
Composable Architectures

logo
TBD

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

Composable architectures are used to create product families and individual
products of a product family. This book bundles articles addressing several
concerns and approaches with respect to composing products in a composable
architecture.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.4 status: planned January 21, 2022

Contents

Introduction xi

1 How to Create a Manageable Platform Architecture? 1
1.1 Introduction . 1
1.2 Case: Medical Imaging Workstation 2

1.2.1 Product Context . 2
1.2.2 Historic Phases . 4
1.2.3 Basic Application and Toolboxes 4
1.2.4 Medical Imaging X-Ray 5
1.2.5 Second Concurrent Product: Medical Imaging CT/MR . . 8
1.2.6 Towards Workflow . 10

1.3 Architecture . 13
1.4 Platform . 17
1.5 The Time Dimension . 22
1.6 Process View . 27

1.6.1 Lead Customer . 30
1.6.2 Carrier Product . 31
1.6.3 Platform . 31

1.7 Market Driven . 32
1.8 Recommendations . 36

2 A Method to Explore Synergy between Products 37
2.1 Introduction . 37
2.2 Stepwise method to explore synergy opportunities 38

2.2.1 Explore markets, customers, products and technologies . . 39
2.2.2 Share market and customer insights 40
2.2.3 Identify product features and technology components . . . 41
2.2.4 Make maps . 42
2.2.5 Discuss value, synergy and (potential) conflicts 43
2.2.6 Create long term and short term plan 43

2.3 Example of synergy . 44

3 Software Reuse; Caught between strategic importance and practical
feasibility 45
3.1 Introduction . 45
3.2 Statements about reuse . 48
3.3 Software reuse is needed . 49
3.4 The technical challenge . 50
3.5 The organizational challenge . 53
3.6 Integration . 56
3.7 Evolution . 60
3.8 Reuse of know how . 61
3.9 Focus on business bottomline and customer 62

3.9.1 Lead Customer . 64
3.9.2 Carrier Product . 65
3.9.3 Platform . 65

3.10 Use before reuse . 67

4 Aggregation Levels in Composable Architectures 68
4.1 Problem description . 68
4.2 Views on Aggregation . 69
4.3 Documentation . 69
4.4 Source Code Management viewpoint 70
4.5 Composition viewpoint . 72

4.5.1 Optimal granularity for composition 73
4.6 Field Deployment viewpoint . 74
4.7 Integration and Test viewpoint 74
4.8 Acknowledgements . 76

5 From Legacy to State-of-the-art; Architectural Refactoring 77
5.1 The problem . 77

5.1.1 Market trends . 77
5.1.2 Technology trends . 79
5.1.3 Example Digital Television 80

5.2 Architectural Refactoring . 84
5.2.1 Prerequisites for effective architectural refactoring 85

5.3 Conclusion . 90
5.4 Acknowledgements . 90

6 Light Weight Architecture: the way of the future? 92
6.1 Introduction . 92
6.2 Do the right things; The Dynamic Market 94
6.3 Do the things right; Lessons from Practice 102

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: iii

6.4 The Weight of an Architecture; Architectural Chaos or Bureau-
cratic Control? . 106

6.5 Light weight how-to . 109
6.6 Summary . 111
6.7 Acknowledgements . 111

7 Exploration of the bloating of software 112
7.1 Introduction . 112
7.2 Module level bloating . 112
7.3 Bloating causes more bloating 116
7.4 What if we are able to reduce the bloating? 119
7.5 How to attack the bloating? . 121

7.5.1 Improving the specification 121
7.5.2 Improving the design . 121
7.5.3 Avoiding the genericity trap 122
7.5.4 Match solution technology with problem 123
7.5.5 Agility instead of dogmatism 124
7.5.6 Reduce unused code . 125

7.6 Acknowledgements . 127

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: iv

List of Figures

1.1 Outline of this paper . 2
1.2 Philips Medical Systems, schematic organization overview. 2
1.3 Generic drivers of Radiology Departments 3
1.4 Phases of Medical Imaging . 4
1.5 Technology innovations by Common Viewing 5
1.6 Idealized layering of SW toolboxes and Basic Application in septem-

ber 1991 . 5
1.7 X-ray rooms from examination to reading around 1990 6
1.8 X-ray rooms from examination to reading, when Medical Imaging

is applied as printserver . 6
1.9 Comparison of conventional screen copy based film and a film pro-

duced by Medical Imaging. This case is very favorable for the
Medical Imaging approach, typical gain is 20% to 50%. 7

1.10 Idealized layers of the Medical Imaging R/F software in september
1992 . 7

1.11 Example of Multi Planar Reformatting applied on the spine 8
1.12 Example of CT and MR department, where Medical Imaging is

deployed . 8
1.13 Idealized layers of the Medical Imaging software in june 1994 . . 9
1.14 Radiology department as envisioned in 1996 10
1.15 Medical Imaging in health-care workflow perspective, as envisioned

in 1996 . 11
1.16 Idealized layers of the Medical Imaging software in 1996 12
1.17 What is Architecture? . 13
1.18 What is Architecture? . 13
1.19 ”Guiding How” by providing rules for: 14
1.20 The Art of Architecting . 14
1.21 Architecting is much more than Decomposition 15
1.22 The architecture description is by definition a flattened and poor

representation of an actual architecture. 15
1.23 Drivers of Generic Developments 17

