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Abstract

Today’s fast pace of the market and the technology development forces the product
creators to rethink their development approach. One of the directions is to
maximize the return on investments of frequently used functions, for instance by re-
use, component based design or by a platform approach. The architecting effort is
a key success factor to combine re-use approaches with fast and innovative product
creation.
In this presentation we will present a case, discuss the role of the architecture, and
elaborate the essential architecture ingredients for a successful platform creation,
and evolution, and innovative product creation.
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1 Introduction

Most companies struggle with the development of functionality and components
shared by multiple products. The strategy to share development costs of shared
functionality and components is known under many different labels: re-use, product
families, product lines, generic developments or platforms to name a few. We will
use the term platform in this paper.

Q: How to manage 

platform architectures?

case

architecting

platform
time 

dimension

process

market 

driven

Recommendations

Figure 1: Outline of this paper

This paper is partially, about half, based on existing Gaudí material. We want to
address the following question in this paper: “Q: How to manage platform archi-
tectures?”. Figure 1 shows the outline of this paper. We start by discussing an
actual platform case that covers more than 10 years elapsed time. Next we explore
architecting and platforms. We zoom in on the time dimension, the process and
the need to be market driven. Finally we summarize by a means of a number of
recommendations.

2 Case: Medical Imaging Workstation

The Medical Imaging workstation was an early large scale Object Oriented product.
Originally intended to become a re-useable set of toolboxes, it evolved in a family
of medical workstations and servers.

2.1 Product Context

Philips Medical Systems is a major player in the medical imaging market. The
main competitors are GE and Siemens. The Product Creation focus of Philips
Medical Systems is modality oriented, as shown in figure 2.

The common technology in conventional X-ray systems is developed by component
oriented business groups, which make generators, tubes, camera’s, detectors, et
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Figure 2: Philips Medical Systems, schematic organization overview.

cetera. The so-called ”System-groups” have a more clinical focus, they create the
clinical oriented systems on the basis of the common available components.

The non X-ray groups1 mainly build large complex general purpose imaging
equipment. The imaging principles in CT and MR are less direct, which means
that an image reconstruction step is required after acquisition to form the viewable
images. Ultra Sound (ATL) is acquired by Philips Medical Systems recently. It
is not fully integrated in the organization. The main markets of Philips Medical
Systems are radiology and cardiology, with a spin off to the surgery market.

Traditionally the radiologist makes and interprets images from the human body.
A referring physician requests an examination, the radiologist responds with a
report with his findings. Figure 3 shows a generic set of Radiology drivers.

Philips Medical Systems core is the imaging equipment in the examination
rooms of the radiology department2. The key to useful products is the combined
knowledge of application (what) and technology (how).

2.2 Historic Phases

The development model of Medical Imaging has changed several times. Roughly
the phases in Figure 4 can be observed. The first phase can best be characterized
as technology development, with poor Market and Application feedback. The next
phase overcompensates this poor feedback by focusing entirely on a product.

Philips Medical Systems has been striving for re-useable viewing components
at least from the late seventies. This quest is based on the assumption that the
viewing of all Medical Imaging Products is so similar, that cost reduction should

1A poor name for this collection; The main difference is in the maturity of the modality, where
this group exists from relative ”young” modalities, 20 a 30 years old.

2equally important core for Philips Medical Systems is the cardio imaging equipment in the
catheterization rooms of the cardiology department, which is out of the Medical Imaging Workstation
scope.
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Figure 3: Generic drivers of Radiology Departments

be possible when a common implementation is used. The lessons learned during
this long struggle have been partially consolidated in [4].

The group of people, which started the Common Viewing development, applied
a massive amount of technology innovations, see Figure 5.

2.3 Basic Application and Toolboxes

The goal of the common viewing development was to create an extensive set of
toolboxes, to be used for viewing in all imaging products. The developers of
the final products had fine-grain access to all toolboxes. This approach is very
flexible and powerful, however the penalty of this flexibility is that the integration
is entirely the burden of the product developer.

