
How to Create a Manageable Platform
Architecture?

-

Q: How to manage

platform architectures?

case

architecting

platform
time

dimension

process

market

driven

Recommendations

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Today’s fast pace of the market and the technology development forces the product
creators to rethink their development approach. One of the directions is to
maximize the return on investments of frequently used functions, for instance by re-
use, component based design or by a platform approach. The architecting effort is
a key success factor to combine re-use approaches with fast and innovative product
creation.
In this presentation we will present a case, discuss the role of the architecture, and
elaborate the essential architecture ingredients for a successful platform creation,
and evolution, and innovative product creation.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.0 status: concept September 6, 2020

1 Introduction

Most companies struggle with the development of functionality and components
shared by multiple products. The strategy to share development costs of shared
functionality and components is known under many different labels: re-use, product
families, product lines, generic developments or platforms to name a few. We will
use the term platform in this paper.

Q: How to manage

platform architectures?

case

architecting

platform
time

dimension

process

market

driven

Recommendations

Figure 1: Outline of this paper

This paper is partially, about half, based on existing Gaudí material. We want to
address the following question in this paper: “Q: How to manage platform archi-
tectures?”. Figure 1 shows the outline of this paper. We start by discussing an
actual platform case that covers more than 10 years elapsed time. Next we explore
architecting and platforms. We zoom in on the time dimension, the process and
the need to be market driven. Finally we summarize by a means of a number of
recommendations.

2 Case: Medical Imaging Workstation

The Medical Imaging workstation was an early large scale Object Oriented product.
Originally intended to become a re-useable set of toolboxes, it evolved in a family
of medical workstations and servers.

2.1 Product Context

Philips Medical Systems is a major player in the medical imaging market. The
main competitors are GE and Siemens. The Product Creation focus of Philips
Medical Systems is modality oriented, as shown in figure 2.

The common technology in conventional X-ray systems is developed by component
oriented business groups, which make generators, tubes, camera’s, detectors, et

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 1

Philips Medical Systems

Non X-ray

modalities

Conventional

X-ray

MR CT URF Surgery
Cardio

Vascular

Medical

Imaging

Common

X-ray

Components

US

Figure 2: Philips Medical Systems, schematic organization overview.

cetera. The so-called ”System-groups” have a more clinical focus, they create the
clinical oriented systems on the basis of the common available components.

The non X-ray groups1 mainly build large complex general purpose imaging
equipment. The imaging principles in CT and MR are less direct, which means
that an image reconstruction step is required after acquisition to form the viewable
images. Ultra Sound (ATL) is acquired by Philips Medical Systems recently. It
is not fully integrated in the organization. The main markets of Philips Medical
Systems are radiology and cardiology, with a spin off to the surgery market.

Traditionally the radiologist makes and interprets images from the human body.
A referring physician requests an examination, the radiologist responds with a
report with his findings. Figure 3 shows a generic set of Radiology drivers.

Philips Medical Systems core is the imaging equipment in the examination
rooms of the radiology department2. The key to useful products is the combined
knowledge of application (what) and technology (how).

2.2 Historic Phases

The development model of Medical Imaging has changed several times. Roughly
the phases in Figure 4 can be observed. The first phase can best be characterized
as technology development, with poor Market and Application feedback. The next
phase overcompensates this poor feedback by focusing entirely on a product.

Philips Medical Systems has been striving for re-useable viewing components
at least from the late seventies. This quest is based on the assumption that the
viewing of all Medical Imaging Products is so similar, that cost reduction should

1A poor name for this collection; The main difference is in the maturity of the modality, where
this group exists from relative ”young” modalities, 20 a 30 years old.

2equally important core for Philips Medical Systems is the cardio imaging equipment in the
catheterization rooms of the cardiology department, which is out of the Medical Imaging Workstation
scope.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 2

Diagnosis

Department

Efficiency

Safety

Image quality

Relaxed patient

ease of use

patient handling

universality

integrated information flow

minimal film cost

up time

Compliant with Standards and Regulations

minimal evasive

automation

patient accessibility

patient entry, exit

dose reduction

Figure 3: Generic drivers of Radiology Departments

be possible when a common implementation is used. The lessons learned during
this long struggle have been partially consolidated in [4].

The group of people, which started the Common Viewing development, applied
a massive amount of technology innovations, see Figure 5.

2.3 Basic Application and Toolboxes

The goal of the common viewing development was to create an extensive set of
toolboxes, to be used for viewing in all imaging products. The developers of
the final products had fine-grain access to all toolboxes. This approach is very
flexible and powerful, however the penalty of this flexibility is that the integration
is entirely the burden of the product developer.

The power of the toolboxes was demonstrated in a Basic Application. This
basic application was a superset of all available features and functions. From
clinical point of view a senseless product, however a good vehicle to integrate
and to demonstrate.

Figure 6 shows the idealized layering of the toolboxes and the the Basic Appli-
cation in september 1991. the toolbox layer builds upon the Sun computing platform
(Workstation, the Sun version of UNIX SunOS and the Sun windowing environment
Sunview). The core of common viewing is the imaging and graphics toolbox, and
the UI gadgets and style.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 3

Advanced Development
(”Common Viewing”)

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Develop

ment of

1
st

product

Parallel

Development
of 2

nd
 product

Family

Development

Transformation in

re-useable components

Basic Application

plus toolboxes

Easyvision RF

Easyvision RF R2

Easyvision CT/MR

Easyvision Xray R1

Easyvision CT/MR R2

Easyvision RAD

EasyReview

Medical

Imaging

Platform

Figure 4: Phases of Medical Imaging

2.4 Medical Imaging X-Ray

Figure 7 shows the X-ray rooms which are involved from the examination until the
reading by the radiologist. Around 1990 the X-ray system controls were mostly
in the control room, where the operator of the system performed all settings from
acquisition setting to printing settings. Some crucial settings can be performed
in the room itself, dependent on the application. The hardcopies were produced
as literal copies of the screen of the monitor. The printer was positioned at some
non-obtrusive place.