1.24 What is a Platform? . 18
1.25 Platform Source Deliverables . 19
1.26 And now in More Detail... 19
1.27 Example of Platform Efficiency 20
1.28 Purchased SW Requires Embedding 20
1.29 Embedding Costs of Purchased SW 21
1.30 Example of Embedding Problems 21
1.31 Who is First: Platform or Product? 22
1.32 Myth: Platforms are Stable . 23
1.33 The first time right? . 23
1.34 Feedback (3) . 24
1.35 Platform Evolution (Easyvision 1991-1996) 24
1.36 Life-cycle Differences . 25
1.37 Reference model for health care automation 26
1.38 Simplified decomposition of the business in 4 main processes . . . 27
1.39 Modified Process Decomposition 28
1.40 Financial Viewpoint on Process Decomposition 28
1.41 Feedback flow: loss of customer understanding! 29
1.42 The introduction of a new feature as part of a platform causes an

additional latency in the introduction to the market. 29
1.43 Sources of failure in platform developments 30
1.44 Models for SW reuse . 30
1.45 The “CAFCR” model . 32
1.46 Five viewpoints for an architecture. The task of the architect is to

integrate all these viewpoints, in order to get a valuable, usable and
feasible product. 33

1.47 Example of Scoping of a Platform. 33
1.48 Example of the four key drivers in a motorway management system 34
1.49 Example Thread of Reasoning from the Medical Imaging Work-

station . 35
1.50 Summary of recommendations to manage platform architectures . 36

2.1 Types of synergy . 37
2.2 Approach to Platform Business Analysis 38
2.3 Explore Markets, Customers, Products and Technologies 39
2.4 Study one Customer and Product 40
2.5 Work Flow Analysis for Different Customers/Applications 40
2.6 Make Map of Customers and Market Segments 41
2.7 Identify Product Features and Technology Components 42
2.8 Mapping From Markets to Components 42
2.9 Example Criteria for Determining Value 43
2.10 Determine Value of Features . 43

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: vi

2.11 Example of synergy between heterogeneous markets 44

3.1 Why reuse: many valid objectives 46
3.2 Experiences with reuse, from counterproductive to effective 47
3.3 Succesful examples of reuse . 47
3.4 Limits of successful reuse . 47
3.5 Reuse statements . 48
3.6 Reuse statements continued . 48
3.7 Reuse is needed ... as part of the solution 49
3.8 The danger of being generic: bloating 50
3.9 Exploring bloating . 51
3.10 Bloating causes more bloating 51
3.11 causes even more bloating... 52
3.12 Conventional operational organization 53
3.13 Modified operational organization 54
3.14 Conflicting interests of customers escalate to family level, have im-

pact on platform, product creation teams benefit or suffer from the
top down induced policy . 55

3.15 Decomposition is easy, integration is difficult 56
3.16 Integration problems show up late during the project, as a complete

surprise . 57
3.17 Integration of components from different sources is difficult due to

the architectural mismatch . 58
3.18 Integrating concepts . 58
3.19 Platform block diagram . 59
3.20 Platform types . 59
3.21 The outside world is dynamic . 60
3.22 Platform evolution (Easyvision 1991-1996) 60
3.23 Reuse in CAFCR perspective . 61
3.24 Simplified decomposition of the business in 4 main processes . . . 62
3.25 Modified Process Decomposition 63
3.26 Financial Viewpoint on Process Decomposition 63
3.27 Feedback flow: loss of customer understanding! 64
3.28 Models for SW reuse . 64
3.29 The introduction of a new feature as part of a platform causes an

additional latency in the introduction to the market. 66
3.30 Feedback (3) . 67
3.31 Use of software modules enables validation before Reuse 67

4.1 Venn diagram showing the overlap between Viewpoints on Aggre-
gation Levels . 69

4.2 Visualization of documentation concerns 70

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: vii

4.3 The source code is stored in files in a repository. The unit of struc-
turing is called a package. These source code aggregation levels
get a more semantic meaning when being used. 71

4.4 Coarse versus Fine grained with respect to the number of connec-
tions and relations; 9 large Components with 18 Connections, 81
small Components with 648 Connections 73

4.5 Integration and testing as function of size 76

5.1 Today’s Audio Video Consumer Products 78
5.2 Trend: Convergence of separate worlds 78
5.3 Integration and Diversity . 79
5.4 Today’s Video Products . 79
5.5 Evolution of Video Products . 80
5.6 Distribution Scenario’s . 81
5.7 Product Packaging Options . 82
5.8 Moore’s law . 82
5.9 Problem: increasing SW size, decreasing reliability? 82
5.10 The Holy Grail: Reuse . 83
5.11 Simplistic Architecting: Digital TV 83
5.12 Available Code Assets . 83
5.13 Merge problems . 84
5.14 Solution: Architectural Refactoring 85
5.15 Example of Refactoring Goals 85
5.16 Architectural and Code refactoring 86
5.17 Frequent feedback results in faster results and a shorter path to the

result . 87
5.18 Myth: Platforms are Stable . 88
5.19 Platform Evolution (Easyvision 1991-1996) 88
5.20 Example Long Term Vision . 89
5.21 Don’t do . 90
5.22 Conclusion: Refactoring the Architecture is a must 91

