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Abstract

The execution architecture determines largely the realtime and performance
behavior of a system. Hard real time is characterized as ”missing a deadline”
will result in system failure, while soft real time will result ”only” in dissatisfaction.
An incremental design approach is described. Concepts such as latency,
response time and throughput are illustrated. Design considerations and recom-
mendations are given such as separation of concerns, understandability and
granularity. The use of budgets for design and feedback is discussed.
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Smartening requirements
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Throughput
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Gross versus Nett
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Design recommendations separation of concerns
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Design recommendations understandability
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Granularity considerations
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Design patterns
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Synchronous design
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Actual timing on logarithmic scale

D
is
k 
se

ek

hu
m

an
 1
st  ir

rit
at

io
n 

th
re

sh
ol
d

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 2
nd  ir

rit
at

io
n

th
re

sh
ol
d

ey
e-

ha
nd

 c
o-

or
di
na

tio
n

1 
pa

ck
ag

e 
tra

ns
fe

r

fa
st
 e

th
er

ne
t

(ps)

10
-12

(ns)

10
-9

(s)

10
-6

(ms)

10
-3

(s)

1

cy
cl
e 

2 
G
H
z 
C
P
U

pu
re

 c
on

te
xt
 s
w
itc

h

D
R
A
M

 la
te

nc
y

1 
by

te
 tr

an
sf
er

fa
st
 e

th
er

ne
t

ze
ro

 m
es

sa
ge

 tr
an

sf
er

ap
pl
 le

ve
l n

et
w
or

k

m
es

sa
ge

 e
xc

ha
ng

e

ap
pl
 le

ve
l m

es
sa

ge

ex
ch

an
ge

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 re

ac
tio

n 
tim

e

hu
m

an
 e

ye

FO
4 

in
ve

rte
r d

el
ay

D
R
A
M

 c
yc

le
 ti
m

e

10
0 

H
z 
TV

fra
m

e

10
0H

z 
vi
de

o

pi
xe

l t
im

e

10
0H

z 
vi
de

o 
lin

e

from

low level to high level

processing times

from low to high level

storage/network

application

needs

light 

travels

1 cm

Execution architecture concepts
14 Gerrit Muller

version: 1.1
August 21, 2020

RVtimeAxis



Typical micro benchmarks for timing aspects
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The transfer time as function of blocksize
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Example of a memory budget

shared code

User Interface process
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Complicating factors and measures
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