The consequence of the literal screen copy was that a lot of redundant infor-
mation is present on the film, such as patient name, birth date and acquisition
settings. On top of that the field of view was supposed to be square or circular,
although the actual field of view is often smaller due to the shutters applied.

The economic existence of Medical Imaging X-ray was based in 1992 on
improvements of this printing process. The patient, examination and acquisition
information is orderly shown in one viewport, removing all the redundant infor-
mation near the images itself. A further optimization is applied by a fit-to-shutter
formatting. These 2 steps together reduce the film use by 20% to 50%.

The user actions needed for the printing are reduced as well, by providing print
protocols, which perform the repetitive activities of the printing process. The effec-
tiveness of this automation depends strongly on the application, some applications
require quite some fine-tuning of the contrast-brightness, or an essential selection
step, which require (human) clinical knowhow.

A prominent sales feature at conferences was the 9-button remote control. The
elementary viewing functions, such as patient/examination selection, next/previous
image and contrast/brightness. This remote control lowered the threshold for clinical
personnel, both radiologist as well as technical, enough to catch their interest: The

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 4

• standard UNIX based workstation

• full SW implementation, more flexible

• object oriented design and implementation (Objective-C)

• graphical User Interface, with windows, mouse et cetera

• call back scheduling, fine-grained notification

• data base engine, fast, reliable and robust

• extensive set of toolboxes

• property based configuration

• multiple co-ordinate spaces

Figure 5: Technology innovations by Common Viewing

Standard Sun workstation

SunOS, SunView

Image Gfx UI DB

Basic Application

operating system

toolbox

hardware

user interface

legend

Figure 6: Idealized layering of SW toolboxes and Basic Application in september
1991

Medical Imaging was not sold as a disgusting computer or workstations, rather it
was positioned as a clinical appliance.

The definition of the Medical Imaging was done by marketing, which described
that job as a luxury problem. Normally heavy negotiations were required to get
features in, while this time most of the time marketing wanted to reduce the (viewing
and user interface) feature set, in order to simplify the product.

From software point of view the change from basic application to clinical
product was tremendous. The grey areas in figure 10 indicate new SW. The amount
of code increased from 100 klines to 350 klines of code.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 5

Examination
Room

Control
Room

Corridor
or closet

Examination
Room

Control
Room

Reading
Room

Figure 7: X-ray rooms from examination to reading around 1990

Examination
Room

Control
Room

Reading
Room

Corridor
or closet

Examination
Room

Control
Room

printer

light box

detector

X ray

source console

Figure 8: X-ray rooms from examination to reading, when Medical Imaging is
applied as printserver

2.5 Second Concurrent Product: Medical Imaging CT/MR

Up to 1992 the Medical Imaging organization had a single focus, first on toolboxes,
later on Medical Imaging R/F. In 1993 it was decided to apply the Medical Imaging
also on CT and MR.

The printing functionality of CT and MR scanners improves significantly when
Medical Imaging is applied as printserver. However the CT and MR applications
can benefit also from interactive functionality, more than the X-ray applications.
An clear example is the Multi Planar Reformatting (MPR) functionality, where
arbitrary slices are reconstructed from the volume data set.

Superficially X-ray viewing looks the same as CT and MR viewing. However
the viewing is different in many subtle ways. A fundamental difference is that
X-ray images are projection images, while CT and MR images are slices, which
means that CT and MR images have a 3D ”meaning”, which is missing in X-ray

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 6

old: screen copy

20 to 50% less film needed

new: SW formatting

Figure 9: Comparison of conventional screen copy based film and a film produced
by Medical Imaging. This case is very favorable for the Medical Imaging approach,
typical gain is 20% to 50%.

images. The 3D relationship is amongst others used for navigation, a point-and-
click type of user interface: clicking on a scanogram immediately shows the related
slice(s) at that position.

The software was significantly extended, the code size increased from 350 klines
to 600 klines. Note that this is not only an extension with 250 klines, from the
original 350 klines roughly half was modified or removed. In other words a signif-
icant amount of refactoring has taken place concurrent with the application exten-
sions. Figure 13 shows the (idealized) SW structure at the completion of Medical
Imaging CT/MR and the second release of Medical Imaging R/F. Light grey blocks
represent new code, dark grey represents major redesigns.

All diagrams 6, 10 and 13 are labelled as idealized. This adjective is used
because the actual software structure was less well structured than presented by
these diagrams. Part of the refactoring in the 1992-1994 time frame was a cleanup,
to obtain well defined dependencies between the software-”groups”. These groups
were more fine-grained than the blocks in these diagrams.

2.6 Towards Workflow

Medical Imaging R/F and Medical Imaging CT/MR were positioned as modality
enhancers. The use of these systems enhances the value of the modality. They
are used in the immediate neighborhood of the modality, before the reporting is
done. From sales point of view these Medical Imaging are additional options for a
modality sales.

