
Execution architecture concepts
-

complex reality;

many details,

many relations

limited use of tasks,

threads, priorities

to combine or

not to combine?

simple is better

hard real time systems

should be explainable

with a few A4 diagrams

reasoning must

be possible

simulation

simulation: additional means

if declared indispensable this is

often a symptom of poor models

overview is based on

understanding many

(critical) details

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The execution architecture determines largely the realtime and performance
behavior of a system. Hard real time is characterized as ”missing a deadline” will
result in system failure, while soft real time will result ”only” in dissatisfaction.
An incremental design approach is described. Concepts such as latency, response
time and throughput are illustrated. Design considerations and recommendations
are given such as separation of concerns, understandability and granularity. The
use of budgets for design and feedback is discussed.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.1 status: preliminary draft June 21, 2020

1 Introduction

The execution architecture is only a small part of the total system architecture. The
zero order approach is that execution architecture is the mapping of functionality
via software building blocks on hardware resources by means of processes or tasks,
priorities and synchronized by means of interrupts, see figure 1. Most effort is
spend in creating (defining, building, testing) these building blocks, while a limited
amount of time should be spend on the run time structure.

other architecture

views

execution

architecture

functional

model

process

display

receive demux

store

Map

process

task

threadthreadthread

process

task

threadthreadthread

process

task
threadthreadthread

interrupt

handlersin
pu
t

hardware

tuner drive

CPU DSP RAM

in
pu
t

repository

structure

queue

DCTmenu

txt

tuner

foundation

classes

hardware

abstraction

list DVD drive

UI toolkit processing

Applications
play zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Figure 1: Execution Architecture

The more qualified view shows in first order approach that execution archi-
tecture assumptions and know how are used in hardware, software and functional
design. The best approach is an highly incremental and iterative approach.

In real life the iteration is limited, amongst others due to different development
lifecycles of hardware, software and system. Often most hardware design choices
are made long before the software design is known. In other words the hardware
is a fact, where only minor changes are possible. Another reality is that large
amounts of software are inherited from existing systems, which also severely limits
the degrees of freedom of the software design.

The remaining degrees of freedom for the execution architecture are limited to:

• allocation to tasks, processes or threads

• allocation of hardware resources

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 1

• priorities, scheduling strategy (limited by the operating system facilities)

• granularity

The art of designing a good execution architecture is to simplify the problems
sufficiently, by focusing on the real critical timing issues.

hard real time

disastrous

failure dissatisfaction

human

safety

device

safety

loss of

information

loss of

functionality

limited

throughput

loss of

eye hand

coordination

waiting

time

soft real time

Figure 2: Fuzzy customer view on real time

One of the starting questions is what are the most critical timing issues. Suffi-
cient understanding of the domain is required to answer this question. The reasoning
that the fastest response is the most critical is way too simplistic, this approach
takes only (part of) the solution domain into account. Both the problem domain as
well as the solution domain must be taken into account.

Figure 2 shows one of the dimensions of criticality: what is the importance of
meeting the requirement, or what is the consequence of not meeting the requirement.
Hard real time requirements are requirements which must be met, because the
consequence of not meting it are very severe. For instance human safety is very
important and may not be endangered. Note that the time scale depends entirely
on the domain, many operations in an airplane are real time, but in the range of
seconds.

The figure shows that the notion of hard real time is not as hard as it seems.
Device safety and loss of functionality are also very important. However some
functionality loss is less severe than other functionality loss. For instance missing
one video frame while watching TV is not desastrous, losing one frame while
saving video on DVD+RW is already much more severe.

Human system interaction time is again much less severe. But here also constraints
exist which might result in severe timing requirements. For instance the eye-hand
coordination when using a mouse is rather sensitive for the response time. Typical
the response time must be good, but occasional hickups are gracefully handled by
our brains.

The main recommendation is to strive for a limited set of well defined timing
requirements, where the understanding is shared between the main stakeholders.

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 2

2 Concepts

Limited set of hard real time cases

time

fr
eq

20 ms

Well defined set of performance critical cases

time

fr
eq

200 ms 500 ms

90%

Precise form of the distribution

is not important.

Be aware of systematic effects

No exception allowed

Worst case must fit

Typical within desired time,

limited exceptions allowed.

Exceptions may not result in

functional failure

Figure 3: Smartening requirements

One of the aspects of making requirements sufficiently specific and measurable
is the meaning of the number. Hard real time means the requirement must be met,
no exception allowed, because missing the requirement once will have disastrous
results.