The power of the toolboxes was demonstrated in a Basic Application. This
basic application was a superset of all available features and functions. From
clinical point of view a senseless product, however a good vehicle to integrate
and to demonstrate.

Figure 6 shows the idealized layering of the toolboxes and the the Basic Appli-
cation in september 1991. the toolbox layer builds upon the Sun computing platform
(Workstation, the Sun version of UNIX SunOS and the Sun windowing environment
Sunview). The core of common viewing is the imaging and graphics toolbox, and
the UI gadgets and style.
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2.4 Medical Imaging X-Ray

Figure 7 shows the X-ray rooms which are involved from the examination until the
reading by the radiologist. Around 1990 the X-ray system controls were mostly
in the control room, where the operator of the system performed all settings from
acquisition setting to printing settings. Some crucial settings can be performed
in the room itself, dependent on the application. The hardcopies were produced
as literal copies of the screen of the monitor. The printer was positioned at some
non-obtrusive place.

The consequence of the literal screen copy was that a lot of redundant infor-
mation is present on the film, such as patient name, birth date and acquisition
settings. On top of that the field of view was supposed to be square or circular,
although the actual field of view is often smaller due to the shutters applied.

The economic existence of Medical Imaging X-ray was based in 1992 on
improvements of this printing process. The patient, examination and acquisition
information is orderly shown in one viewport, removing all the redundant infor-
mation near the images itself. A further optimization is applied by a fit-to-shutter
formatting. These 2 steps together reduce the film use by 20% to 50%.

The user actions needed for the printing are reduced as well, by providing print
protocols, which perform the repetitive activities of the printing process. The effec-
tiveness of this automation depends strongly on the application, some applications
require quite some fine-tuning of the contrast-brightness, or an essential selection
step, which require (human) clinical knowhow.

A prominent sales feature at conferences was the 9-button remote control. The
elementary viewing functions, such as patient/examination selection, next/previous
image and contrast/brightness. This remote control lowered the threshold for clinical
personnel, both radiologist as well as technical, enough to catch their interest: The
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• standard UNIX based workstation

• full SW implementation, more flexible

• object oriented design and implementation (Objective-C)

• graphical User Interface, with windows, mouse et cetera

• call back scheduling, fine-grained notification

• data base engine, fast, reliable and robust

• extensive set of toolboxes

• property based configuration

• multiple co-ordinate spaces

Figure 5: Technology innovations by Common Viewing
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Figure 6: Idealized layering of SW toolboxes and Basic Application in september
1991

Medical Imaging was not sold as a disgusting computer or workstations, rather it
was positioned as a clinical appliance.

The definition of the Medical Imaging was done by marketing, which described
that job as a luxury problem. Normally heavy negotiations were required to get
features in, while this time most of the time marketing wanted to reduce the (viewing
and user interface) feature set, in order to simplify the product.

From software point of view the change from basic application to clinical
product was tremendous. The grey areas in figure 10 indicate new SW. The amount
of code increased from 100 klines to 350 klines of code.
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Figure 8: X-ray rooms from examination to reading, when Medical Imaging is
applied as printserver

2.5 Second Concurrent Product: Medical Imaging CT/MR

Up to 1992 the Medical Imaging organization had a single focus, first on toolboxes,
later on Medical Imaging R/F. In 1993 it was decided to apply the Medical Imaging
also on CT and MR.

The printing functionality of CT and MR scanners improves significantly when
Medical Imaging is applied as printserver. However the CT and MR applications
can benefit also from interactive functionality, more than the X-ray applications.
An clear example is the Multi Planar Reformatting (MPR) functionality, where
arbitrary slices are reconstructed from the volume data set.

Superficially X-ray viewing looks the same as CT and MR viewing. However
the viewing is different in many subtle ways. A fundamental difference is that
X-ray images are projection images, while CT and MR images are slices, which
means that CT and MR images have a 3D ”meaning”, which is missing in X-ray
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old: screen copy

20 to 50% less film needed

new: SW formatting

Figure 9: Comparison of conventional screen copy based film and a film produced
by Medical Imaging. This case is very favorable for the Medical Imaging approach,
typical gain is 20% to 50%.

images. The 3D relationship is amongst others used for navigation, a point-and-
click type of user interface: clicking on a scanogram immediately shows the related
slice(s) at that position.