The radiology workflow is much more than the acquisition of the images.
Digitalization of the health-care information flow requires products which fit in the

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 7

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard IPX workstationDOR
HC

interf

RC

interf

SunOS

NIXRC

driver

HC

driver

DOR

driver

Spool HCU Store Image Gfx UI DB
PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools Print Store View Cluster

operating system

toolbox

hardware

application functions

user interface

connected system

SW infrastructure

legend

Figure 10: Idealized layers of the Medical Imaging R/F software in september 1992

curved

slice

oblique

slices

Figure 11: Example of Multi Planar Reformatting applied on the spine

broader context of radiology and even the diagnostic workflow. Figures 14 and 15
show the increasing context where the workstation technology can be deployed.

The increasing context causes new extensions of the SW building, as shown in
Figure 16.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 8

MR Examination

room

CT Examination

room

Control

room

Control

room

"MPR"

room

Reading
Room

Figure 12: Example of CT and MR department, where Medical Imaging is
deployed

MR CT DSI DCAS PCRnew
HCU

3M

RC
dials

Desk, cabinets, cables, etc.

Standard IPX or Sparcstation 5 workstationDOR
HC

interf
RC dials

interf

Solaris

NIXRC dials
driver

HC
driver

DOR
driver

CDSpack

Spool HCU Store Image Gfx UI DB
PMS-
net in

PMS-
net out

Compose Print Store MPR View Export Cluster

MR CT RF Vascular Cardio PCR

Specialized applications
(Dental, etcetera)

Medical Imaging R/FMedical Imaging CT/MR

Rad

Start up

Install

Config

SW keys

service

customi
zation

remote
access

dev.
tools

Specialized applications

Figure 13: Idealized layers of the Medical Imaging software in june 1994

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 9

MR CT

URF Vascular

"MPR" CT

Printer RAD RAD RAD

Reading
Room

Reception

Office

teaching

Figure 14: Radiology department as envisioned in 1996

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 10

MR CT

URF Vascular

"MPR" CT

Printer RAD RAD RAD

Reading
Room

Recepti
on

Office

teaching

Radiology department

Referring

Physician

Referring

Physician

Radiologist

at home

IT infrastructure
in basement

Radiologist at

other hospital

Radiologist

somewhere

in the hospital

Conference room

Operating

theatre

trauma

room

Figure 15: Medical Imaging in health-care workflow perspective, as envisioned in
1996

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 11

MR CT DSI DCAS PCRnew
HCU

3M

RC
dials

Desk, cabinets, cables, etc.

Standard Sparcstation 5 workstationDOR
HC

interf
RC dials

interf

Solaris

NIXRC
driver

HC
driver

DOR
driver

CDSpack

Spool HCU Store Image Gfx UI DB
PMS-
net in

PMS-
net out

Compose Print Store MPR View Export Cluster

MR CT RF Vascular Cardio PCR

Specialized applications
(Dental, bolus chase, cardio analysis, etcetera)

Interfacing
RIS, etcetera

XRayCT/MRRadReview
Image Guided

Surgery
Back-ends

Start up

Install

Config

SW keys

service

customi
zation

remote
access

dev.
tools

Figure 16: Idealized layers of the Medical Imaging software in 1996

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 12

3 Architecture

market, business, technology

process, product

components

(implementations)

API's

OS file system

bus memory I/O

infrastructure
http DVB IPTV

WMA MP3 JPEG

standards

audio

pipeline

message

routing

whiteboard

communication

concepts

layer n !calls n-k; k>1

layer n !calls n+k; k>0

high level rules

customers environment

Java

SQL

FPGA
technology

domain

codification

overarching vision

Spec Design

Design
Design

Spec
Spec

specifications

guidance

monitoring

indicators

Mark all applicable boxes

other...

performance

reliability

cost
risk

functionality

power

Figure 17: What is Architecture?

What is Architecture? Every individual appears to use their own definition of
architecture. Figure 17 shows many different aspects that are frequently mentioned
as being part of the architecture.

Do the right things

Do the things right

How
Guiding

Why
Understanding

What
Describing

Figure 18: What is Architecture?

We will use a broad definition of Architecture. Architecture is the combination
of the know how of the solution (technology) and understanding of the problem
(customer/application). The architect must play an independent role in considering
all stakeholders interests and searching for an effective solution. The fundamental
architecting activities are depicted in figure 18.

Creating the solution is a collective effort of many designers and engineers.
The architect is mostly guiding the implementation, the actual work is done by the
designers and engineers. Guiding the implementation is done by providing guide-
lines and high level designs for many different viewpoints. Figure 19 shows some
of the frequently occurring viewpoints for guiding the implementation. Note that
many people think that the major task of the architect is to define the decompo-
sition and to define and manage the interfaces of this decomposition. Figure 19

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 13

4. Infra-

structure

2. Construction

Decomposition

3. Allocation

5. Choice of

integrating

concepts

1. Functional

Decomposition

tuner
frame-

buffer
MPEG

DS

P
CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view play browse

storage

acquisition compress encoding

display
de-

compress
decoding

Resource

usage
Performance

Exception

handling

Device

abstraction

Pipeline

Figure 19: ”Guiding How” by providing rules for:

shows that architecting involves many more aspects and especially the integrating
concepts are crucial to get working products.

Architecting involves amongst others analyzing, assessing, balancing, making
trade-offs and taking decisions. This is based on architecture information and facts,
following the needs and addressing the expectations of the stakeholders. A lot of
the architecting is performed by the architect, which is frequently using intuition.
As part of the architecting vision, overview, insight and understanding are created
and used.