6.1 What is Architecture? . 92
6.2 Table of Contents . 93
6.3 Value chain . 94
6.4 Convergence . 95
6.5 Integration and Diversity . 95
6.6 Uncertainty (Dot.Com effect) . 96
6.7 Moore’s law . 96
6.8 System Integrator Problem Space - Business 97
6.9 System Integrator Problem Space - Technology 97
6.10 System profile . 98

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: viii

6.11 PS Technology solutions . 99
6.12 Partial Solution: Configurable Component Platform 99
6.13 Exploring problem space and solution ingredients 100
6.14 More than Architecture . 100
6.15 Conclusions Part 1A . 101
6.16 ”Guiding How” by providing rules for: 102
6.17 The Art of Architecting . 103
6.18 Architecting is much more than Decomposition 104
6.19 Myth: Platforms are Stable . 104
6.20 The first time right? . 105
6.21 Example with diffrent feedback cycles (3, 2, and 1 months) show-

ing the time to market decrease with shorter feedback cycles . . . 105
6.22 Platform Evolution (Easyvision 1991-1996) 105
6.23 Architecture Weight . 106
6.24 Scope and Impact . 106
6.25 Criteria for an Architecture . 107
6.26 Weight versus Effectiveness . 107
6.27 Conclusion Part 2 . 108
6.28 Light Weight How -To . 109
6.29 Minimize Rule Weight . 110
6.30 Summary . 111

7.1 Exploring bloating . 113
7.2 Necessary functionality is more than the intended regular function 113
7.3 The danger of being generic: bloating 114
7.4 Shit propagation via copy paste 116
7.5 Example of shit propagation . 116
7.6 Bloating causes more bloating 117
7.7 causes even more bloating... 118
7.8 What if we remove half of the bloating? 119
7.9 Impact of size on organization, location, process 119
7.10 Anti bloating multiplier . 120
7.11 How to reduce bloating . 121
7.12 Improving the specification . 122
7.13 Use multiple views and methods 123
7.14 Feedback (3) . 124
7.15 Lesson learned about reuse . 124
7.16 Examples of ”right” technology choices 125
7.17 Keep the architecture weight low 125
7.18 Reduce unused code . 126

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: ix

List of Tables

4.1 Concerns per viewpoint . 69
4.2 Aggregation Levels or Entities per viewpoint 70
4.3 Typical Sizes of SW for Aggregation Levels 72
4.4 The relation between the number of components and the required

number of architects, zero order model 74
4.5 The relation between the number of components and the required

number of architects, first order model 75
4.6 Decomposition of Field Deployment granularity drivers 75

Introduction

This book bundles the articles about Composable Architectures Research.
At this moment the book is in its early infancy. Most articles are updated

based on feedback from readers and students. The most up to date version of the
articles can always be found at [15]. The same information can be found here in
presentation format.

Chapters can be read as autonomous units.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0.4

University of South-Eastern Norway-NISE

page: xii

Chapter 1

How to Create a Manageable
Platform Architecture?

Q: How to manage

platform architectures?

case

architecting

platform
time

dimension

process

market

driven

Recommendations

1.1 Introduction

Most companies struggle with the development of functionality and components
shared by multiple products. The strategy to share development costs of shared
functionality and components is known under many different labels: re-use, product
families, product lines, generic developments or platforms to name a few. We will
use the term platform in this paper.

This paper is partially, about half, based on existing Gaudí material. We want
to address the following question in this paper: “Q: How to manage platform archi-
tectures?”. Figure 1.1 shows the outline of this paper. We start by discussing an
actual platform case that covers more than 10 years elapsed time. Next we explore
architecting and platforms. We zoom in on the time dimension, the process and
the need to be market driven. Finally we summarize by a means of a number of
recommendations.

Q: How to manage

platform architectures?

case

architecting

platform
time

dimension

process

market

driven

Recommendations

Figure 1.1: Outline of this paper

1.2 Case: Medical Imaging Workstation

The Medical Imaging workstation was an early large scale Object Oriented product.
Originally intended to become a re-useable set of toolboxes, it evolved in a family
of medical workstations and servers.

1.2.1 Product Context

Philips Medical Systems is a major player in the medical imaging market. The
main competitors are GE and Siemens. The Product Creation focus of Philips
Medical Systems is modality oriented, as shown in figure 1.2.

Philips Medical Systems

Non X-ray

modalities

Conventional

X-ray

MR CT URF Surgery
Cardio

Vascular

Medical

Imaging

Common

X-ray

Components

US

Figure 1.2: Philips Medical Systems, schematic organization overview.

The common technology in conventional X-ray systems is developed by component
oriented business groups, which make generators, tubes, camera’s, detectors, et
cetera. The so-called ”System-groups” have a more clinical focus, they create the
clinical oriented systems on the basis of the common available components.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 2

The non X-ray groups1 mainly build large complex general purpose imaging
equipment. The imaging principles in CT and MR are less direct, which means
that an image reconstruction step is required after acquisition to form the viewable
images. Ultra Sound (ATL) is acquired by Philips Medical Systems recently. It
is not fully integrated in the organization. The main markets of Philips Medical
Systems are radiology and cardiology, with a spin off to the surgery market.