The software was significantly extended, the code size increased from 350 klines
to 600 klines. Note that this is not only an extension with 250 klines, from the
original 350 klines roughly half was modified or removed. In other words a signif-
icant amount of refactoring has taken place concurrent with the application exten-
sions. Figure 13 shows the (idealized) SW structure at the completion of Medical
Imaging CT/MR and the second release of Medical Imaging R/F. Light grey blocks
represent new code, dark grey represents major redesigns.

All diagrams 6, 10 and 13 are labelled as idealized. This adjective is used
because the actual software structure was less well structured than presented by
these diagrams. Part of the refactoring in the 1992-1994 time frame was a cleanup,
to obtain well defined dependencies between the software-”groups”. These groups
were more fine-grained than the blocks in these diagrams.

2.6 Towards Workflow

Medical Imaging R/F and Medical Imaging CT/MR were positioned as modality
enhancers. The use of these systems enhances the value of the modality. They
are used in the immediate neighborhood of the modality, before the reporting is
done. From sales point of view these Medical Imaging are additional options for a
modality sales.

The radiology workflow is much more than the acquisition of the images.
Digitalization of the health-care information flow requires products which fit in the
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Figure 10: Idealized layers of the Medical Imaging R/F software in september 1992
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Figure 11: Example of Multi Planar Reformatting applied on the spine

broader context of radiology and even the diagnostic workflow. Figures 14 and 15
show the increasing context where the workstation technology can be deployed.

The increasing context causes new extensions of the SW building, as shown in
Figure 16.
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Figure 13: Idealized layers of the Medical Imaging software in june 1994
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Figure 17: What is Architecture?

What is Architecture? Every individual appears to use their own definition of
architecture. Figure 17 shows many different aspects that are frequently mentioned
as being part of the architecture.

Do the right things

Do the things right

How
Guiding

Why
Understanding

What
Describing

Figure 18: What is Architecture?

We will use a broad definition of Architecture. Architecture is the combination
of the know how of the solution (technology) and understanding of the problem
(customer/application). The architect must play an independent role in considering
all stakeholders interests and searching for an effective solution. The fundamental
architecting activities are depicted in figure 18.

Creating the solution is a collective effort of many designers and engineers.
The architect is mostly guiding the implementation, the actual work is done by the
designers and engineers. Guiding the implementation is done by providing guide-
lines and high level designs for many different viewpoints. Figure 19 shows some
of the frequently occurring viewpoints for guiding the implementation. Note that
many people think that the major task of the architect is to define the decompo-
sition and to define and manage the interfaces of this decomposition. Figure 19
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Figure 19: ”Guiding How” by providing rules for:

shows that architecting involves many more aspects and especially the integrating
concepts are crucial to get working products.

Architecting involves amongst others analyzing, assessing, balancing, making
trade-offs and taking decisions. This is based on architecture information and facts,
following the needs and addressing the expectations of the stakeholders. A lot of
the architecting is performed by the architect, which is frequently using intuition.
As part of the architecting vision, overview, insight and understanding are created
and used.
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Figure 20: The Art of Architecting

The strength of a good architect is to do this job in the real world situation,
where the facts, expectations and intuition sometimes turn out top be false or
changed! Figure 20 visualizes this art of architecting.
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Figure 21: Architecting is much more than Decomposition

Many people expect the architect to decompose, as mentioned in the expla-
nation of ”guiding how”, while integration is severely underestimated, see figure 21.
In most development projects the integration is a traumatic experience. It is a
challenge for the architect to make a design which enables a smooth integration.

Architecture

Subset of which

architect is aware

Architecture

description

Actually written

by architect(s)

Flattened 

into

Figure 22: The architecture description is by definition a flattened and poor repre-
sentation of an actual architecture.

IEEE 1471 makes another interesting step: it discusses the architecture description
not the architecture itself. The architecture is used here for the way the system is
experienced and perceived by the stakeholders3.