Intuition, assumptions, beliefs, bias

Expectations

Facts

Architecture(s)

Architecture

Architect(s)

Stakeholders

analyze

assess

balance

trade-off

decide

vision

overview

insight

understanding

Architecting

problems, legacy

uncertainties

unknowns

Facts, Expectations and

Intuition may be false

Integration requires a

critical mindset that is alert

for unknowns

Figure 20: The Art of Architecting

The strength of a good architect is to do this job in the real world situation,
where the facts, expectations and intuition sometimes turn out top be false or
changed! Figure 20 visualizes this art of architecting.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 14

Decomposition

is "easy"

Integration is

difficult

Figure 21: Architecting is much more than Decomposition

Many people expect the architect to decompose, as mentioned in the expla-
nation of ”guiding how”, while integration is severely underestimated, see figure 21.
In most development projects the integration is a traumatic experience. It is a
challenge for the architect to make a design which enables a smooth integration.

Architecture

Subset of which

architect is aware

Architecture

description

Actually written

by architect(s)

Flattened

into

Figure 22: The architecture description is by definition a flattened and poor repre-
sentation of an actual architecture.

IEEE 1471 makes another interesting step: it discusses the architecture description
not the architecture itself. The architecture is used here for the way the system is
experienced and perceived by the stakeholders3.

This separation of architecture and architecture description provides an inter-
esting insight. The architecture is infinite, rich and intangible, denoted by a cloud

3Long philosophical discussions can be held about the definition of the architecture. These
discussions tend to be more entertaining than effective. Many definitions and discussions about
the definition can be found, for instance in [2], [1], or [3]

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 15

in figure 22. The architecture description, on the other hand, is the projection, and
the extraction of this rich architecture into a flattened, poor, but tangible description.
Such a description is highly useful to communicate, discuss, decide, verify, et
cetera. We should, however, always keep in mind that the description is only a
poor approximation of the architecture itself.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 16

4 Platform

Many people advocate generic developments, such as platforms, claiming a wide
range of advantages. Effective implementation of generic development has proven
to be quite difficult. Many attempts to achieve these claims by generic develop-
ments have resulted in the opposite goals, such as increased time to market, quality
and reliability problems et cetera. We need a better rationale to do generic devel-
opments, in order to design an effective platform creation process.

Customer value

Internal benefits

application adaptability

availability variations

new features originating

from different products

timely availability

reliability

increase economy

of scale

asset creation

availability of accumulated

feature set

design for

configurability

shared architectural

framework

quality increase

maturity

predictability

availability integrated

base product

Extrovert driver

Introvert driver

Figure 23: Drivers of Generic Developments

Figure 23 shows drivers for Generic Developments and the derived require-
ments for the Generic Something Creation Process. The first driver (Customer
value is extrovert: does the product have value for the customer and is he willing
to buy the product? The second driver Internal Benefits is introvert, it is the normal
economic constraint for a company.

Today high tech companies are knowhow and skill constrained, in a market
which is extremely fast changing and which is rather turbulent. Cost considera-
tions are degraded to an economic constraint, which is orders of magnitude less
important than being capable to have valuable and sellable products.

The derivation of the requirements shows clearly that these requirements are
not a goal in itself. For instance an shared architecture framework is required
to enable features developed for one product to be used in other products as well,
which in turn should have value for a customer. So the verification of this requirement
is to propagate a new valuable feature from one product to the next, with small
effort and lead time.

These drivers and requirements derivation is emphasized, because many generic
developments result in large monolithic general purpose things, fulfilling:

• availability accumulated feature set

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 17

• designed for configurability

• shared architectural framework

• mature

without bringing any customer value; ”You can not have this easy shortcut, because
our architectural framework does not support it, changing the framework will cost
us 100 man-years in 3 years elapsed time”

product platform

legend

pre-integrated

platform

P1 P2 P3

common

P1 P2 P3applications +

integration glue

components

applications +

integration glue

infrastructure

components

huge product integration effort

very flexible

low coupling

configuration management???

no product integration effort

not flexible

high coupling

configuration management

product

implementation

concepts

Figure 24: What is a Platform?

But what is a platform? Many different types of platforms can be found.
Figure 24 shows a classification of platforms along an axis of increasing content
and integration. The “lightest” platform is a shared set of concepts, where every
product implements it’s own instantiation. The most “heavy” platform is the imple-
mentation of a superset of all products, where the creation of a product only involves
a configuration step of selecting the right functionality and performance. The
figure shows some intermediate possibilities, from light to more heavy respec-
tively: a collection of shared implementations of components, the same plus infras-
tructure, and a complete pre-integrated framework. Light platforms require lots
of integration effort, are very flexible, have low coupling, and require a lot of
complex configuration management effort. Heavy platforms do not require much
integration, are not flexible, create lots of coupling between products, and require
less complex configuration management at the expense of coupled release cycles.

The platform development results in deliverables. To support integration and
trouble shooting the delivery of source information is recommended. Black box
reuse tends to create surprises, due to invisible consequences. However, delivering
the source code itself, creates additional requirements. The source code is only
useful if the development environment, specifications, configuration management,
documentation tools, development process and guidelines for the infrastructure are
also provided. Figure 25 shows these deliverables, and Figure 26 shows the same

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 18

code specifications

development

environment

documentation

tools

development

process

infrastructure

configuration

management

Figure 25: Platform Source Deliverables

code specifications

development

environment

documentation

tools

development

process

infrastructure

configuration

management

test code&data

source code

target OS

purchased SW

generation recipes

compiler, linker, ...

dev. cluster OS

meta data (review, metrics)

customization

dev process support

code

problem reports

change requests

documentation

requirements

interfaces

design

reports

manuals

word processing

drawing

spreadsheets

publishing

management

Figure 26: And now in More Detail...

deliverables with more detailed content. The message of this last figure is that
much more is involved in platform development than a set of source code files.

