
Lecture slides course Execution Architecture
by Gerrit Muller

Embedded Systems Institute

Abstract

The course Execution Architecture is a joint effort of Ton Kostelijk and Gerrit
Muller. Only limited theory is given, most time is spent hands-on. Not all the
material is in this bundle, the material made by Ton Kostelijk is in a separate
handout.

Distribution

This article or presentation is written as part of the Gaudí
project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is
pursued by an open creation process. This document
is published as intermediate or nearly mature version to
get feedback. Further distribution is allowed as long as
the document remains complete and unchanged.

September 1, 2020
status: planned
version: 0

logo
TBD

Module Information of the course Execution Architecture
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The course execution architecture is a joint effort of Ton Kostelijk and Gerrit Muller.
The intention of the course is to help the participants in the practical aspects
of designing an execution architecture. Most time during the course is spent in
the normal development environment in exploring, measuring and modifying the
current design. In the course setting the results are evaluated and next steps
are planned. The amount of theory in the course itself is very limited, plenty of
theoretical courses exist already.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: planned
version: 0

time
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8

context

theory

plan

presentation

discussion

next step

presentation

discussion

next step

presentation

discussion

evaluation

follow up

requirements design
analysis

verification

design exploration

micro measurements
analysis

estimates

measurements

design improvements

measurements

Course Execution Architecture
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The course Execution Architecture (EA) is described. The program existing of
2 modules and 3 feedback and plan sessions is described. The course format,
based mostly on hands on work in real products being created, is explained.
The course execution architecture is a joint effort of Ton Kostelijk and Gerrit Muller.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: planned
version: 0

time
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8

context

theory

plan

presentation

discussion

next step

presentation

discussion

next step

presentation

discussion

evaluation

follow up

requirements design
analysis

verification

design exploration

micro measurements
analysis

estimates

measurements

design improvements

measurements

Course Program

time
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8

context

theory

plan

presentation

discussion

next step

presentation

discussion

next step

presentation

discussion

evaluation

follow up

requirements design
analysis

verification

design exploration

micro measurements
analysis

estimates

measurements

design improvements

measurements

Course Execution Architecture
4 Gerrit Muller

version: 0
September 1, 2020

EACCprogram

Rules of the Broadcast Part

• Please write your questions/remarks/statements on yellow stickers and attach
them at the end on the P-flip.
These will be used in the interactive section for discussion and to increase
insight.

• Short clarification questions are welcome,
Discussion will take place in the interactive part.

• Stupid questions don’t exist. Learning is based on safe and open interaction.
Very individual-oriented questions can be referred to a break or after the
session.

Course Execution Architecture
5 Gerrit Muller

version: 0
September 1, 2020

EACCrulesBroadcast

Rules of the Interactive and the Practice Part

• Your contribution is essential.
• Don’t monopolize the time. Everyone, also the quiet people, should have the

opportunity to contribute.
The facilitator will intervene if the contribution is limited to a small group of
participants.

• Respect the contribution of others.
Opinions can’t be wrong, difference of opinion is normal and called pluri-
formity.

• The course format is highly experimental and based on improvisation,
constructive proposals are welcome.
It is your course! Regular evaluations will give the opportunity to influence the
rest of the course.

Course Execution Architecture
6 Gerrit Muller

version: 0
September 1, 2020

EACCrulesInteraction

Evaluation of the Expectations

Please write your name and expectations with a marker on one A4 page.
Describe your expectations as one-liner or in a few keywords.
These pages will be displayed on the wall of the room.
At the end of the course we will look back on these expectations, with the purpose
of two-way learning.

Course Execution Architecture
7 Gerrit Muller

version: 0
September 1, 2020

EACCexpectationEvaluation

Module Execution Architecture approach and concepts
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The module Execution architecture approach and concepts addresses an incre-
mental approach to design an execution architecture. A set of concepts is intro-
duced and illustrated, which is useful in the hands on phase of the course.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: planned
version: 0

logo
TBD

An incremental execution architecture design approach
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

An incremental design approach for the execution architecture is described. The
method is based on identification of the most critical requirement from both user
as well as technical point of view. The implementation itself is based on quantified
budgets. The creation, modification and verification of the budget is discussed.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: draft
version: 1.0