This separation of architecture and architecture description provides an inter-
esting insight. The architecture is infinite, rich and intangible, denoted by a cloud

3Long philosophical discussions can be held about the definition of the architecture. These
discussions tend to be more entertaining than effective. Many definitions and discussions about
the definition can be found, for instance in [2], [1], or [3]
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in figure 22. The architecture description, on the other hand, is the projection, and
the extraction of this rich architecture into a flattened, poor, but tangible description.
Such a description is highly useful to communicate, discuss, decide, verify, et
cetera. We should, however, always keep in mind that the description is only a
poor approximation of the architecture itself.
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4 Platform

Many people advocate generic developments, such as platforms, claiming a wide
range of advantages. Effective implementation of generic development has proven
to be quite difficult. Many attempts to achieve these claims by generic develop-
ments have resulted in the opposite goals, such as increased time to market, quality
and reliability problems et cetera. We need a better rationale to do generic devel-
opments, in order to design an effective platform creation process.

Customer value

Internal benefits

application adaptability

availability variations

new features originating

from different products

timely availability

reliability

increase economy

of scale

asset creation

availability of accumulated

feature set

design for

configurability

shared architectural

framework

quality increase

maturity

predictability

availability integrated 

base product 

Extrovert driver

Introvert driver

Figure 23: Drivers of Generic Developments

Figure 23 shows drivers for Generic Developments and the derived require-
ments for the Generic Something Creation Process. The first driver (Customer
value is extrovert: does the product have value for the customer and is he willing
to buy the product? The second driver Internal Benefits is introvert, it is the normal
economic constraint for a company.

Today high tech companies are knowhow and skill constrained, in a market
which is extremely fast changing and which is rather turbulent. Cost considera-
tions are degraded to an economic constraint, which is orders of magnitude less
important than being capable to have valuable and sellable products.

The derivation of the requirements shows clearly that these requirements are
not a goal in itself. For instance an shared architecture framework is required
to enable features developed for one product to be used in other products as well,
which in turn should have value for a customer. So the verification of this requirement
is to propagate a new valuable feature from one product to the next, with small
effort and lead time.

These drivers and requirements derivation is emphasized, because many generic
developments result in large monolithic general purpose things, fulfilling:

• availability accumulated feature set
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• designed for configurability

• shared architectural framework

• mature

without bringing any customer value; ”You can not have this easy shortcut, because
our architectural framework does not support it, changing the framework will cost
us 100 man-years in 3 years elapsed time”
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Figure 24: What is a Platform?

But what is a platform? Many different types of platforms can be found.
Figure 24 shows a classification of platforms along an axis of increasing content
and integration. The “lightest” platform is a shared set of concepts, where every
product implements it’s own instantiation. The most “heavy” platform is the imple-
mentation of a superset of all products, where the creation of a product only involves
a configuration step of selecting the right functionality and performance. The
figure shows some intermediate possibilities, from light to more heavy respec-
tively: a collection of shared implementations of components, the same plus infras-
tructure, and a complete pre-integrated framework. Light platforms require lots
of integration effort, are very flexible, have low coupling, and require a lot of
complex configuration management effort. Heavy platforms do not require much
integration, are not flexible, create lots of coupling between products, and require
less complex configuration management at the expense of coupled release cycles.

The platform development results in deliverables. To support integration and
trouble shooting the delivery of source information is recommended. Black box
reuse tends to create surprises, due to invisible consequences. However, delivering
the source code itself, creates additional requirements. The source code is only
useful if the development environment, specifications, configuration management,
documentation tools, development process and guidelines for the infrastructure are
also provided. Figure 25 shows these deliverables, and Figure 26 shows the same
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Figure 26: And now in More Detail...

deliverables with more detailed content. The message of this last figure is that
much more is involved in platform development than a set of source code files.