The case, as shown in Section 2, used a platform approach to share common
functions. In the table in Figure 27 the efficiency of this platform approach is
evaluated. The basis for this evaluation is the number of different applications
that has been realized and the required effort. This table shows that 13 persons
were needed per application in 1993, while in 1996 only 3 persons per application
were needed. The re-use of lower level functions facilitated a more efficient appli-
cation development process. In practice the lead-time reduction of new applica-
tions was even more important. A rich and flexible platform is also a rapid proto-
typing vehicle. This last argument is far from trivial: many platforms are large and
complex and do not facilitate rapid prototyping at all!

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 19

number of

people

people per

application

applications

platform

applications

1992 1993 199619951994

number of inputs

(a.o. modalities)

1
value

metric

efficiency

total

1

4

5

52

13

8

10

35

27

62

8

16

15

37

35

72

5

32

38

41

79

3

Figure 27: Example of Platform Efficiency

purchased OS

proprietary software
purchased

software

embedding

SW

architecture

Figure 28: Purchased SW Requires Embedding

A complicating factor is the use of COTS (Commercial Of The Shelf) software.
Software developed as part of a platform follows the architecture guidelines of the
platform. However, purchased software has been developed independent of the
platform, using it’s own architecture guidelines. Figure 28 shows that purchased
software requires some kind of embedding to fit it into the desired architecture.

Figure 29 zooms in on the typical additional efforts to embed purchased software
in a platform. Most embedding effort is required to ensure the desired system level
behavior and qualities: configuration, installation, start-up and shutdown et cetera.

The mismatch of existing platform software and purchased software results in
lots of unwanted side-effects. Figure 30 shows a number of these unwanted side-
effects. The side-effects cause the addition lots of code, in the form of wrappers,
translators and so on, while this additional code adds complexity, it does not add
any end-user value.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 20

• Installation

• Configuration

• Customization

• Start up, shutdown

• Specifications

• Interface to application SW

• Exception handling

• Resource allocation and monitoring provision

• Resource tuning, see above

• Safety design

• Security design

functional

system design

sw design

add semantics level

use of appropriate low level mechanisms

match to high level mechanisms:

- notification, scheduling

- job requests, subscriptions

System monitor

Error propagation

Logging

CPU

Memory

Disk

Figure 29: Embedding Costs of Purchased SW

tuner
tuner

MPEG MPEG

Duplication

Architectural mismatch:

wrappers, translators, conflicting controls

Poor performance;
additional resource usage

additional code

and complexity,

no added value

UI UI

non problem Problems Architecture Reuse

Figure 30: Example of Embedding Problems

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 21

5 The Time Dimension

platform

baseline
R1 R2 R3

platform

as consolidation baseline

R1 R2 R3

Figure 31: Who is First: Platform or Product?

Many philosophies are practiced to synchronize platforms and products. The
main choice is the primary vehicle for change:

• innovate in products and consolidate in a platform

• innovate in the platform and propagate to products

These two variants are visualized in Figure 31.
A common pitfall is that managers as well as engineers expect a platform to be

stable; once the platform is created only a limited maintenance is needed. Figure 32
explains why this is a myth. A platform is build using technology that itself is
changing very fast (Moore’s law again). At the other hand a platform served a
dynamic fast changing market. In other words it is a miracle if a platform is stable,
when both the supplying as well as the consuming side are not stable at all.

The more academical oriented methods propose a ”first time right approach”.
This sounds plausible, why waste time on wrong implementations first? The practical
problem with this type of approach is that it does only work in very specific circum-
stances:

• well defined problem

• few people (few background, few misunderstandings)

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 22

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 32: Myth: Platforms are Stable

• appropriate skill set (the so-called ”100%” instead of ”80/20” oriented people)

The first clause for our type of products is nearly always false, remember the
dynamic market. The second clause is in practical cases not met (100+ manyear
projects), although it might be validly pointed out that the size of the projects is the
cause of many problems. The third clause is very difficult to meet, I do know only
a handful of people fitting this category, none of them making out type of products
(for instance professors).

1

maybe

10

unlikely

100

miracle

1000

impossible

person years

First time right?

Figure 33: The first time right?

Figure 33 shows the relationship between team size and the chance of success-
fully following the first time right approach.

Understanding of the problem as well as the solution is key to being effective.
Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 34 for a visualization of the
influence of feedback frequency on project elapsed time.

The evolution of a platform is illustrated in figure 35 by showing the change in
the Easyvision [7] platform in the period 1991-1996. It is clearly visible that every
generation doubles the amount of code, while at the same time half of the existing

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 23

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 34: Feedback (3)

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 35: Platform Evolution (Easyvision 1991-1996)

code base is touched by changes.
The business context, the application, the product and it’s components have all

their own specific life-cycles. In Figure 36 several different life-cycles are shown.
The application and business context in the customer world are shown at the top
of the figure, and at the bottom the technology life-cycles are shown. Note that
the time-axis is exponential; the life-cycles range from one month to more than ten
years! Note also the tension between commodity software and hardware life-cycles
and software release life-cycles: How to cope with fast changing commodities?
And how to cope with long living products, such as MR scanners, that use commodity
technologies?

