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Abstract

The course execution architecture is a joint effort of Ton Kostelijk and Gerrit Muller.
The intention of the course is to help the participants in the practical aspects
of designing an execution architecture. Most time during the course is spent in
the normal development environment in exploring, measuring and modifying the
current design. In the course setting the results are evaluated and next steps
are planned. The amount of theory in the course itself is very limited, plenty of
theoretical courses exist already.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.
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Abstract

The course Execution Architecture (EA) is described. The program existing of
2 modules and 3 feedback and plan sessions is described. The course format,
based mostly on hands on work in real products being created, is explained.
The course execution architecture is a joint effort of Ton Kostelijk and Gerrit Muller.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
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open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.
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Rules of the Broadcast Part

• Please write your questions/remarks/statements on yellow stickers and attach
them at the end on the P-flip.
These will be used in the interactive section for discussion and to increase
insight.

• Short clarification questions are welcome,
Discussion will take place in the interactive part.

• Stupid questions don’t exist. Learning is based on safe and open interaction.
Very individual-oriented questions can be referred to a break or after the
session.
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Rules of the Interactive and the Practice Part

• Your contribution is essential.
• Don’t monopolize the time. Everyone, also the quiet people, should have the

opportunity to contribute.
The facilitator will intervene if the contribution is limited to a small group of
participants.

• Respect the contribution of others.
Opinions can’t be wrong, difference of opinion is normal and called pluri-
formity.

• The course format is highly experimental and based on improvisation,
constructive proposals are welcome.
It is your course! Regular evaluations will give the opportunity to influence the
rest of the course.
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Evaluation of the Expectations

Please write your name and expectations with a marker on one A4 page.
Describe your expectations as one-liner or in a few keywords.
These pages will be displayed on the wall of the room.
At the end of the course we will look back on these expectations, with the purpose
of two-way learning.
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Abstract

The module Execution architecture approach and concepts addresses an incre-
mental approach to design an execution architecture. A set of concepts is intro-
duced and illustrated, which is useful in the hands on phase of the course.

Distribution
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Abstract

An incremental design approach for the execution architecture is described. The
method is based on identification of the most critical requirement from both user
as well as technical point of view. The implementation itself is based on quantified
budgets. The creation, modification and verification of the budget is discussed.

Distribution
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and unchanged.
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Positioning in CAFCR
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Incremental approach
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Decomposition of system TR in HW and SW
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Budget based design
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Abstract

The execution architecture determines largely the realtime and performance
behavior of a system. Hard real time is characterized as ”missing a deadline”
will result in system failure, while soft real time will result ”only” in dissatisfaction.
An incremental design approach is described. Concepts such as latency,
response time and throughput are illustrated. Design considerations and recom-
mendations are given such as separation of concerns, understandability and
granularity. The use of budgets for design and feedback is discussed.
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Fuzzy customer view on real time
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Smartening requirements

Limited set of hard real time cases
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Throughput
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Gross versus Nett
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Design recommendations separation of concerns
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Design recommendations understandability
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Granularity considerations
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Design patterns
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very low overhead

predictable

understandable

works best in total separation

does not work for multiple rhythms

timer based

low "tunable" overhead

understandable

regular rhythm;
e.g. monitor HW status, update time, status display

safety critical, reliable, subsystems

fast rhythms significant overhead

interrupt based

separation of timing concerns

I/O and HW events
data available, display frame sync

definition of interrupts determines:

overhead, understandability

thread based

separation of timing concerns

sharing of resources (no wait)

Asynchronous applications and 

services

poor understanding of concurrency

danger of high overhead

Execution architecture concepts
26 Gerrit Muller

version: 1.1
September 1, 2020
EACdesignPatterns



Synchronous design
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Actual timing on logarithmic scale
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Typical micro benchmarks for timing aspects

object creation

object destruction
method invocation

component creation

component destruction

open connection

close connection

method invocation
same scope

other context

start session

finish session

perform transaction

query

transfer data

function call

loop overhead

basic operations (add, mul, load, store)

infrequent operations,

often time-intensive 

often repeated

operations

database

network,

I/O
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programming

memory allocation

memory free

task, thread creationOS task switch

interrupt response

HW cache flush

low level data transfer
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The transfer time as function of blocksize
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Example of a memory budget

shared code

User Interface process

database server

print server

optical storage server

communication server

UNIX commands

compute server

system monitor

application SW total

UNIX Solaris 2.x

file cache

total

obj data

3.0

3.2

1.2

2.0

2.0

0.2

0.5

0.5

12.6

bulk data
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3.0

9.0

1.0

4.0

0

6.0

0

35.0

code

11.0

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

13.4

total

11.0

15.3

6.5

10.5

3.3

6.3

0.5

6.8

0.8

61.0

10.0

3.0

74.0

memory budget in Mbytes
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Complicating factors and measures

cache

bus allocation

memory management

garbage collection

memory (buffer, storage) fragmentation

non preemptable OS activities

"hidden" dependencies (ie [dead]locks)

systematic "coincidences", avalanche triggers

instable response, performance

considered margin

explicit behavior

architecture rules

monitoring, logging

pool management

feedback to architect

flipover simulation

complications measures
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