The case, as shown in Section 2, used a platform approach to share common
functions. In the table in Figure 27 the efficiency of this platform approach is
evaluated. The basis for this evaluation is the number of different applications
that has been realized and the required effort. This table shows that 13 persons
were needed per application in 1993, while in 1996 only 3 persons per application
were needed. The re-use of lower level functions facilitated a more efficient appli-
cation development process. In practice the lead-time reduction of new applica-
tions was even more important. A rich and flexible platform is also a rapid proto-
typing vehicle. This last argument is far from trivial: many platforms are large and
complex and do not facilitate rapid prototyping at all!
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Figure 27: Example of Platform Efficiency
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Figure 28: Purchased SW Requires Embedding

A complicating factor is the use of COTS (Commercial Of The Shelf) software.
Software developed as part of a platform follows the architecture guidelines of the
platform. However, purchased software has been developed independent of the
platform, using it’s own architecture guidelines. Figure 28 shows that purchased
software requires some kind of embedding to fit it into the desired architecture.

Figure 29 zooms in on the typical additional efforts to embed purchased software
in a platform. Most embedding effort is required to ensure the desired system level
behavior and qualities: configuration, installation, start-up and shutdown et cetera.

The mismatch of existing platform software and purchased software results in
lots of unwanted side-effects. Figure 30 shows a number of these unwanted side-
effects. The side-effects cause the addition lots of code, in the form of wrappers,
translators and so on, while this additional code adds complexity, it does not add
any end-user value.
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• Installation

• Configuration

• Customization

• Start up, shutdown

• Specifications

• Interface to application SW

• Exception handling

• Resource allocation and monitoring provision

• Resource tuning, see above

• Safety design

• Security design

functional

system design

sw design

add semantics level

use of appropriate low level mechanisms

match to high level mechanisms:

- notification, scheduling

- job requests, subscriptions

System monitor

Error propagation

Logging

CPU

Memory

Disk

Figure 29: Embedding Costs of Purchased SW
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Figure 30: Example of Embedding Problems
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5 The Time Dimension

platform 

baseline
R1 R2 R3

platform 

as consolidation baseline

R1 R2 R3

Figure 31: Who is First: Platform or Product?

Many philosophies are practiced to synchronize platforms and products. The
main choice is the primary vehicle for change:

• innovate in products and consolidate in a platform

• innovate in the platform and propagate to products

These two variants are visualized in Figure 31.
A common pitfall is that managers as well as engineers expect a platform to be

stable; once the platform is created only a limited maintenance is needed. Figure 32
explains why this is a myth. A platform is build using technology that itself is
changing very fast (Moore’s law again). At the other hand a platform served a
dynamic fast changing market. In other words it is a miracle if a platform is stable,
when both the supplying as well as the consuming side are not stable at all.

The more academical oriented methods propose a ”first time right approach”.
This sounds plausible, why waste time on wrong implementations first? The practical
problem with this type of approach is that it does only work in very specific circum-
stances:

• well defined problem

• few people (few background, few misunderstandings)
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Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 32: Myth: Platforms are Stable

• appropriate skill set (the so-called ”100%” instead of ”80/20” oriented people)

The first clause for our type of products is nearly always false, remember the
dynamic market. The second clause is in practical cases not met (100+ manyear
projects), although it might be validly pointed out that the size of the projects is the
cause of many problems. The third clause is very difficult to meet, I do know only
a handful of people fitting this category, none of them making out type of products
(for instance professors).

1

maybe

10

unlikely

100

miracle

1000

impossible

person years

First time right?

Figure 33: The first time right?

Figure 33 shows the relationship between team size and the chance of success-
fully following the first time right approach.

Understanding of the problem as well as the solution is key to being effective.
Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 34 for a visualization of the
influence of feedback frequency on project elapsed time.

The evolution of a platform is illustrated in figure 35 by showing the change in
the Easyvision [7] platform in the period 1991-1996. It is clearly visible that every
generation doubles the amount of code, while at the same time half of the existing
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Figure 34: Feedback (3)
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Figure 35: Platform Evolution (Easyvision 1991-1996)

code base is touched by changes.
The business context, the application, the product and it’s components have all

their own specific life-cycles. In Figure 36 several different life-cycles are shown.
The application and business context in the customer world are shown at the top
of the figure, and at the bottom the technology life-cycles are shown. Note that
the time-axis is exponential; the life-cycles range from one month to more than ten
years! Note also the tension between commodity software and hardware life-cycles
and software release life-cycles: How to cope with fast changing commodities?
And how to cope with long living products, such as MR scanners, that use commodity
technologies?