Figure 37 shows a reference model for image handling functions. This reference
model is classifying application areas on the basis of those characteristics that have
a great impact on design decisions, such as the degree of distribution, the degree
and the cause of variation and life-cycle. Such a reference model is one of the
means to cope with widely different life-cycles.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 24

1 year

commodity

hardware

and

software

new generation of

magnets

gradients

detectors

major SW

release

minor SW

release

workstation

useful life

MR

scanner

useful life

10 years

procedural

change

legislation

change

clinical

prototype

problem

response

3 months

Figure 36: Life-cycle Differences

Imaging and treatment functions are provided of modality systems with the
focus on the patient. Safety plays an important role, in view of all kinds of hazards
such as radiation, RF power, mechanical movements et cetera. The variation
between systems is mostly determined by:

• the acquisition technology and its underlying physics principles.

• the anatomy to be imaged

• the pathology to be imaged

The complexity of these systems is mostly in the combination of many technologies
at state-of-the-art level.

Image handling functions (where the medical imaging workstation belongs)
are distributed over the hospital, with work-spots where needed. The safety related
hazards are much more indirect (identification, left-right exchange). The variation
is more or less the same as the modality systems: acquisition physics, anatomy and
pathology.

The information handling systems are entirely distributed, information needs
to be accessible from everywhere. A wide variation in functionality is caused by
“social-geographic” factors:

• psycho-social factors

• political factors

• cultural factors

• language factors

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 25

information

handling

image handling

archiving

imaging and

treatment

base technology

localised

patient focus

safety critical

limited variation

due to "nature":

human anatomy

pathologies

imaging physics

distributed

limited variation due to "nature":

human anatomy

pathologies

imaging physics

entirely distributed

wide variation due to "socio-geographics":

psycho-social,

political, cultural factors

service business

not health care specific

extreme robust

fire, earthquake,

flood proof

life time

100 yrs (human life)

not health care specific

short life-cycles

rapid innovation

Figure 37: Reference model for health care automation

These factors influence what information must be stored (liability), or must not
be stored (privacy), how information is to be presented and exchanged, who may
access that information, et cetera.

The archiving of images and information in a robust and reliable way is a highly
specialized activity. The storage of information in such a way that it survives fires,
floods, and earthquakes is not trivial4. Specialized service providers offer this kind
of storage, where the service is location-independent thanks to the high-bandwidth
networks.

All of these application functions build on top of readily available IT compo-
nents: the base technology. These IT components are innovated rapidly, resulting
in short component life-cycles. Economic pressure from other domains stimulate
the rapid innovation of these technologies. The amount of domain-specific technology
that has to be developed is decreasing, and is replaced by base technology.

4Today terrorist attacks need to be included in this list full of disasters, and secure needs to be
added to the required qualities.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 26

6 Process View

The business process for an organization that creates and builds systems consisting
of hardware and software is decomposed in four main processes as shown in figure 38.

strategy
process

customer

supplying business

va
lu
e

product creation
process

customer oriented (sales,

service, production) process

people, process and technology
management process

Figure 38: Simplified decomposition of the business in 4 main processes

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cash-flow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cash-flow tomorrow
as well.

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

Strategy Process This process is future oriented, not constrained by short term
goals, it is defining the future direction of the company by means of roadmaps.
These roadmaps give direction to the Product Creation Process and the People
and Technology Management Process. For the medium term these roadmaps
are transformed in budgets and plans, which are committal for all stake-
holders.

The simplified process description given in figure 38 assumes that product
creation processes for multiple products are more or less independent. When
generic developments are factored out for strategic reasons an additional process
is required to visualize this. Figure 39 shows the modified process decomposition

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 27

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

Figure 39: Modified Process Decomposition

(still simplified of course) including this additional process "Generic Something
Creation Process".

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

management

tomorrow's cashflow

strategic asset

generation

assets

cashflow generation

Figure 40: Financial Viewpoint on Process Decomposition

Figure 40 shows these processes from the financial point of view. From financial
point of view the purpose of this additional process is the generation of strategic
assets. These assets are used by the product generation process to enable tomorrow’s
cash-flow.

The consequence of this additional process is an lengthening of the value chain
and consequently a longer feedback chain as well. This is shown in figure 41. The
increased length of the feedback chain is a significant threat for generic devel-
opments. In products where integration plays a major role (which are nearly
all products) the generic developments are pre-integrated into a platform or base

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 28

policy and

planning

Philips business

va
lu
e

people and technology management process

create generic components

PCP

fe
e
d
-

b
a
ck

customer

customer oriented process
(sales, service, production)

Figure 41: Feedback flow: loss of customer understanding!

product, which is released to be used by the product developments.

feature 1

feature 2

Platform integration

test

Re
le
as
e

Product integration

product feature 1

product feature 2

test

Re
le
as
e

Figure 42: The introduction of a new feature as part of a platform causes an
additional latency in the introduction to the market.

The benefit of this approach is separation of concerns and decoupling of products
and platforms in smaller manageable units. Both benefits are also the main weakness
of such a model, as a consequence the feedback loop is stretched to a dangerous
length. At the same time the time from feature/technology to market increases, see
figure 42.

The list of pitfalls in Figure 43 has been compiled on the basis of many disas-
trous or halfway successful efforts of platform developments.