Traditionally the radiologist makes and interprets images from the human body.
A referring physician requests an examination, the radiologist responds with a
report with his findings. Figure 1.3 shows a generic set of Radiology drivers.

Diagnosis

Department

Efficiency

Safety

Image quality

Relaxed patient

ease of use

patient handling

universality

integrated information flow

minimal film cost

up time

Compliant with Standards and Regulations

minimal evasive

automation

patient accessibility

patient entry, exit

dose reduction

Figure 1.3: Generic drivers of Radiology Departments

Philips Medical Systems core is the imaging equipment in the examination
rooms of the radiology department2. The key to useful products is the combined
knowledge of application (what) and technology (how).

1A poor name for this collection; The main difference is in the maturity of the modality, where
this group exists from relative ”young” modalities, 20 a 30 years old.

2equally important core for Philips Medical Systems is the cardio imaging equipment in the
catheterization rooms of the cardiology department, which is out of the Medical Imaging Workstation
scope.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 3

1.2.2 Historic Phases

The development model of Medical Imaging has changed several times. Roughly
the phases in Figure 1.4 can be observed. The first phase can best be characterized
as technology development, with poor Market and Application feedback. The next
phase overcompensates this poor feedback by focusing entirely on a product.

Advanced Development
(”Common Viewing”)

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Develop

ment of

1
st

product

Parallel

Development
of 2

nd
 product

Family

Development

Transformation in

re-useable components

Basic Application

plus toolboxes

Easyvision RF

Easyvision RF R2

Easyvision CT/MR

Easyvision Xray R1

Easyvision CT/MR R2

Easyvision RAD

EasyReview

Medical

Imaging

Platform

Figure 1.4: Phases of Medical Imaging

Philips Medical Systems has been striving for re-useable viewing components
at least from the late seventies. This quest is based on the assumption that the
viewing of all Medical Imaging Products is so similar, that cost reduction should
be possible when a common implementation is used. The lessons learned during
this long struggle have been partially consolidated in [13].

The group of people, which started the Common Viewing development, applied
a massive amount of technology innovations, see Figure 1.5.

1.2.3 Basic Application and Toolboxes

The goal of the common viewing development was to create an extensive set of
toolboxes, to be used for viewing in all imaging products. The developers of
the final products had fine-grain access to all toolboxes. This approach is very
flexible and powerful, however the penalty of this flexibility is that the integration
is entirely the burden of the product developer.

The power of the toolboxes was demonstrated in a Basic Application. This
basic application was a superset of all available features and functions. From
clinical point of view a senseless product, however a good vehicle to integrate
and to demonstrate.

Figure 1.6 shows the idealized layering of the toolboxes and the the Basic
Application in september 1991. the toolbox layer builds upon the Sun computing

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 4

• standard UNIX based workstation

• full SW implementation, more flexible

• object oriented design and implementation (Objective-C)

• graphical User Interface, with windows, mouse et cetera

• call back scheduling, fine-grained notification

• data base engine, fast, reliable and robust

• extensive set of toolboxes

• property based configuration

• multiple co-ordinate spaces

Figure 1.5: Technology innovations by Common Viewing

Standard Sun workstation

SunOS, SunView

Image Gfx UI DB

Basic Application

operating system

toolbox

hardware

user interface

legend

Figure 1.6: Idealized layering of SW toolboxes and Basic Application in september
1991

platform (Workstation, the Sun version of UNIX SunOS and the Sun windowing
environment Sunview). The core of common viewing is the imaging and graphics
toolbox, and the UI gadgets and style.

1.2.4 Medical Imaging X-Ray

Figure 1.7 shows the X-ray rooms which are involved from the examination until
the reading by the radiologist. Around 1990 the X-ray system controls were mostly
in the control room, where the operator of the system performed all settings from
acquisition setting to printing settings. Some crucial settings can be performed
in the room itself, dependent on the application. The hardcopies were produced
as literal copies of the screen of the monitor. The printer was positioned at some
non-obtrusive place.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 5

Examination
Room

Control
Room

Corridor
or closet

Examination
Room

Control
Room

Reading
Room

Figure 1.7: X-ray rooms from examination to reading around 1990

The consequence of the literal screen copy was that a lot of redundant infor-
mation is present on the film, such as patient name, birth date and acquisition
settings. On top of that the field of view was supposed to be square or circular,
although the actual field of view is often smaller due to the shutters applied.

Examination
Room

Control
Room

Reading
Room

Corridor
or closet

Examination
Room

Control
Room

printer

light box

detector

X ray

source console

Figure 1.8: X-ray rooms from examination to reading, when Medical Imaging is
applied as printserver

The economic existence of Medical Imaging X-ray was based in 1992 on
improvements of this printing process. The patient, examination and acquisition
information is orderly shown in one viewport, removing all the redundant infor-
mation near the images itself. A further optimization is applied by a fit-to-shutter
formatting. These 2 steps together reduce the film use by 20% to 50%.

