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1 Introduction

The soft real time behavior of first releases of products is often disappointing. For
instance the user interface feels sticky, due to poor repsonse times, or the system
throughput is less than expected.

The soft real time design is competing for architect attention with many other
design concerns, such as functionality, quality of service, maintainability et cetera
and with project management concerns, such as outsourcing, purchasing, work-
breakdown and work-allocation, see figure 1
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Figure 1: The tension between project management oriented concerns and soft real
time concerns

Many of these concerns not only compete for architect attention, but create also
design trade-offs: layering and decomposition eases many project management
issues, but the additional interfaces and run time interface transitions might kill the
system throughput.

Many of the design decisions around soft real time performance are not strictly
execution architecture decisions, although sometimes heavily intertwined. For
instance using separate processes for functionality developed on different sites
heavily impacts the execution architecture.

2 Bloating

The performance of soft real time systems is for a considerable part determined by
the amount of bloating of the software

Figure 2 show an actual example of part of the Medical Imaging system [2],
which used a platform based reuse strategy. The first implementation of a ”Tool”
class was overgeneric. It contained lots of if-then-else, configuration options, stubs
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Figure 2: The danger of being generic: bloating

for application specific extensions, and lots of best guess defaults. As a conse-
quence the client code based on this generic class contained lots of configuration
settins and overrides of predefined functions.

The programmers were challenged to write the same functionality specific,
which resulted in significantly less code. In the 3 specific instances of this function-
ality the shared functionality became visible. This shared functionality was factored
out, decreasing maintenance and supporting new applications.
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Figure 3: Exploring bloating

Bloating is one of the main causes of the software crisis. Bloating is the unnec-
essary growth of code. The really needed amount of code to solve a problem is
often an order of magnitude less than the actual solution is using. Figure 3 shows
a number of causes for bloating.

One of the bloating problems is that bloating causes more bloating, as shown
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Figure 4: Bloating causes more bloating

in figure 4. Software engineering principles force us to decompose large modules
in smaller modules. ”Good” modules are somewhere between 100 and 1000 lines
of code. So where unbloated functionality fits in one module, the bloated version
is too large and needs to be decomposed in smaller modules. This decomposition
adds some interfacing overhead. Unfortunately the same causes of overhead also
apply to this decomposition overhead, which means again additional code.

All this additional code does not only cost additional development, test and
maintenance effort, it also has run time costs: CPU and memory usage. In other
words the system performance degrades, in some cases also with an order of magnitude.
When the resulting system performance is unacceptable then repair actions are
needed. The most common repair actions involve the creation of even more code:
memory pools, caches, and shortcuts for critical functions.

The overall aspects of bloating are devastating: increased development, test
and maintenance costs, degraded performance, increased harware costs, loss of
overview, et cetera.
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Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Figure 5: causes even more bloating...
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