Many different models for the development of generic things are in use. An
important differentiating characteristic is the driving force, which often directly
relates to the de facto organization structure. The main flavors of driving forces are

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 29

Technical

• Too generic

• Innovation stops

(stable interfaces)

• Vulnerability

Process/People/Organization

• Forced cooperation

• Time platform feature to market

• Unrealistic expectations

• Distance platform developer to customer

• No marketing ownership

• Bureaucratic process (no flexibility)

• New employees, knowledge dilution

• Underestimation of platform support

• Overstretching of product scope

• Nonmanagement, organizational scope increase

• Underestimation of integration

• Component/platform determines business policy

• Subcritical investment

Figure 43: Sources of failure in platform developments

shown in figure 44.

platform

lead customer

carrier product

technology push

direct feedback

too specific?

product feedback

product specific?

policy and

planning

customer

supplying business

Product Creation Process

customer oriented process
(sales, service, production)

people and technology management process

create generic components feedback problem

too generic

no feedback

Figure 44: Models for SW reuse

6.1 Lead Customer

The lead customer as driving force guarantees a direct feedback path from an actual
customer. Due to the importance of feedback this is a very significant advantage.
The main disadvantages of this approach are that the outcome of such a devel-
opment often needs a lot of work to make it reusable as a generic product. The
focus is on the functionality and performance, while many of the quality aspects
are secondary in the beginning. Also the requirements of this lead customer can be
rather customer specific, with a low value for other customer.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 30

6.2 Carrier Product

The combination of a generic development with one of the product developments
also shortens the feedback cycle, although it is not as direct as with the lead
customer. Combination with a normal product development will result in a better
balance between performance and functionality focus and quality aspects. Disad-
vantage can be that the operational team takes full ownership for the product (which
is good!), while giving the generic development second priority, which from family
point of view is unwanted.

In larger product families the different charters of the product teams creates a
political tension. Especially in immature or power oriented cultures this can lead
to horrible counterproductive political games.

Lead customer driven product development, where the product is at the same
time the carrier for the platform combines the benefits of the lead customer and
the carrier product approach. In my experience this is the most effective approach
of generic developments. A prerequisite for success is an open and result driven
culture to preempt any political game mentioned before.

6.3 Platform

In maturing product families the generic developments are often decoupled from
the product developments. In products where integration plays a major role (which
are nearly all products) the generic developments are pre-integrated into a platform
or base product, which is released to be used by the product developments.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 31

7 Market Driven

A useful top level decomposition of an architecture is provided by the so-called
“CAFCR” model, as shown in figure 45. The customer objectives view and the
application view provide the why from the customer. The functional view describes
the what of the product, which includes (despite the name) also the non functional
requirements. The how of the product is described in the conceptual and realization
view, where the conceptual view is changing less in time than the fast changing
realization (Moore’s law!).

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

drives, justifies, needs

enables, supports

Customer

objectives

Application Functional Conceptual Realization

Figure 45: The “CAFCR” model

The job of the architect is to integrate these views in a consistent and balanced
way. Architects do this job by frequent viewpoint hopping, looking at the problem
from many different viewpoints, sampling the problem and solution space in order
to build up an understanding of the business. Top down (objective driven, based
on intention and context understanding) in combination with bottom up (constraint
aware, identifying opportunities, know how based), see figure 46.

In other words the views must be used concurrently, not top down like the
waterfall model. However at the end a consistent story must be available, where the
justification and the needs are expressed in the customer side, while the technical
solution side enables and support the customer side.

The model will be used to provide a next level of reference models and methods.
Although the 5 views are presented here as sharp disjunct views, many subse-
quent models and methods don’t fit entirely in one single view. This in itself not a
problem, the model is a means to build up understanding, it is not a goal in itself.

One of the key success factors of platform development is scoping. The opposing
forces are the efficiency drive by higher management teams, increasing the scope,
and the need for customer specifics by project teams, minimizing the platform
scope. Scope overstretching is one of the major platform pitfalls: in best case the
result is that the organization is very efficient, but customers are dissatisfied. Worst
case the entire organization drowns in the overwhelming complexity. Blindly

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 32

Customer

objectives

Application Functional Conceptual Realization

intention

constraint
awareness

objective
driven

context
understanding

oppor-
tunities

know how
based

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Figure 46: Five viewpoints for an architecture. The task of the architect is to
integrate all these viewpoints, in order to get a valuable, usable and feasible
product.

following (potential) customers is another pitfall: best case we end up with a
satisfied customer and a good starting point for next products. The real challenge
is to build up sufficient understanding to find the sweet spot for the platform scope:
efficient by leveraging synergy, but sufficiently agile to be responsive to customers.

Figure 47 shows an example of platform scoping. In this case the synergy of
the producer is in technologies, such as Closed Circuit TV (CCTV), audio, broad-
casting, access control, and networking. These technologies are used in widely
differing application domains: airports, railway stations, intelligent buildings and
motorway management systems. These heterogeneous domains can share a platform,
as long as the functionality is restricted to the shared technologies. The analysis

heterogeneous domains

and application

shared core

technology

motorway

management

intelligent

buildings

railway

stations

airport

terminals

Closed

Circuit TV

audio

broadcasting

access

control

networking

Figure 47: Example of Scoping of a Platform.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 33

to find the right level of synergy is based on the key driver method [5]. The
essence of the objectives of the customers can be captured in terms of customer
key drivers. The key drivers provide direction to capture requirements and to focus
the development. The key drivers in the customer objectives view will be linked
with requirements and design choices in the other views. The key driver submethod
gains its value from relating a few sharp articulated key drivers to a much longer
list of requirements. By capturing these relations a much better understanding of
customer and product requirements is achieved.