The user actions needed for the printing are reduced as well, by providing print
protocols, which perform the repetitive activities of the printing process. The effec-
tiveness of this automation depends strongly on the application, some applications
require quite some fine-tuning of the contrast-brightness, or an essential selection

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 6

old: screen copy

20 to 50% less film needed

new: SW formatting

Figure 1.9: Comparison of conventional screen copy based film and a film
produced by Medical Imaging. This case is very favorable for the Medical Imaging
approach, typical gain is 20% to 50%.

step, which require (human) clinical knowhow.
A prominent sales feature at conferences was the 9-button remote control. The

elementary viewing functions, such as patient/examination selection, next/previous
image and contrast/brightness. This remote control lowered the threshold for clinical
personnel, both radiologist as well as technical, enough to catch their interest: The
Medical Imaging was not sold as a disgusting computer or workstations, rather it
was positioned as a clinical appliance.

DSI

3M
RC

Desk, cabinets, cables, etc.

Standard IPX workstationDOR
HC

interf

RC

interf

SunOS

NIXRC

driver

HC

driver

DOR

driver

Spool HCU Store Image Gfx UI DB
PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools Print Store View Cluster

operating system

toolbox

hardware

application functions

user interface

connected system

SW infrastructure

legend

Figure 1.10: Idealized layers of the Medical Imaging R/F software in september
1992

The definition of the Medical Imaging was done by marketing, which described
that job as a luxury problem. Normally heavy negotiations were required to get

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 7

features in, while this time most of the time marketing wanted to reduce the (viewing
and user interface) feature set, in order to simplify the product.

From software point of view the change from basic application to clinical
product was tremendous. The grey areas in figure 1.10 indicate new SW. The
amount of code increased from 100 klines to 350 klines of code.

1.2.5 Second Concurrent Product: Medical Imaging CT/MR

Up to 1992 the Medical Imaging organization had a single focus, first on toolboxes,
later on Medical Imaging R/F. In 1993 it was decided to apply the Medical Imaging
also on CT and MR.

curved

slice

oblique

slices

Figure 1.11: Example of Multi Planar Reformatting applied on the spine

The printing functionality of CT and MR scanners improves significantly when
Medical Imaging is applied as printserver. However the CT and MR applications
can benefit also from interactive functionality, more than the X-ray applications.
An clear example is the Multi Planar Reformatting (MPR) functionality, where
arbitrary slices are reconstructed from the volume data set.

MR Examination

room

CT Examination

room

Control

room

Control

room

"MPR"

room

Reading
Room

Figure 1.12: Example of CT and MR department, where Medical Imaging is
deployed

Superficially X-ray viewing looks the same as CT and MR viewing. However

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 8

the viewing is different in many subtle ways. A fundamental difference is that
X-ray images are projection images, while CT and MR images are slices, which
means that CT and MR images have a 3D ”meaning”, which is missing in X-ray
images. The 3D relationship is amongst others used for navigation, a point-and-
click type of user interface: clicking on a scanogram immediately shows the related
slice(s) at that position.

The software was significantly extended, the code size increased from 350 klines
to 600 klines. Note that this is not only an extension with 250 klines, from the
original 350 klines roughly half was modified or removed. In other words a signif-
icant amount of refactoring has taken place concurrent with the application exten-
sions. Figure 1.13 shows the (idealized) SW structure at the completion of Medical
Imaging CT/MR and the second release of Medical Imaging R/F. Light grey blocks
represent new code, dark grey represents major redesigns.

MR CT DSI DCAS PCRnew
HCU

3M

RC
dials

Desk, cabinets, cables, etc.

Standard IPX or Sparcstation 5 workstationDOR
HC

interf
RC dials

interf

Solaris

NIXRC dials
driver

HC
driver

DOR
driver

CDSpack

Spool HCU Store Image Gfx UI DB
PMS-
net in

PMS-
net out

Compose Print Store MPR View Export Cluster

MR CT RF Vascular Cardio PCR

Specialized applications
(Dental, etcetera)

Medical Imaging R/FMedical Imaging CT/MR

Rad

Start up

Install

Config

SW keys

service

customi
zation

remote
access

dev.
tools

Specialized applications

Figure 1.13: Idealized layers of the Medical Imaging software in june 1994

All diagrams 1.6, 1.10 and 1.13 are labelled as idealized. This adjective is used
because the actual software structure was less well structured than presented by

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 9

these diagrams. Part of the refactoring in the 1992-1994 time frame was a cleanup,
to obtain well defined dependencies between the software-”groups”. These groups
were more fine-grained than the blocks in these diagrams.

1.2.6 Towards Workflow

MR CT

URF Vascular

"MPR" CT

Printer RAD RAD RAD

Reading
Room

Reception

Office

teaching

Figure 1.14: Radiology department as envisioned in 1996

Medical Imaging R/F and Medical Imaging CT/MR were positioned as modality
enhancers. The use of these systems enhances the value of the modality. They
are used in the immediate neighborhood of the modality, before the reporting is
done. From sales point of view these Medical Imaging are additional options for a
modality sales.

