
Execution Architecture Soft Real Time design
-

logo
TBD

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.2 status: planned September 1, 2020



1 Introduction

The soft real time behavior of first releases of products is often disappointing. For
instance the user interface feels sticky, due to poor repsonse times, or the system
throughput is less than expected.

The soft real time design is competing for architect attention with many other
design concerns, such as functionality, quality of service, maintainability et cetera
and with project management concerns, such as outsourcing, purchasing, work-
breakdown and work-allocation, see figure 1

design 

choices

layering

decoupling

generic

competence

oriented

decomposition

structure

project 

management 

concerns

work-breakdown

work allocation

to competences

or sites

outsourcing

purchasing

anticipation

on re-use

maintainability

design

soft real time 

concerns

throughput

latency

response time

resource 

usage

memory

CPU

network

disk

design

tension

quality 

concerns

security

privacy

robustness

reliability

AV quality

design 

choices

encryption

authentication

self sustained

compression

processing

design

Figure 1: The tension between project management oriented concerns and soft real
time concerns

Many of these concerns not only compete for architect attention, but create also
design trade-offs: layering and decomposition eases many project management
issues, but the additional interfaces and run time interface transitions might kill the
system throughput.

Many of the design decisions around soft real time performance are not strictly
execution architecture decisions, although sometimes heavily intertwined. For
instance using separate processes for functionality developed on different sites
heavily impacts the execution architecture.

2 Bloating

The performance of soft real time systems is for a considerable part determined by
the amount of bloating of the software

Figure 2 show an actual example of part of the Medical Imaging system [2],
which used a platform based reuse strategy. The first implementation of a ”Tool”
class was overgeneric. It contained lots of if-then-else, configuration options, stubs

Gerrit Muller
Execution Architecture Soft Real Time design
September 1, 2020 version: 0.2

University of South-Eastern Norway-NISE

page: 1



after refactoring

specific 

implementations

without a priori re-use

generic design from 

scratch

lots of if-then-else

lots of configuration 

options

lots of stubs

lots of best guess 

defaults

over-generic class

lots of 

config

over-

rides

lots of 

config 

over-

rides

lots of 

config 

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Figure 2: The danger of being generic: bloating

for application specific extensions, and lots of best guess defaults. As a conse-
quence the client code based on this generic class contained lots of configuration
settins and overrides of predefined functions.

The programmers were challenged to write the same functionality specific,
which resulted in significantly less code. In the 3 specific instances of this function-
ality the shared functionality became visible. This shared functionality was factored
out, decreasing maintenance and supporting new applications.

overhead

value

legenda

core

function

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for 

unused legacy 

code

Figure 3: Exploring bloating

Bloating is one of the main causes of the software crisis. Bloating is the unnec-
essary growth of code. The really needed amount of code to solve a problem is
often an order of magnitude less than the actual solution is using. Figure 3 shows
a number of causes for bloating.

One of the bloating problems is that bloating causes more bloating, as shown

Gerrit Muller
Execution Architecture Soft Real Time design
September 1, 2020 version: 0.2

University of South-Eastern Norway-NISE

page: 2



overhead

value

legenda

core

functionality

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor 

design

poor 

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Figure 4: Bloating causes more bloating

in figure 4. Software engineering principles force us to decompose large modules
in smaller modules. ”Good” modules are somewhere between 100 and 1000 lines
of code. So where unbloated functionality fits in one module, the bloated version
is too large and needs to be decomposed in smaller modules. This decomposition
adds some interfacing overhead. Unfortunately the same causes of overhead also
apply to this decomposition overhead, which means again additional code.

All this additional code does not only cost additional development, test and
maintenance effort, it also has run time costs: CPU and memory usage. In other
words the system performance degrades, in some cases also with an order of magnitude.
When the resulting system performance is unacceptable then repair actions are
needed. The most common repair actions involve the creation of even more code:
memory pools, caches, and shortcuts for critical functions.

The overall aspects of bloating are devastating: increased development, test
and maintenance costs, degraded performance, increased harware costs, loss of
overview, et cetera.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[2] Gerrit Muller. Case study: Medical imaging; from toolbox to product to
platform. http://www.gaudisite.nl/MedicalImagingPaper.
pdf, 2000.

Gerrit Muller
Execution Architecture Soft Real Time design
September 1, 2020 version: 0.2

University of South-Eastern Norway-NISE

page: 3

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf


overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for 

unused legacy 

code

p
o

o
r 

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r 
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r 

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor 

design

poor 

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource 

optimization

poor 

design

poor 

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Figure 5: causes even more bloating...

History
Version: 0.2, date: March 7, 2003 changed by: Gerrit Muller

• added bloating text
Version: 0.1, date: December 6, 2002 changed by: Gerrit Muller

• added overhead penalty of modularity and function call
• added bloating figures

Version: 0, date: October 30, 2002 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
Execution Architecture Soft Real Time design
September 1, 2020 version: 0.2

University of South-Eastern Norway-NISE

page: 4


	Introduction
	Bloating

