From Sensor to System; Sensor Architecting

by Gerrit Muller University of South-Eastern Norway-NISE e-mail: gaudisite@gmail.com www.gaudisite.nl

Abstract

Researchers of sensors, typically focus on a set of critical characteristics of the sensors. However, do we know what is critical from a broader perspective, such as a device builder, a subsystem builder, the system, or the user of the system?

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

August 21, 2020 status: preliminary draft version: 0.1

Figure of Contents[™]

version: 0.1 August 21, 2020 FSTSlogo

The System: a Metal Printer

version: 0.1 August 21, 2020 FSTSlogoSystem

Application of the System

Where will your Sensor be used?

ndicate the equivalent levels for your sensor or actuator				
sensor	imaging sensor			
device	camera			
component	optics chain			
subsystem	alignment			
system	printer			
application	metal printing			

version: 0.1 August 21, 2020 FSTSyourSensor

Worksheet: Note 3..5 KPPs for your Sensor

sensor				
imaging sensor				
device				
camera				
component				
optics chain				
subsystem				
alignment				
system				
printer				

The Subsysem: Alignment

version: 0.1 August 21, 2020 FSTSlogoAlignment

Basics of Alignment Function

version: 0.1 August 21, 2020 FSTSbasics

The Sensor

What are the 3 to 5 Key Performance Parameters of the sensor?

What are the 3 to 5 Key Performance Parameters of your sensor?

version: 0.1 August 21, 2020 FSTSsensorKPP

Potential KPPs Sensor

Possible

Key Performance Parameters of the sensor

- spatial resolution
- contrast resolution
- frame rate
- image acquisition time
- image uniformity
- sensor size
- energy consumption
- cost price
- color range
- sensitivity

The Camera

Camera Block Diagram

What are the 3 to 5 Key Performance Parameters of the camera?

What are the 3 to 5 *Key Performance Parameters* of the device incorporating your sensor?

version: 0.1 August 21, 2020 FSTScameraKPP

Potential KPPs Camera

Possible

Key Performance Parameters of the camera

- image quality (resolution, uniformity, color range)
- acquisition performance (frame rate, acquisition time)
- camera size, weight
- camera energy consumption, thermal stability
- camera cost price
- storage capacity
- compression rate and quality
- communication performance

The Optics Chain

version: 0.1 August 21, 2020 FSTSlogoOpticsKPP

version: 0.1 August 21, 2020 FSTSopticsPath

What are the 3 to 5 Key Performance Parameters of the optics chain?

What are the 3 to 5 *Key Performance Parameters* of the component incorporating your sensor?

version: 0.1 August 21, 2020 FSTSopticsKPP

Potential KPPs Optics Chain

Possible

Key Performance Parameters

of the optics chain

- position and angle stability
- wafer-to-sensor image quality (resolution, uniformity, color range)
- vertical size
- acquisition performance (frame rate, acquisition time)
- stage performance (speed, stability, reproducability)
- focus performance
- x, y range
- thermal stability
- cost, weight, size stage+optics

The Alignment Subsystem

Version: 0.1 August 21, 2020 FSTSlogoAlignmentKPP

Alignment Workflow

1	move to marker position	
2	focus	
3	search markers	may result in new move and focus
4	determine dx, dy	
5	calculate master displacement	based on calibration data
6	move master	
7	search markers	may result in new focus
8	verify dx, dy	repeat steps 58 if needed

Alignment Algorithm

x, y accuracy may be higher than optical resolution

What are the 3 to 5 *Key Performance Parameters* of the alignment subsystem?

What are the 3 to 5 *Key Performance Parameters* of the subsystem incorporating your sensor?

Potential KPPs Alignment

Possible

Key Performance Parameters of the alignment subsystem

- dx, dy after alignment
- alignment cycle time
- robustness for markers, patterns, wafers, temperature
- cost, weight, size subsystem

The Printer System

version: 0.1 August 21, 2020 FSTSlogoPrinterKPP

What are the 3 to 5 Key Performance Parameters of the printer system?

What are the 3 to 5 Key Performance Parameters of the system incorporating your sensor?

version: 0.1 August 21, 2020 FSTSprinterKPP

Potential KPPs of the Printer

Possible

Key Performance Parameters of the printer system

- print quality (pattern resolution, cross section control)
- overlay (=positioning accuracy)
- throughput
- reliability (uptime, high MTBF)
- robustness for markers, patterns, wafers, temperature
- integral costs (system cost, operational costs)
- consumables and waste
- fab interoperability (wafers and information)
- footprint

The Context

version: 0.1 August 21, 2020 FSTSlogoContext

How Process can Influence Alignment

Context: process influence on alignment

what if little contrast

what if slow transition

what if wafer surface height varies

what if shadows

what if marker is damaged

Revisiting the Sensor

Part of the Design Space

	bene	fits	disadvantages					
high resolution	igh accurate dx, dy		long acq time long transfer time long calculation time high energy consumption					
large FoV	easy to find markers		long acq time long transfer time high energy consumption					
red light	visibility marker		low optical resolution					
blue light	high optical resolution		poor visibility marker					
continuous on	thermal steady state		requires continuous cooling					
sensor	raw image	camera	compressed stream	alignment processor				
accuracy ↔ alignment time								

Sensor Architecting

Sensor Architecting: 8 Orders Zoom in-out

version: 0.1 August 21, 2020 FSTSsensorArchitecting