The radiology workflow is much more than the acquisition of the images.
Digitalization of the health-care information flow requires products which fit in
the broader context of radiology and even the diagnostic workflow. Figures 1.14
and 1.15 show the increasing context where the workstation technology can be
deployed.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 10

MR CT

URF Vascular

"MPR" CT

Printer RAD RAD RAD

Reading
Room

Recepti
on

Office

teaching

Radiology department

Referring

Physician

Referring

Physician

Radiologist

at home

IT infrastructure
in basement

Radiologist at

other hospital

Radiologist

somewhere

in the hospital

Conference room

Operating

theatre

trauma

room

Figure 1.15: Medical Imaging in health-care workflow perspective, as envisioned
in 1996

The increasing context causes new extensions of the SW building, as shown in
Figure 1.16.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 11

MR CT DSI DCAS PCRnew
HCU

3M

RC
dials

Desk, cabinets, cables, etc.

Standard Sparcstation 5 workstationDOR
HC

interf
RC dials

interf

Solaris

NIXRC
driver

HC
driver

DOR
driver

CDSpack

Spool HCU Store Image Gfx UI DB
PMS-
net in

PMS-
net out

Compose Print Store MPR View Export Cluster

MR CT RF Vascular Cardio PCR

Specialized applications
(Dental, bolus chase, cardio analysis, etcetera)

Interfacing
RIS, etcetera

XRayCT/MRRadReview
Image Guided

Surgery
Back-ends

Start up

Install

Config

SW keys

service

customi
zation

remote
access

dev.
tools

Figure 1.16: Idealized layers of the Medical Imaging software in 1996

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 12

1.3 Architecture

market, business, technology

process, product

components

(implementations)

API's

OS file system

bus memory I/O

infrastructure
http DVB IPTV

WMA MP3 JPEG

standards

audio

pipeline

message

routing

whiteboard

communication

concepts

layer n !calls n-k; k>1

layer n !calls n+k; k>0

high level rules

customers environment

Java

SQL

FPGA
technology

domain

codification

overarching vision

Spec Design

Design
Design

Spec
Spec

specifications

guidance

monitoring

indicators

Mark all applicable boxes

other...

performance

reliability

cost
risk

functionality

power

Figure 1.17: What is Architecture?

What is Architecture? Every individual appears to use their own definition of
architecture. Figure 1.17 shows many different aspects that are frequently mentioned
as being part of the architecture.

Do the right things

Do the things right

How
Guiding

Why
Understanding

What
Describing

Figure 1.18: What is Architecture?

We will use a broad definition of Architecture. Architecture is the combination
of the know how of the solution (technology) and understanding of the problem
(customer/application). The architect must play an independent role in considering
all stakeholders interests and searching for an effective solution. The fundamental
architecting activities are depicted in figure 6.1.

Creating the solution is a collective effort of many designers and engineers.
The architect is mostly guiding the implementation, the actual work is done by the
designers and engineers. Guiding the implementation is done by providing guide-
lines and high level designs for many different viewpoints. Figure 6.16 shows some
of the frequently occurring viewpoints for guiding the implementation. Note that
many people think that the major task of the architect is to define the decompo-
sition and to define and manage the interfaces of this decomposition. Figure 6.16

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 13

4. Infra-

structure

2. Construction

Decomposition

3. Allocation

5. Choice of

integrating

concepts

1. Functional

Decomposition

tuner
frame-

buffer
MPEG

DS

P
CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view play browse

storage

acquisition compress encoding

display
de-

compress
decoding

Resource

usage
Performance

Exception

handling

Device

abstraction

Pipeline

Figure 1.19: ”Guiding How” by providing rules for:

shows that architecting involves many more aspects and especially the integrating
concepts are crucial to get working products.

Architecting involves amongst others analyzing, assessing, balancing, making
trade-offs and taking decisions. This is based on architecture information and facts,
following the needs and addressing the expectations of the stakeholders. A lot of
the architecting is performed by the architect, which is frequently using intuition.
As part of the architecting vision, overview, insight and understanding are created
and used.

Intuition, assumptions, beliefs, bias

Expectations

Facts

Architecture(s)

Architecture

Architect(s)

Stakeholders

analyze

assess

balance

trade-off

decide

vision

overview

insight

understanding

Architecting

problems, legacy

uncertainties

unknowns

Facts, Expectations and

Intuition may be false

Integration requires a

critical mindset that is alert

for unknowns

Figure 1.20: The Art of Architecting

The strength of a good architect is to do this job in the real world situation,
where the facts, expectations and intuition sometimes turn out top be false or
changed! Figure 6.17 visualizes this art of architecting.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 14

Decomposition

is "easy"

Integration is

difficult

Figure 1.21: Architecting is much more than Decomposition

Many people expect the architect to decompose, as mentioned in the expla-
nation of ”guiding how”, while integration is severely underestimated, see figure 6.18.
In most development projects the integration is a traumatic experience. It is a
challenge for the architect to make a design which enables a smooth integration.

Architecture

Subset of which

architect is aware

Architecture

description

Actually written

by architect(s)

Flattened

into

Figure 1.22: The architecture description is by definition a flattened and poor repre-
sentation of an actual architecture.

IEEE 1471 makes another interesting step: it discusses the architecture description
not the architecture itself. The architecture is used here for the way the system is
experienced and perceived by the stakeholders3.