Figure 37 shows a reference model for image handling functions. This reference
model is classifying application areas on the basis of those characteristics that have
a great impact on design decisions, such as the degree of distribution, the degree
and the cause of variation and life-cycle. Such a reference model is one of the
means to cope with widely different life-cycles.
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Figure 36: Life-cycle Differences

Imaging and treatment functions are provided of modality systems with the
focus on the patient. Safety plays an important role, in view of all kinds of hazards
such as radiation, RF power, mechanical movements et cetera. The variation
between systems is mostly determined by:

• the acquisition technology and its underlying physics principles.

• the anatomy to be imaged

• the pathology to be imaged

The complexity of these systems is mostly in the combination of many technologies
at state-of-the-art level.

Image handling functions (where the medical imaging workstation belongs)
are distributed over the hospital, with work-spots where needed. The safety related
hazards are much more indirect (identification, left-right exchange). The variation
is more or less the same as the modality systems: acquisition physics, anatomy and
pathology.

The information handling systems are entirely distributed, information needs
to be accessible from everywhere. A wide variation in functionality is caused by
“social-geographic” factors:

• psycho-social factors

• political factors

• cultural factors

• language factors
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Figure 37: Reference model for health care automation

These factors influence what information must be stored (liability), or must not
be stored (privacy), how information is to be presented and exchanged, who may
access that information, et cetera.

The archiving of images and information in a robust and reliable way is a highly
specialized activity. The storage of information in such a way that it survives fires,
floods, and earthquakes is not trivial4. Specialized service providers offer this kind
of storage, where the service is location-independent thanks to the high-bandwidth
networks.

All of these application functions build on top of readily available IT compo-
nents: the base technology. These IT components are innovated rapidly, resulting
in short component life-cycles. Economic pressure from other domains stimulate
the rapid innovation of these technologies. The amount of domain-specific technology
that has to be developed is decreasing, and is replaced by base technology.

4Today terrorist attacks need to be included in this list full of disasters, and secure needs to be
added to the required qualities.
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6 Process View

The business process for an organization that creates and builds systems consisting
of hardware and software is decomposed in four main processes as shown in figure 38.

strategy
process

customer

supplying business

va
lu
e

product creation
process

customer oriented (sales,

service, production) process

people, process and technology
management process

Figure 38: Simplified decomposition of the business in 4 main processes

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cash-flow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cash-flow tomorrow
as well.

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

Strategy Process This process is future oriented, not constrained by short term
goals, it is defining the future direction of the company by means of roadmaps.
These roadmaps give direction to the Product Creation Process and the People
and Technology Management Process. For the medium term these roadmaps
are transformed in budgets and plans, which are committal for all stake-
holders.

The simplified process description given in figure 38 assumes that product
creation processes for multiple products are more or less independent. When
generic developments are factored out for strategic reasons an additional process
is required to visualize this. Figure 39 shows the modified process decomposition
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Figure 39: Modified Process Decomposition

(still simplified of course) including this additional process "Generic Something
Creation Process".
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create generic components

management

tomorrow's cashflow

strategic asset

generation

assets

cashflow generation

Figure 40: Financial Viewpoint on Process Decomposition

Figure 40 shows these processes from the financial point of view. From financial
point of view the purpose of this additional process is the generation of strategic
assets. These assets are used by the product generation process to enable tomorrow’s
cash-flow.

The consequence of this additional process is an lengthening of the value chain
and consequently a longer feedback chain as well. This is shown in figure 41. The
increased length of the feedback chain is a significant threat for generic devel-
opments. In products where integration plays a major role (which are nearly
all products) the generic developments are pre-integrated into a platform or base

Gerrit Muller
How to Create a Manageable Platform Architecture?
September 6, 2020 version: 1.0

University of South-Eastern Norway-NISE

page: 28



policy and 

planning

Philips business

va
lu
e

people and technology management process

create generic components

PCP

fe
e
d
-

b
a
ck

customer

customer oriented process
(sales, service, production)

Figure 41: Feedback flow: loss of customer understanding!

product, which is released to be used by the product developments.
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e

Figure 42: The introduction of a new feature as part of a platform causes an
additional latency in the introduction to the market.