In most systems the timing is a complex function of state, context, parameters
et cetera, which results in a distribution of actual timings. See figure 3 which
shows two types of distributions: the hard real time case needs a guaranteed finite
distribution, while the soft real time case defines a typical response (90% of the
events are handled within 200 ms), while all responses will be handled within 500
ms.

This second (soft real time) requirement needs more clarification for worst
case incidents1. Typical the exceptional behavior will be defined (if the frame
processing is not finished in time, the previous frame will be displayed twice).

The specification should be kept simple, don’t try to describe the entire form of
the distribution, only describe the user relevant characteristics. From design point
of view systematic effects (for instance an exception, which triggers an avalanche
of follow up activities) threaten the nice well defined distributions.

For a set of requirements the ılatency (the more or less constant shift in time)
1Operating systems such as VMS, and windows NT, show incidental non reactive periods of many

seconds. Even the real time modes of these systems can hit incidental slow responses. VMS used to
be extremely unresponsive when a new process is activated. This does not happen often, but if it can
happen, it will happen. What do we reflect in our specification?

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 3

bla bla bla

telephone telephone

reaction

long distance connection

time

bla bla bla

reaction
bla bla bla

reaction

connection

latency

perceived delay

connection

latency

speak
listen

speak
listen

Figure 4: Latency

is critical. Especially audio latency is quite sensitive. Figure 4 shows an example
of the audio latencies involved in a telephone connection. The latency determines
the useability. Above a certain latency humans have to adopt their way of working,
for instance by adding their own protocol layer (over, close).

P+

P-

remote

control

time

zap

new

channel

total response time

visual

feedback

visual feedback time

zap

new

channel

open for next

respons

zap repetition

Figure 5: Response Time

A related set of requirements defines response time. Figure 5 shows an example
of zapping response time. This example shows that a response time can involve
multiple timing requirements. In this example the television provides early visual
feedback, which satisfies most response requirements from the user. However for
zapping through it is also relevant to be able to press again, while the TV ”sees” this

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 4

additional zap. And of course the real TV channel should become visible within a
reasonable amount of time.

processing

throughput:

+ processing steps/frame

+ frames/second

+ concurrent streams

screen

tuner

speakers

pip

tuner

TV

Figure 6: Throughput

The amount of data processed and transfered in the system, the throughput,
is limited by the available resources. The throughput or the load of a system
can be a primary requirement, for instance in production systems (a waferstepper
exposes 100 wafers/hour). For other systems the response times are leading, but the
boundary condition with respect to throughput or load must be specified. Figure 6
shows an example of the throughput.

Another aspect of the specific requirement is how much is included or excluded
in the defined number, is it a gross or a nett number, see figure 7? Many specified
numbers, also of components being used are gross numbers; the limit value in ideal
circumstances. In reality circumstances are not ideal and the performance is lower
due to all kinds of overheads and losses.

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 5

bus bandwidth, processor load [memory usage]
useful macroscopic views, be aware of microscopic behavior

function 1

overhead
bus, OS,

scheduling

loss = not
schedulable

depends strongly on granularity

depends on design

margin

function 4

function 3

function 2n
et

t

gr
o

ss

application overhead is still

in this "nett" number

Figure 7: Gross versus Nett

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 6

3 Design recommendations and patterns

This section provides number of general recommendations and design patterns
for execution architectures. A very generic recommendation is the separation of
concerns, see figure 8. It is recommended to factor out the hard real time software
and to minimize the influence of the soft real time software on the hard real time
software. This is far from trivial, for instance locks on shared data structures can
violate this decoupling with disastrous results.

soft Real Time

hard Real Time

HW HW HW

minimize

influence
decoupling

minimal

shared

resources cost

performance

separation

manage

tension

explicit

queues or buffers

clear single demarcation

between hard and soft

process as unit of execution

Figure 8: Design recommendations separation of concerns

In the hard real time part of the system all sharing of resources is a form of
coupling complicating the real time design. Sharing of resources is often done for
cost reasons, cost and real time behavior can be conflicting. Note that for coupled
algorithms sharing is sometimes better than seperation, due to the communication
overhead.

For understandability reasons the design should be kept as simple as possible.
True hard real time systems should be explainable in a few sheets of paper, otherwise
the chance of failure due to missing insight is too large. But the fundaments of
these few sheets of paper are formed by aa understanding of many critical details.
Reality is quite complex, with many related details.

