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Abstract

Many architects struggle with a given large code-base, where a lot of knowledge
about the code is in the head of people or worse where the knowledge has disap-
peared. One of the means to recover insight from a code base is by measuring
and instrumenting the code-base. This presentation addresses measurements of
the static aspects of the code, as well as instrumentation to obtain insight in the
dynamic aspects of the code.
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Problem Statement

complex 

system

created by

>100 people

code 
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> 1Mloc

> 1k files
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> 100 klines

> 1k docs

>100 people
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Overview of Approach and Presentation Agenda

1 collect overviews
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2A macroscopic fact finding

2B microscopic sampling

2C construct medium level diagrams 
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SW Overview(s)
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System Overviews
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Case 1: EasyVision (1992)

EasyVision: Medical Imaging WorkstationURF-systems

typical clinical

image (intestines)
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Examples of Macroscopic Fact Finding

version control information:

#new files

#deleted files

#changes per file since ...

package information:

# files

metrics:

QAC type information

# methods

# globals

> wc -l  *.m 

72 Acquisition.m

13 AcquisitionFacility.m

330 ActiveDataCollection.m

132 ActiveDataObject.m

304 Activity.m

281 ActivityList.m

551 AnnotateParser.m

1106 AnnotateTool.m

624 AnyOfList.m

466 AsyncBulkDataIO.m

264 AsyncDeviceIO.m

261 AsyncLocalDbIO.m

334 AsyncRemoteDbIO.m

205 AsyncSocketIO.m
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Histogram of File Sizes EV R1.0
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Microscopic Sampling (Code Reading)

13 IndexBtree.m

12 IndexInteriorNode.m

13 IndexLeafNode.m

13 ObjectStoreBtree.m

12 ObjectStoreInteriorNode.m

13 ObjectStoreLeafNode.m

Example of small classes due to 

database design;

These classes are only supporting constructs

4473 DatabaseTool.m

1291 EnhancementTool.m

1106 AnnotateTool.m

1291 EnhancementTool.m

3471 GreyLevelTool.m

1639 HCConfigurationTool.m

1007 HCQueueViewingTool.m

1590 HardcopyTool.m

Example of large classes due to 

large amount of UI details

1541 GenericRegion.m

1415 GfxArea.m

1697 GfxFreeContour.m

4095 GfxObject.m

1714 GfxText.m

1374 CVObject.m

1080 ChartStack.m

1127 Collection.m

1651 Composite.m

1725 CompositeProjectionImage.m

1373 Connection1.m

1181 Database1.m

3707 DatabaseClient.m

3240 Image.m

1861 ImageSet.m

Example of large classes due to 

inherent complexity;

some of these classes are really suspect
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Changes Over Time
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Simplified Medium Level Diagram
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The real layering diagram did have >15 layers
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Conclusions Static Exploration

Quantification helps to calibrate the intuition of the architect

Macroscopic numbers related to code level understanding provides insight

+ relative complexity

+ relative effort

+ hot spots

+ (static) dependencies and relations
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Layered Benchmarking
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Example: Processing HW and Service Performance
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Processing Performance
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Resource Measurement Tools

time
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Object Instantiation Tracing
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Memory Instrumentation
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Overview of Benchmarks and Other Measurement Tools
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Tools and Instruments Positioned in the Stack
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Case 2: ARM9 Cache Performance
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Example Hardware Performance

memory

request w
o

rd
 1

w
o

rd
 7

w
o

rd
 4

w
o

rd
 3

w
o

rd
 2

w
o

rd
 8

w
o

rd
 6

w
o

rd
 5

38 cycles

memory access time in case of a cache miss

200 Mhz, 5 ns cycle: 190 ns

data

memory

response

22 cycles

Exploring an existing code base: measurements and instrumentation
23 Gerrit Muller

version: 0.4
August 21, 2020

EBMImemoryTimingARM



Actual ARM Figures
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Context Switch Overhead

toverhead ncontext switch tcontext switch*=

ncontext switch 

(s
-1

) toverhead
CPU load

overhead

tcontext switch = 10µs

500

5000

50000

5ms

50ms

500ms

0.5%

5%

50%

toverhead

1ms

10ms

100ms

0.1%

1%

10%

tcontext switch = 2µs

CPU load
overhead

Exploring an existing code base: measurements and instrumentation
25 Gerrit Muller

version: 0.4
August 21, 2020

PSRTcontextSwitchOverhead



Performance as Function of all Layers
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Annotated Performance Formule
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Keep iterating!

zoom in on suspect parts

code reading

problematic

dynamic

properties

static

structure

new measurements

and experiments

create

(recover)

insight in

complex

system
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Discussion propositions

system context

system

software

0. many design teams have lost the

overview of the system

1. a good (sw) architect has a

quantified understanding of system 

context, system and software

2. a good design facilitates

measurements of critical aspects 

for a small realization effort
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