This separation of architecture and architecture description provides an inter-
esting insight. The architecture is infinite, rich and intangible, denoted by a cloud

3Long philosophical discussions can be held about the definition of the architecture. These
discussions tend to be more entertaining than effective. Many definitions and discussions about
the definition can be found, for instance in [7], [5], or [9]

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 15

in figure 1.22. The architecture description, on the other hand, is the projection,
and the extraction of this rich architecture into a flattened, poor, but tangible description.
Such a description is highly useful to communicate, discuss, decide, verify, et
cetera. We should, however, always keep in mind that the description is only a
poor approximation of the architecture itself.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 16

1.4 Platform

Many people advocate generic developments, such as platforms, claiming a wide
range of advantages. Effective implementation of generic development has proven
to be quite difficult. Many attempts to achieve these claims by generic develop-
ments have resulted in the opposite goals, such as increased time to market, quality
and reliability problems et cetera. We need a better rationale to do generic devel-
opments, in order to design an effective platform creation process.

Customer value

Internal benefits

application adaptability

availability variations

new features originating

from different products

timely availability

reliability

increase economy

of scale

asset creation

availability of accumulated

feature set

design for

configurability

shared architectural

framework

quality increase

maturity

predictability

availability integrated

base product

Extrovert driver

Introvert driver

Figure 1.23: Drivers of Generic Developments

Figure 1.23 shows drivers for Generic Developments and the derived require-
ments for the Generic Something Creation Process. The first driver (Customer
value is extrovert: does the product have value for the customer and is he willing
to buy the product? The second driver Internal Benefits is introvert, it is the normal
economic constraint for a company.

Today high tech companies are knowhow and skill constrained, in a market
which is extremely fast changing and which is rather turbulent. Cost considera-
tions are degraded to an economic constraint, which is orders of magnitude less
important than being capable to have valuable and sellable products.

The derivation of the requirements shows clearly that these requirements are
not a goal in itself. For instance an shared architecture framework is required
to enable features developed for one product to be used in other products as well,
which in turn should have value for a customer. So the verification of this requirement
is to propagate a new valuable feature from one product to the next, with small
effort and lead time.

These drivers and requirements derivation is emphasized, because many generic
developments result in large monolithic general purpose things, fulfilling:

• availability accumulated feature set

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 17

• designed for configurability

• shared architectural framework

• mature

without bringing any customer value; ”You can not have this easy shortcut, because
our architectural framework does not support it, changing the framework will cost
us 100 man-years in 3 years elapsed time”

product platform

legend

pre-integrated

platform

P1 P2 P3

common

P1 P2 P3applications +

integration glue

components

applications +

integration glue

infrastructure

components

huge product integration effort

very flexible

low coupling

configuration management???

no product integration effort

not flexible

high coupling

configuration management

product

implementation

concepts

Figure 1.24: What is a Platform?

But what is a platform? Many different types of platforms can be found.
Figure 1.24 shows a classification of platforms along an axis of increasing content
and integration. The “lightest” platform is a shared set of concepts, where every
product implements it’s own instantiation. The most “heavy” platform is the imple-
mentation of a superset of all products, where the creation of a product only involves
a configuration step of selecting the right functionality and performance. The
figure shows some intermediate possibilities, from light to more heavy respec-
tively: a collection of shared implementations of components, the same plus infras-
tructure, and a complete pre-integrated framework. Light platforms require lots
of integration effort, are very flexible, have low coupling, and require a lot of
complex configuration management effort. Heavy platforms do not require much
integration, are not flexible, create lots of coupling between products, and require
less complex configuration management at the expense of coupled release cycles.

The platform development results in deliverables. To support integration and
trouble shooting the delivery of source information is recommended. Black box
reuse tends to create surprises, due to invisible consequences. However, delivering
the source code itself, creates additional requirements. The source code is only
useful if the development environment, specifications, configuration management,
documentation tools, development process and guidelines for the infrastructure are
also provided. Figure 1.25 shows these deliverables, and Figure 1.26 shows the

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 18

code specifications

development

environment

documentation

tools

development

process

infrastructure

configuration

management

Figure 1.25: Platform Source Deliverables

code specifications

development

environment

documentation

tools

development

process

infrastructure

configuration

management

test code&data

source code

target OS

purchased SW

generation recipes

compiler, linker, ...

dev. cluster OS

meta data (review, metrics)

customization

dev process support

code

problem reports

change requests

documentation

requirements

interfaces

design

reports

manuals

word processing

drawing

spreadsheets

publishing

management

Figure 1.26: And now in More Detail...

same deliverables with more detailed content. The message of this last figure is
that much more is involved in platform development than a set of source code files.

The case, as shown in Section 1.2, used a platform approach to share common
functions. In the table in Figure 1.27 the efficiency of this platform approach is
evaluated. The basis for this evaluation is the number of different applications
that has been realized and the required effort. This table shows that 13 persons
were needed per application in 1993, while in 1996 only 3 persons per application
were needed. The re-use of lower level functions facilitated a more efficient appli-
cation development process. In practice the lead-time reduction of new applica-
tions was even more important. A rich and flexible platform is also a rapid proto-
typing vehicle. This last argument is far from trivial: many platforms are large and
complex and do not facilitate rapid prototyping at all!