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

Positioning in CAFCR

diverse

complex

fuzzy

performance

expectations

needs

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

SMART

+ timing

requirements

+ external

interfaces

models
analysis

models
analysis

simulations
measurements

simulations
measurements

execution architecture

design
threads

interrupts

timers

queues

allocation

scheduling

synchronization

decoupling

An incremental execution architecture design approach
10 Gerrit Muller

version: 1.0
September 1, 2020

EAAandCAFCR

Incremental approach

determine most

important and critical

requirements

model

analyse constraints

and design options

simulate

build proto

measure

evaluate

analyse

An incremental execution architecture design approach
11 Gerrit Muller

version: 1.0
September 1, 2020

EAAspiral

Decomposition of system TR in HW and SW

o
ri
g

in
a

l
b

y
 T

o
n

 K
o

s
te

lij
k

system

TR

hardware

TR

software

TR

ns

us

ms

s

most and hardest

TR handled by HW

new control TRs

An incremental execution architecture design approach
12 Gerrit Muller

version: 1.0
September 1, 2020

EAAhwswRequirements

Quantification steps

order of magnitude

guestimates

calibrated estimates

10

50 200

30 300

10030 300

70 140

90 115

feasibility
measure,

analyze,

simulate

back of the

envelope

benchmark,

spreadsheet

calculation

99.999 100.001
cycle

accurate

An incremental execution architecture design approach
13 Gerrit Muller

version: 1.0
September 1, 2020

BWMAquantificationSteps

Budget based design

budget
design

estimates;
simulations

V4aa

IO

micro benchmarks

aggregated functions

applications

measurements
existing system

model

tproc

tover

+

tdisp

tover

+

+

spec

SRS
tboot 0.5s

tzap 0.2s

measurements
new (proto)

system
form

micro benchmarks

aggregated functions

applications

profiles

traces

tuning

10

20

30

5

20

25

55

tproc

tover

tdisp

tover

Tproc

Tdisp

Ttotal

feedback

can be more complex

than additions

An incremental execution architecture design approach
14 Gerrit Muller

version: 1.0
September 1, 2020

EAAbudget

Execution architecture concepts
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

The execution architecture determines largely the realtime and performance
behavior of a system. Hard real time is characterized as ”missing a deadline”
will result in system failure, while soft real time will result ”only” in dissatisfaction.
An incremental design approach is described. Concepts such as latency,
response time and throughput are illustrated. Design considerations and recom-
mendations are given such as separation of concerns, understandability and
granularity. The use of budgets for design and feedback is discussed.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: preliminary
draft
version: 1.1

complex reality;

many details,

many relations

limited use of tasks,

threads, priorities

to combine or

not to combine?

simple is better

hard real time systems

should be explainable

with a few A4 diagrams

reasoning must

be possible

simulation

simulation: additional means

if declared indispensable this is

often a symptom of poor models

overview is based on

understanding many

(critical) details

Execution Architecture

other architecture

views

execution

architecture

functional

model

process

display

receive demux

store

Map

process

task

threadthreadthread

process

task

threadthreadthread

process

task
threadthreadthread

interrupt

handlersin
pu
t

hardware

tuner drive

CPU DSP RAM

in
pu
t

repository

structure

queue

DCTmenu

txt

tuner

foundation

classes

hardware

abstraction

list DVD drive

UI toolkit processing

Applications
play zap

input

dead lines

timing, throughput

requirements

execution architecture

issues:

concurrency

scheduling

synchronisation

mutual exclusion

priorities

granularity

Execution architecture concepts
16 Gerrit Muller

version: 1.1
September 1, 2020

CVexecutionArchitecture

Fuzzy customer view on real time

hard real time

disastrous

failure dissatisfaction

human

safety

device

safety

loss of

information

loss of

functionality

limited

throughput

loss of

eye hand

coordination

waiting

time

soft real time

Execution architecture concepts
17 Gerrit Muller

version: 1.1
September 1, 2020

EAChardVsSoft

Smartening requirements

Limited set of hard real time cases

time

fr
eq

20 ms

Well defined set of performance critical cases

time

fr
eq

200 ms 500 ms

90%

Precise form of the distribution

is not important.

Be aware of systematic effects

No exception allowed

Worst case must fit

Typical within desired time,

limited exceptions allowed.

Exceptions may not result in

functional failure

Execution architecture concepts
18 Gerrit Muller

version: 1.1
September 1, 2020

EACsmarteningRequirements

Latency

bla bla bla

telephone telephone

reaction

long distance connection

time

bla bla bla

reaction
bla bla bla

reaction

connection

latency

perceived delay

connection

latency

speak
listen

speak
listen

Execution architecture concepts
19 Gerrit Muller

version: 1.1
September 1, 2020

EAClatency

Response Time

P+

P-

remote

control

time

zap

new

channel

total response time

visual

feedback

visual feedback time

zap

new

channel

open for next

respons

zap repetition

Execution architecture concepts
20 Gerrit Muller

version: 1.1
September 1, 2020
EACresponseTime

Throughput

processing

throughput:

+ processing steps/frame

+ frames/second

+ concurrent streams

screen

tuner

speakers

pip

tuner

TV

Execution architecture concepts
21 Gerrit Muller

version: 1.1
September 1, 2020

EACthroughput

Gross versus Nett

bus bandwidth, processor load [memory usage]
useful macroscopic views, be aware of microscopic behavior

function 1

overhead
bus, OS,

scheduling

loss = not
schedulable

depends strongly on granularity

depends on design

margin

function 4

function 3

function 2n
et

t

gr
o

ss

application overhead is still

in this "nett" number

Execution architecture concepts
22 Gerrit Muller

version: 1.1
September 1, 2020

EACbrutoVsNetto

Design recommendations separation of concerns

soft Real Time

hard Real Time

HW HW HW

minimize

influence
decoupling

minimal

shared

resources cost

performance

separation

manage

tension

explicit

queues or buffers

clear single demarcation

between hard and soft

process as unit of execution

Execution architecture concepts
23 Gerrit Muller

version: 1.1
September 1, 2020

EACseparation

Design recommendations understandability

complex reality;

many details,

many relations

limited use of tasks,

threads, priorities

to combine or

not to combine?