The benefit of this approach is separation of concerns and decoupling of products
and platforms in smaller manageable units. Both benefits are also the main weakness
of such a model, as a consequence the feedback loop is stretched to a dangerous
length. At the same time the time from feature/technology to market increases, see
figure 42.

The list of pitfalls in Figure 43 has been compiled on the basis of many disas-
trous or halfway successful efforts of platform developments.

Many different models for the development of generic things are in use. An
important differentiating characteristic is the driving force, which often directly
relates to the de facto organization structure. The main flavors of driving forces are
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Technical

• Too generic

• Innovation stops

(stable interfaces)

• Vulnerability

Process/People/Organization

• Forced cooperation

• Time platform feature to market

• Unrealistic expectations

• Distance platform developer to customer

• No marketing ownership

• Bureaucratic process (no flexibility)

• New employees, knowledge dilution

• Underestimation of platform support

• Overstretching of product scope

• Nonmanagement, organizational scope increase

• Underestimation of integration

• Component/platform determines business policy

• Subcritical investment

Figure 43: Sources of failure in platform developments

shown in figure 44.

platform
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Product Creation Process

customer oriented process
(sales, service, production)

people and technology management process

create generic components feedback problem

too generic

no feedback

Figure 44: Models for SW reuse

6.1 Lead Customer

The lead customer as driving force guarantees a direct feedback path from an actual
customer. Due to the importance of feedback this is a very significant advantage.
The main disadvantages of this approach are that the outcome of such a devel-
opment often needs a lot of work to make it reusable as a generic product. The
focus is on the functionality and performance, while many of the quality aspects
are secondary in the beginning. Also the requirements of this lead customer can be
rather customer specific, with a low value for other customer.
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6.2 Carrier Product

The combination of a generic development with one of the product developments
also shortens the feedback cycle, although it is not as direct as with the lead
customer. Combination with a normal product development will result in a better
balance between performance and functionality focus and quality aspects. Disad-
vantage can be that the operational team takes full ownership for the product (which
is good!), while giving the generic development second priority, which from family
point of view is unwanted.

In larger product families the different charters of the product teams creates a
political tension. Especially in immature or power oriented cultures this can lead
to horrible counterproductive political games.

Lead customer driven product development, where the product is at the same
time the carrier for the platform combines the benefits of the lead customer and
the carrier product approach. In my experience this is the most effective approach
of generic developments. A prerequisite for success is an open and result driven
culture to preempt any political game mentioned before.

6.3 Platform

In maturing product families the generic developments are often decoupled from
the product developments. In products where integration plays a major role (which
are nearly all products) the generic developments are pre-integrated into a platform
or base product, which is released to be used by the product developments.
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7 Market Driven

A useful top level decomposition of an architecture is provided by the so-called
“CAFCR” model, as shown in figure 45. The customer objectives view and the
application view provide the why from the customer. The functional view describes
the what of the product, which includes (despite the name) also the non functional
requirements. The how of the product is described in the conceptual and realization
view, where the conceptual view is changing less in time than the fast changing
realization (Moore’s law!).

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

drives, justifies, needs

enables, supports

Customer

objectives

Application Functional Conceptual Realization

Figure 45: The “CAFCR” model

The job of the architect is to integrate these views in a consistent and balanced
way. Architects do this job by frequent viewpoint hopping, looking at the problem
from many different viewpoints, sampling the problem and solution space in order
to build up an understanding of the business. Top down (objective driven, based
on intention and context understanding) in combination with bottom up (constraint
aware, identifying opportunities, know how based), see figure 46.

In other words the views must be used concurrently, not top down like the
waterfall model. However at the end a consistent story must be available, where the
justification and the needs are expressed in the customer side, while the technical
solution side enables and support the customer side.

