Capability development at the Embedded Systems Institute

by Gerrit Muller Embedded Systems Institute

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

The *systems* discipline is decomposed in views and qualities and complemented with a framework to integrate again. The qualities are taken as starting point to define system design capabilities. These capabilities are analyzed and a set of embedded system capabilities is proposed.

The ESI approach with projects and capabilities is described. The contribution of ESI is explained. Some background is provided about the technology management and research method aspects.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

September 6, 2020

status: draft version: 1.0

Role of Embedded Systems Institute ESI

The "CAFCR" model

Qualities as basis for capabilities

Multi Disciplinary Builds on Mono Disciplinary

Overview of methods in relation with context

Checklist of system qualities

serviceable usable ecological interoperable usability ecological footprint serviceability connectivity attractiveness contamination 3rd party extendible configurability responsiveness installability noise image quality disposability liable wearability future proof storability liability transportability testability evolvability down to earth dependable traceability portability standards compliance safety attributes upgradeability security extendibility cost price efficient reliability maintainability power consumption robustness resource utilization consumption rate integrity cost of ownership (water, air, availability logistics friendly chemicals, effective consistent et cetera) manufacturability throughput or size, weight reproducibility logistics flexibility

accuracy

predictability

productivity

lead time

Domain specific aspects

usable useability attractiveness responsiveness image quality wearability storability transportability reliable safety security reliability robustness

throughput or productivity

integrity

effective

interoperable

connectivity 3rd party extendable

liable

liability testability traceability standards compliance

efficient

resource utilization cost of ownership

consistent

reproduceability predictability

serviceable

serviceability configurability installability

future proof

evolvability portability upgradeability extendability maintainability

logistics friendly

manufacturability logistics flexibility lead time

ecological

ecological footprint contamination noise disposability

down to earth attributes

cost price power consumption consumption rate (water, air, chemicals. etcetera) size, weight accuracy

Preferred profile for ESI capabilities

domain specific

embedded (software intensive, electronics)

process, organisation, soft skills

specialistic

challenging

preferred profile:

-1

4

-1

-3

2

Ranking of all criterions

usable useability attractiveness responsiveness image quality wearability storability transportability reliable safety security reliability robustness integrity effective throughput or

productivity

interoperable

con<mark>ne</mark>ctivity 3rd party extendable

liable

liability
testability
traceability
standards compliance

efficient

resource utilization cost of ownership

consistent

reproduceability

serviceable

se<mark>rvicea</mark>bility configurability installability

future proof

evolvability portability upgradeability extendability maintainability

logistics friendly

manufacturability logistics flexibility lead time

ecological

ecological footprint contamination noise disposability

down to earth attributes

cost price
power consumption
consumption rate
 (water, air,
 chemicals,
 etcetera)
size, weight
accuracy

Relevance for ESI quality map

Project as carrier for capability development

ESI project approach

Critical Success Factors for projects

Mapping of capabilities to projects

Role of Embedded Systems Institute 2

project management capability coaching project facilitation knowledge exchange administration housing means, tools capability project initiation knowledge consolidation facilitation knowledge management knowledge transfer general management

Technology Management Cycle

Industry as laboratory

Moving in the *meta* direction

The context of architecting

management disciplines

technology management, business management, process management, quality assurance, project management

natural system architect habitat

standardisation bodies, professional societies

IEEE, ISO, ACM, IFIP, INCOSE

system architecting

communities, conferences

requirements engineering, reliability engineering, product lines, SW architecting, TRIZ, RUP

human sciences

psychology sociology pedagogy anthropology theology

classical disciplines

mathematics, physics, chemistry, biology, medicine, economics, computer science, mechanical engineering, electronical engineering

System architecting research: to do

Curriculum system architecting