Figure 9 shows an number of understandability recommendations. The simplicity
requirement for execution architectures can be translated in: limit the use of process,
tasks, threads and priorities. It must be possible for the human designer to reason
about the system. When designers can only discuss the system by means of simula-
tions, this is often a symptom of uncontrolled complexity, it is a warning signal for
the architect.

One of the crucial design choices is the granularity of operation. The granu-
larity of operation may be different per operation, for instance I/O might be based
on large chunk to minimize I/O overhead, while the processing might be based on

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 7

complex reality;

many details,

many relations

limited use of tasks,

threads, priorities

to combine or

not to combine?

simple is better

hard real time systems

should be explainable

with a few A4 diagrams

reasoning must

be possible

simulation

simulation: additional means

if declared indispensable this is

often a symptom of poor models

overview is based on

understanding many

(critical) details

Figure 9: Design recommendations understandability

small chunks to minimize overall memory usage. Figure 10 shows some granu-
larity considerations. Again a best solution does not exist, a balance must be found
between issues such as memory use, overhead, latency, flexibility et cetera.

Several synchronization design patterns can be used. Figure 11 shows two main
patterns: a complete synchronous design for hard real time subsystems, which can
be nicely decoupled from the rest of the system and asynchronous design based on
timers and interrupts as activating triggers for (asynchronous) threads.

Some designers declare a synchronous approach as inferior. However this type
of design can be highly effective due to its simplicity and well defined behavior,
see figure12. This approach breaks down when asynchronous events have to be
handled, causing if-then-else structures in the code or worst case growing into a
complete proprietary scheduler.

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 8

video frame

video line

pixel

unit of

synchronization

unit of

buffering

==

or

<>

==

or

<>

unit of

processing

==

or

<>

unit of

I/O

fine grain:

flexible

high overhead

coarse grain:

rigid

low overhead

Figure 10: Granularity considerations

synchronous

very low overhead

predictable

understandable

works best in total separation

does not work for multiple rhythms

timer based

low "tunable" overhead

understandable

regular rhythm;
e.g. monitor HW status, update time, status display

safety critical, reliable, subsystems

fast rhythms significant overhead

interrupt based

separation of timing concerns

I/O and HW events
data available, display frame sync

definition of interrupts determines:

overhead, understandability

thread based

separation of timing concerns

sharing of resources (no wait)

Asynchronous applications and

services

poor understanding of concurrency

danger of high overhead

Figure 11: Design patterns

execute tn-1 execute tn+1execute tn

input for tn+1 input for tn+2 input for tn+3

calculate tn calculate tn+2calculate tn+1

execute tn-2

input for tn

calculate tn-1

double buffer:

full decoupling of calculation and execution
setting tn

setting tn+1

HW

clk

HW

HW

SW

Figure 12: Synchronous design

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 9

4 Logarithmic time axis

Plotting application timing requirements and technology timing characteristics on
a logarithmic time axis provides insight in the technology required for a given
application requirement. Figure 13 shows an example of such a plot. Note the very
large dynamic range of the time axis from picoseconds to seconds.

D
is
k
se

ek

hu
m

an
 1
st ir

rit
at

io
n

th
re

sh
ol
d

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 2
nd ir

rit
at

io
n

th
re

sh
ol
d

ey
e-

ha
nd

 c
o-

or
di
na

tio
n

1
pa

ck
ag

e
tra

ns
fe

r

fa
st
 e

th
er

ne
t

(ps)

10
-12

(ns)

10
-9

(s)

10
-6

(ms)

10
-3

(s)

1

cy
cl
e

2
G
H
z
C
P
U

pu
re

 c
on

te
xt
 s
w
itc

h

D
R
A
M

 la
te

nc
y

1
by

te
 tr

an
sf
er

fa
st
 e

th
er

ne
t

ze
ro

 m
es

sa
ge

 tr
an

sf
er

ap
pl
 le

ve
l n

et
w
or

k

m
es

sa
ge

 e
xc

ha
ng

e

ap
pl
 le

ve
l m

es
sa

ge

ex
ch

an
ge

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 re

ac
tio

n
tim

e

hu
m

an
 e

ye

FO
4

in
ve

rte
r d

el
ay

D
R
A
M

 c
yc

le
 ti
m

e

10
0

H
z
TV

fra
m

e

10
0H

z
vi
de

o

pi
xe

l t
im

e

10
0H

z
vi
de

o
lin

e

from

low level to high level

processing times

from low to high level

storage/network

application

needs

light

travels

1 cm

Figure 13: Actual timing on logarithmic scale

At the technology side very dedicated hardware solutions dominate. The FO4
time is a process technology timing indication. It indicates the time needed to
invert a signal and distribute it to 4 gates. It represents more or less the lower limit
for digital solutions. The next item is the cycle time, which need to be multiplied
with the needed number of cycles to do something useful. In most systems a real
time executive facilitates the basic needs, however from timing point of view a pure
context switch time is the minimum time to take into account for any action. At
higher levels of abstractions even more overhead is involved: from zero message
transfer to application level message transfer. Every abstraction step provides some
additional software service and application freedom (independence of processor,
process, service, system, ...) at the penalty of increased overhead.

