with
fluoroscopy must be able to continue. The system is
built from a number of relatively independent hardware
and software parts, limiting the consequences of a
failure in one of these parts. For example, the software
is divided into a number of functional units, and each
of them has its own process space, limiting the conse-
quence of a failure in one of the units. Furthermore,
each unit is responsible for its own error handling, in
order to avoid cascading errors. The issue of preventing
errors is addressed by providing self-tests, which help
to identify possible sources of problems in time. When
reliability and error prevention are concerned, also
other qualities play a role, for example the testa-
bility of a system so that possible errors are more
easily detected during development, and the service-
ability where service-engineers can for example inspect
log-files and can replace equipment with intermittent
failures.

Other important quality attributes that must be dealt
with are safety with respect to the dose and the
mechanical parts. A thorough design must be made for
both of them. The dead-man principle is important for
both of them. This principle means that only dose is
generated or the system moves as long as the physician
holds a button; when the button is released, the dose
generation stops, or the system stops moving. For dose
control, dose detection is in place. Similarly, collision
detectors are applied, stopping the moving parts when a
collision with the environment is detected.

An important organization for admission of such
systems for amongst others the US market is the
FDA (Food and Drug Administration). This organi-
zation imposes a number of legal requirements on such
systems. For example, a button must be provided
that can disconnect all equipment from power in

case uncontrollable behavior occurs. This button can
however lead to dangerous situations when used during
an intervention. It is important for the FDA to validate
that the legal requirements are met, making traceability
an important quality (not shown in figure 13).

The above description focused on reliability and
safety. More qualities for these systems and the relation
to design concerns and implementation mechanisms are
described in [5].

6 Related work

In the previous section, we described and illustrated our
multi-view architecting approach. We focussed on an
integral usage of views that go through the workflows.
Below, we will describe a selection of related work that
deals with multiple viewpoints in the various workflows
and how this work is related to the ideas in our paper.

6.1 IEEE 1471

System Architecturehas

Architecture

Description

D
es

cr
ib

ed
 b

y

Stakeholder view

viewpoint

concern covers
conforms

to

covers

model

defines

Consists of

11

has

Figure 14: IEEE 1471 model

IEEE1471 [?] defines stakeholders, concerns, views,
viewpoints and models, and the relationships between
those concepts, see figure 14. The IEEE 1471
definition makes the relationship of why (stakeholders
and their concerns) and what (described per viewpoints
in models) explicit. It is a useful definition, because
it acknowledges the fact that viewpoints are not
orthogonal and not a priori consistent.

The threads of reasoning build upon these concepts
to provide some means of navigating, integrating and
using these widely different concepts.

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 8



6.2 ISO 9126

• Functionality suitability, accuracy, interoperability,
compliance, security, traceability

• Reliability maturity, fault tolerance, recoverability,
availability, degradability

• Usability understandability, learnability, operability,
explicitness, customisability, attractivity, clarity,
helpfullness, user-friendliness

• Efficiency time behaviour, resource behaviour

• Maintainability

• Portability

Table 2: ISO 9126 quality framework

ISO 9126 [?] provides a quality framework, close
to the emperical checklist we compiled ourselves. A
classification in 6 categories is used, see 2.

7 Conclusions

8 Acknowledgements
We like to thank Pierre America, Hans Jonkers, Henk
Obbink, and William van der Sterren for commenting
on earlier versions of this paper. This research has been
partially funded by ESAPS, project 99005 under Eureka
Σ! 2023 Programme, ITEA.

References
[1] Philippe B. Kruchten. The 4+1 view model

of architecture. IEEE Software, pages 42–50,
November 1995.

[2] Gerrit Muller. The system architecture homepage.
http://www.gaudisite.nl/index.
html, 1999.

[3] Gerrit Muller. Case study: Medical
imaging; from toolbox to product to
platform. http://www.gaudisite.nl/
MedicalImagingPaper.pdf, 2000.

[4] Gerrit Muller. The role and task of the system
architect. http://www.gaudisite.nl/
RoleSystemArchitectPaper.pdf, 2000.

[5] Jan Gerben Wijnstra. Quality attributes
and aspects of a medical product family.
submitted to the Software Track of the
HICSS-34, January 2001 http://nlww.
natlab.research.philips.com:
8080/research/swa_group/wijnstra/
ExternalPublications/hicss34/
HICSSPaperJGW.pdf, 2000. This article
describes the flow of non functional requirements
to (software) implementation.

History
Version: 0, date: 2000 changed by: Gerrit Muller

• Created, no changelog yet

Gerrit Muller, JürgenMüller, Jan Gerben Wijnstra
Multi-view Architecting
September 3, 2020 version: 1.0

Buskerud University College, Philips Research

page: 9

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/RoleSystemArchitectPaper.pdf
http://www.gaudisite.nl/RoleSystemArchitectPaper.pdf
http://nlww.natlab.research.philips.com:8080/research/swa_group/wijnstra/ExternalPublications/hicss34/HICSSPaperJGW.pdf
http://nlww.natlab.research.philips.com:8080/research/swa_group/wijnstra/ExternalPublications/hicss34/HICSSPaperJGW.pdf
http://nlww.natlab.research.philips.com:8080/research/swa_group/wijnstra/ExternalPublications/hicss34/HICSSPaperJGW.pdf
http://nlww.natlab.research.philips.com:8080/research/swa_group/wijnstra/ExternalPublications/hicss34/HICSSPaperJGW.pdf
http://nlww.natlab.research.philips.com:8080/research/swa_group/wijnstra/ExternalPublications/hicss34/HICSSPaperJGW.pdf

	Introduction
	Multiple Views in a Medical Imaging Workstation
	The Memory Usage Aspect in the Thread of Reasoning

	Multi-view Architecting Model
	Activities in multi-view architecting
	Decompose
	Determine integrating threads
	Maintain consistency
	Balance

	Pitfalls in multi-view architecting
	Too few views
	Completeness
	General Formalization

	Evolution and Feedback in multi-view architecting

	Emperical checklists
	Safety and Reliability for Medical Image Acquisition
	Related work
	IEEE 1471
	ISO 9126

	Conclusions
	Acknowledgements