Safety

Effective

Flow

Smooth

Operation

Environment

Reduce accident rates

Enforce law

Improve emergency

response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimize road surface

Speed up target groups

Anticipate on future traffic condition

Ensure traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Early hazard detection

with warning and signaling

Maintain safe road

condition

Classify and track dangerous

goods vehicles

Detect and warn

noncompliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

Key-drivers Derived application drivers Requirements

Automatic upstream

accident detection

Weather condition

dependent control

Deicing

Traffic condition

dependent speed control

Traffic speed and

density measurement

Note: the graph is only partially elaborated

for application drivers and requirements

Cameras

Figure 48: Example of the four key drivers in a motorway management system

Figure 48 shows an example of key drivers for a motorway management system,
an analysis performed at Philips Projects in 1999. The same method has been
applied on the other domains.

The key drivers and design decisions can be visualized as a thread of reasoning [8]
during the development of products and platform. This thread of reasoning captures
the essential relations between customers needs and technological decisions, with
emphasis on tensions and trade-offs. Figure 49 shows an example of such a thread
of reasoning for the Medical Imaging Workstation.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 34

Philips operational view
(manufacturing, service, sales)

Conceptual

efficient

useable

RealizationCustomer

objectives

Application Functional

diagnosis

time efficient
throughput processing

library

cost revisited in context of clinical needs and

realization constraints; note: original threads are significantly simplified

diagnostic

quality

image

quality IQ spec

pixel

depth

CPU

budget
typical

case

common

console

memory

limit

BoM
Moore's

law

purchase

price
CoO

economic

sound

render

engine

effective

operational

constraints

M'

S

M

B

U"

P'

T

U

U' P

profit margin

standard workstation

C

memory budget

Figure 49: Example Thread of Reasoning from the Medical Imaging Workstation

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 35

8 Recommendations

identify

key drivers

accept

heterogeneous

solutions

stimulate evolution,

and continuous

refactoring

implement agile

lifecycle

decoupling

maintain

focused scope

ensure market

and business

feedback

Q: How to manage

platform architectures?

case

architecting

platform
time

dimension

process

market

driven

Recommendations

educate artful

architects

to create

successful

products

Figure 50: Summary of recommendations to manage platform architectures

Figure 50 summarizes the recommendations to manage platform architectures.
We traverse in the opposite direction of the description in this paper. Identification
of the key drivers is the first step in understanding the essence from market point
of view. The key drivers are used to define the platform scope; a well defined
scope provides focus to the development organization. The process of developing
a platform requires special attention for frequent and to-the-point feedback from
the business and the market. The time dimension emphasizes the many different
rhythms in product and platform development and the dynamics of both application
and technology. The recommendation to cope with rhythms and dynamics is to
stimulate evolutionary approaches and to invest sufficiently in continuous refac-
toring of the architecture. Also agile life-cycle decoupling facilitates the different
rhythms and dynamics. For the platform itself it is important to understand the
versatility and the heterogeneity involved. Platform development should avoid
dogmatic unification, instead recognition of heterogeneous solution results in more
robust platform development. The overall activities described so far require a few
skilled and artful architects. Artful means creative, open minded, humans; the
complexity and dynamics of the context does not allow for mechanistic or dogmatic
solutions. Satisfying all of the recommendations will help to create nice, innovative
and successful products!

References

[1] Dana Bredemeyer. Definitions of software architecture. http://www.
bredemeyer.com/definiti.htm, 2002. large collection of definitions
of software architecture.

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 36

http://www.bredemeyer.com/definiti.htm
http://www.bredemeyer.com/definiti.htm

[2] Derek K. Hitchins. Putting systems to work. http://www.hitchins.
co.uk/, 1992. Originally published by John Wiley and Sons, Chichester,
UK, in 1992.

[3] Carnegie Mellon Software Engineering Institute. How do you define
software architecture? http://www.sei.cmu.edu/architecture/
definitions.html, 2002. large collection of definitions of software
architecture.

[4] Gerrit Muller. Product families and generic aspects. http://www.
gaudisite.nl/GenericDevelopmentsPaper.pdf, 1999.

[5] Gerrit Muller. Requirements capturing by the system architect. http://
www.gaudisite.nl/RequirementsPaper.pdf, 1999.

[6] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[7] Gerrit Muller. Case study: Medical imaging; from toolbox to product to
platform. http://www.gaudisite.nl/MedicalImagingPaper.
pdf, 2000.

[8] Gerrit Muller. CAFCR: A multi-view method for embedded systems archi-
tecting: Balancing genericity and specificity. http://www.gaudisite.
nl/ThesisBook.pdf, 2004.

History
Version: 1.0, date: 14 June, 2005 changed by: Gerrit Muller

• Added text
Version: 0.1, date: 9 June, 2005 changed by: Gerrit Muller

• Added lots of slides and structure
Version: 0, date: 11 May 2005 changed by: Gerrit Muller

• Created, no changelog yet

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 37

http://www.hitchins.co.uk/
http://www.hitchins.co.uk/
http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/RequirementsPaper.pdf
http://www.gaudisite.nl/RequirementsPaper.pdf
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/ThesisBook.pdf
http://www.gaudisite.nl/ThesisBook.pdf

	Introduction
	Case: Medical Imaging Workstation
	Product Context
	Historic Phases
	Basic Application and Toolboxes
	Medical Imaging X-Ray
	Second Concurrent Product: Medical Imaging CT/MR
	Towards Workflow

	Architecture
	Platform
	The Time Dimension
	Process View
	Lead Customer
	Carrier Product
	Platform

	Market Driven
	Recommendations