The model will be used to provide a next level of reference models and methods.
Although the 5 views are presented here as sharp disjunct views, many subse-
quent models and methods don’t fit entirely in one single view. This in itself not a
problem, the model is a means to build up understanding, it is not a goal in itself.

One of the key success factors of platform development is scoping. The opposing
forces are the efficiency drive by higher management teams, increasing the scope,
and the need for customer specifics by project teams, minimizing the platform
scope. Scope overstretching is one of the major platform pitfalls: in best case the
result is that the organization is very efficient, but customers are dissatisfied. Worst
case the entire organization drowns in the overwhelming complexity. Blindly
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Figure 46: Five viewpoints for an architecture. The task of the architect is to
integrate all these viewpoints, in order to get a valuable, usable and feasible
product.

following (potential) customers is another pitfall: best case we end up with a
satisfied customer and a good starting point for next products. The real challenge
is to build up sufficient understanding to find the sweet spot for the platform scope:
efficient by leveraging synergy, but sufficiently agile to be responsive to customers.

Figure 47 shows an example of platform scoping. In this case the synergy of
the producer is in technologies, such as Closed Circuit TV (CCTV), audio, broad-
casting, access control, and networking. These technologies are used in widely
differing application domains: airports, railway stations, intelligent buildings and
motorway management systems. These heterogeneous domains can share a platform,
as long as the functionality is restricted to the shared technologies. The analysis

heterogeneous domains

and application

shared core 

technology

motorway

management

intelligent

buildings

railway 

stations

airport

terminals

Closed 

Circuit TV

audio 

broadcasting

access 

control

networking

Figure 47: Example of Scoping of a Platform.
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to find the right level of synergy is based on the key driver method [5]. The
essence of the objectives of the customers can be captured in terms of customer
key drivers. The key drivers provide direction to capture requirements and to focus
the development. The key drivers in the customer objectives view will be linked
with requirements and design choices in the other views. The key driver submethod
gains its value from relating a few sharp articulated key drivers to a much longer
list of requirements. By capturing these relations a much better understanding of
customer and product requirements is achieved.
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Reduce accident rates

Enforce law

Improve emergency
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Improve average speed
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Key-drivers Derived application drivers Requirements
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Weather condition

dependent control

Deicing
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dependent speed control

Traffic speed and
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Note: the graph is only partially elaborated

for application drivers and requirements

Cameras

Figure 48: Example of the four key drivers in a motorway management system

Figure 48 shows an example of key drivers for a motorway management system,
an analysis performed at Philips Projects in 1999. The same method has been
applied on the other domains.

The key drivers and design decisions can be visualized as a thread of reasoning [8]
during the development of products and platform. This thread of reasoning captures
the essential relations between customers needs and technological decisions, with
emphasis on tensions and trade-offs. Figure 49 shows an example of such a thread
of reasoning for the Medical Imaging Workstation.
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Figure 49: Example Thread of Reasoning from the Medical Imaging Workstation
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8 Recommendations
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Figure 50: Summary of recommendations to manage platform architectures

Figure 50 summarizes the recommendations to manage platform architectures.
We traverse in the opposite direction of the description in this paper. Identification
of the key drivers is the first step in understanding the essence from market point
of view. The key drivers are used to define the platform scope; a well defined
scope provides focus to the development organization. The process of developing
a platform requires special attention for frequent and to-the-point feedback from
the business and the market. The time dimension emphasizes the many different
rhythms in product and platform development and the dynamics of both application
and technology. The recommendation to cope with rhythms and dynamics is to
stimulate evolutionary approaches and to invest sufficiently in continuous refac-
toring of the architecture. Also agile life-cycle decoupling facilitates the different
rhythms and dynamics. For the platform itself it is important to understand the
versatility and the heterogeneity involved. Platform development should avoid
dogmatic unification, instead recognition of heterogeneous solution results in more
robust platform development. The overall activities described so far require a few
skilled and artful architects. Artful means creative, open minded, humans; the
complexity and dynamics of the context does not allow for mechanistic or dogmatic
solutions. Satisfying all of the recommendations will help to create nice, innovative
and successful products!
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