simple is better

hard real time systems

should be explainable

with a few A4 diagrams

reasoning must

be possible

simulation

simulation: additional means

if declared indispensable this is

often a symptom of poor models

overview is based on

understanding many

(critical) details

Execution architecture concepts
24 Gerrit Muller

version: 1.1
September 1, 2020

EACunderstandability

Granularity considerations

video frame

video line

pixel

unit of

synchronization

unit of

buffering

==

or

<>

==

or

<>

unit of

processing

==

or

<>

unit of

I/O

fine grain:

flexible

high overhead

coarse grain:

rigid

low overhead

Execution architecture concepts
25 Gerrit Muller

version: 1.1
September 1, 2020

EACgranularity

Design patterns

synchronous

very low overhead

predictable

understandable

works best in total separation

does not work for multiple rhythms

timer based

low "tunable" overhead

understandable

regular rhythm;
e.g. monitor HW status, update time, status display

safety critical, reliable, subsystems

fast rhythms significant overhead

interrupt based

separation of timing concerns

I/O and HW events
data available, display frame sync

definition of interrupts determines:

overhead, understandability

thread based

separation of timing concerns

sharing of resources (no wait)

Asynchronous applications and

services

poor understanding of concurrency

danger of high overhead

Execution architecture concepts
26 Gerrit Muller

version: 1.1
September 1, 2020
EACdesignPatterns

Synchronous design

execute tn-1 execute tn+1execute tn

input for tn+1 input for tn+2 input for tn+3

calculate tn calculate tn+2calculate tn+1

execute tn-2

input for tn

calculate tn-1

double buffer:

full decoupling of calculation and execution
setting tn

setting tn+1

HW

clk

HW

HW

SW

Execution architecture concepts
27 Gerrit Muller

version: 1.1
September 1, 2020

EACsynchronousDesign

Actual timing on logarithmic scale

D
is
k
se

ek

hu
m

an
 1
st ir

rit
at

io
n

th
re

sh
ol
d

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 2
nd ir

rit
at

io
n

th
re

sh
ol
d

ey
e-

ha
nd

 c
o-

or
di
na

tio
n

1
pa

ck
ag

e
tra

ns
fe

r

fa
st
 e

th
er

ne
t

(ps)

10
-12

(ns)

10
-9

(s)

10
-6

(ms)

10
-3

(s)

1

cy
cl
e

2
G
H
z
C
P
U

pu
re

 c
on

te
xt
 s
w
itc

h

D
R
A
M

 la
te

nc
y

1
by

te
 tr

an
sf
er

fa
st
 e

th
er

ne
t

ze
ro

 m
es

sa
ge

 tr
an

sf
er

ap
pl
 le

ve
l n

et
w
or

k

m
es

sa
ge

 e
xc

ha
ng

e

ap
pl
 le

ve
l m

es
sa

ge

ex
ch

an
ge

ap
pl
 le

ve
l f
un

ct
io
n

re
sp

on
se

hu
m

an
 re

ac
tio

n
tim

e

hu
m

an
 e

ye

FO
4

in
ve

rte
r d

el
ay

D
R
A
M

 c
yc

le
 ti
m

e

10
0

H
z
TV

fra
m

e

10
0H

z
vi
de

o

pi
xe

l t
im

e

10
0H

z
vi
de

o
lin

e

from

low level to high level

processing times

from low to high level

storage/network

application

needs

light

travels

1 cm

Execution architecture concepts
28 Gerrit Muller

version: 1.1
September 1, 2020

RVtimeAxis

Typical micro benchmarks for timing aspects

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive

often repeated

operations

database

network,

I/O

high level

construction

low level

construction

basic

programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer

power up, power down

boot

Execution architecture concepts
29 Gerrit Muller

version: 1.1
September 1, 2020

RVuTimingBenchmarks

The transfer time as function of blocksize

ti
m

e

block
size

worst case

optimal block-size

toverhead

rate
-1

Execution architecture concepts
30 Gerrit Muller

version: 1.1
September 1, 2020

RVparametrizedTransferRate

Example of a memory budget

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data

12.0

3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes

Execution architecture concepts
31 Gerrit Muller

version: 1.1
September 1, 2020

RVmemoryBudgetTable

Complicating factors and measures

cache

bus allocation

memory management

garbage collection

memory (buffer, storage) fragmentation

non preemptable OS activities

"hidden" dependencies (ie [dead]locks)

systematic "coincidences", avalanche triggers

instable response, performance

considered margin

explicit behavior

architecture rules

monitoring, logging

pool management

feedback to architect

flipover simulation

complications measures

Execution architecture concepts
32 Gerrit Muller

version: 1.1
September 1, 2020

EACcomplicationsMeasures