For many systems the most powerful (righthand) technology should be used,
maximizing the benefits of higher abstraction layers, but only as long as it fits in
timing, power and cost requirements.

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 10

5 Measuring

The designer of the execution architecture has to build up understanding of the
domain and the system. Measuring is crucial to build up this understanding. Measure-
ments can be done at all aggregation levels. It is recommended to at least measure
a number of elementary characteristics, micro benchmarks. Figure 14 shows a list
of measurable elementary characteristics.

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Figure 14: Typical micro benchmarks for timing aspects

Often small code snippets can be used to do the measurements. When using
these numbers the circumstances and assumptions behind the numbers should be
taken into account. The most simple measurements often result in a more gross-
like number. More intelligent measurement methods can provide also the more
nett-like numbers. The designer should build up understanding for the sensitivity
of these numbers, for instance by experimenting with different measurements and
measurements conditions.

The design team must make conscious design decisions based on these numbers.
Using gross numbers will backfire, because the product suffers in the real world
from many performance leaks. At the other hand a complete worst case design is
often way too pessimistic, resulting in a too expensive over dimensioned system.

Many functions depend on a number of parameters, for instance transfer size.
Figure 15 shows an example of a disk transfer time as a function of the block size.
The function has regular discontinuities, which are related to the disk cycle time.
This type of disk can be used in the design in different ways.

Without any design constraints on the disk usage, the transfer rate has to be
based on the worst case data rate. This design is decoupled from most disk charac-
teristics, except for a minimum transfer rate assumption. The penalty is that only a
fraction of the disk speed capability is used.

The alternative is to use the known disk characteristics, for instance by prescribing

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 11

ti
m

e

block
size

worst case

optimal block-size

toverhead

rate
-1

Figure 15: The transfer time as function of blocksize

optimal block sizes. The benefit is that the full capability of the disk can be used,
but this software is much more coupled to this specific disk.

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Figure 16: Example of a memory budget

Figure 16 shows an example of a memory budget. This budget is entirely based
on measurements on an older version of the system and adapted to the expected
design changes. The structure of the budget is driven by the fact that it should be
easily measurable. The decomposition is per process, because the operating facil-
itates memory measurements per process. The operating system also recognizes
2 types of memory: read-only (= program code) and heap (=run time used). In
this table the second type of memory is further subdivided into object data (= all
kind of housekeeping data) and bulk data (=image pixel matrices). The bulk data is
managed explicitly to prevent fragmentation and to guarantee its limits. The bulk
data usage is configurable.

Figure 17 gives a list of often occuring complications in execution architecture

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 12

cache

bus allocation

memory management

garbage collection

memory (buffer, storage) fragmentation

non preemptable OS activities

"hidden" dependencies (ie [dead]locks)

systematic "coincidences", avalanche triggers

instable response, performance

considered margin

explicit behavior

architecture rules

monitoring, logging

pool management

feedback to architect

flipover simulation

complications measures

Figure 17: Complicating factors and measures

design and measurements and some counter measures which can be taken.

6 Acknowledgements

This course is a joint effort of Ton Kostelijk and myself. Ton creates some of the
course modules. He proved to be an inspiring sparring partner.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 1.1, date: January 30, 2003 changed by: Gerrit Muller

• repaired figure 1 in Article
Version: 1.0, date: December 4, 2002 changed by: Gerrit Muller

• changed design patterns diagram
Version: 0.4, date: October 1, 2002 changed by: Gerrit Muller

• changed execution architecture diagram
• changed separation of concerns diagram

Version: 0.3, date: September 6, 2002 changed by: Gerrit Muller
• added execution architecture diagram

Version: 0, date: August 7, 2002 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
Execution architecture concepts
June 21, 2020 version: 1.1

University of South-Eastern Norway-NISE

page: 13

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

	Introduction
	Concepts
	Design recommendations and patterns
	Logarithmic time axis
	Measuring
	Acknowledgements