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 19

number of

people

people per

application

applications

platform

applications

1992 1993 199619951994

number of inputs

(a.o. modalities)

1
value

metric

efficiency

total

1

4

5

52

13

8

10

35

27

62

8

16

15

37

35

72

5

32

38

41

79

3

Figure 1.27: Example of Platform Efficiency

purchased OS

proprietary software
purchased

software

embedding

SW

architecture

Figure 1.28: Purchased SW Requires Embedding

A complicating factor is the use of COTS (Commercial Of The Shelf) software.
Software developed as part of a platform follows the architecture guidelines of the
platform. However, purchased software has been developed independent of the
platform, using it’s own architecture guidelines. Figure 1.28 shows that purchased
software requires some kind of embedding to fit it into the desired architecture.

Figure 1.29 zooms in on the typical additional efforts to embed purchased
software in a platform. Most embedding effort is required to ensure the desired
system level behavior and qualities: configuration, installation, start-up and shutdown
et cetera.

The mismatch of existing platform software and purchased software results in
lots of unwanted side-effects. Figure 5.13 shows a number of these unwanted side-
effects. The side-effects cause the addition lots of code, in the form of wrappers,
translators and so on, while this additional code adds complexity, it does not add
any end-user value.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 20

• Installation

• Configuration

• Customization

• Start up, shutdown

• Specifications

• Interface to application SW

• Exception handling

• Resource allocation and monitoring provision

• Resource tuning, see above

• Safety design

• Security design

functional

system design

sw design

add semantics level

use of appropriate low level mechanisms

match to high level mechanisms:

- notification, scheduling

- job requests, subscriptions

System monitor

Error propagation

Logging

CPU

Memory

Disk

Figure 1.29: Embedding Costs of Purchased SW

tuner
tuner

MPEG MPEG

Duplication

Architectural mismatch:

wrappers, translators, conflicting controls

Poor performance;
additional resource usage

additional code

and complexity,

no added value

UI UI

non problem Problems Architecture Reuse

Figure 1.30: Example of Embedding Problems

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 21

1.5 The Time Dimension

platform

baseline
R1 R2 R3

platform

as consolidation baseline

R1 R2 R3

Figure 1.31: Who is First: Platform or Product?

Many philosophies are practiced to synchronize platforms and products. The
main choice is the primary vehicle for change:

• innovate in products and consolidate in a platform

• innovate in the platform and propagate to products

These two variants are visualized in Figure 1.31.
A common pitfall is that managers as well as engineers expect a platform

to be stable; once the platform is created only a limited maintenance is needed.
Figure 6.19 explains why this is a myth. A platform is build using technology
that itself is changing very fast (Moore’s law again). At the other hand a platform
served a dynamic fast changing market. In other words it is a miracle if a platform
is stable, when both the supplying as well as the consuming side are not stable at
all.

The more academical oriented methods propose a ”first time right approach”.
This sounds plausible, why waste time on wrong implementations first? The practical
problem with this type of approach is that it does only work in very specific circum-
stances:

• well defined problem

• few people (few background, few misunderstandings)

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 22

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 1.32: Myth: Platforms are Stable

• appropriate skill set (the so-called ”100%” instead of ”80/20” oriented people)

The first clause for our type of products is nearly always false, remember the
dynamic market. The second clause is in practical cases not met (100+ manyear
projects), although it might be validly pointed out that the size of the projects is the
cause of many problems. The third clause is very difficult to meet, I do know only
a handful of people fitting this category, none of them making out type of products
(for instance professors).

1

maybe

10

unlikely

100

miracle

1000

impossible

person years

First time right?

Figure 1.33: The first time right?

Figure 6.20 shows the relationship between team size and the chance of success-
fully following the first time right approach.

Understanding of the problem as well as the solution is key to being effective.
Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 7.14 for a visualization of the
influence of feedback frequency on project elapsed time.

The evolution of a platform is illustrated in figure 6.22 by showing the change
in the Easyvision [16] platform in the period 1991-1996. It is clearly visible that
every generation doubles the amount of code, while at the same time half of the

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 23

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 1.34: Feedback (3)

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 1.35: Platform Evolution (Easyvision 1991-1996)

existing code base is touched by changes.
The business context, the application, the product and it’s components have all

their own specific life-cycles. In Figure 1.36 several different life-cycles are shown.
The application and business context in the customer world are shown at the top
of the figure, and at the bottom the technology life-cycles are shown. Note that
the time-axis is exponential; the life-cycles range from one month to more than ten
years! Note also the tension between commodity software and hardware life-cycles
and software release life-cycles: How to cope with fast changing commodities?
And how to cope with long living products, such as MR scanners, that use commodity
technologies?

Figure 1.37 shows a reference model for image handling functions. This reference
model is classifying application areas on the basis of those characteristics that have
a great impact on design decisions, such as the degree of distribution, the degree
and the cause of variation and life-cycle. Such a reference model is one of the
means to cope with widely different life-cycles.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 24

1 year

commodity

hardware

and

software

new generation of

magnets

gradients

detectors

major SW

release

minor SW

release

workstation

useful life

MR

scanner

useful life

10 years

procedural

change

legislation

change

clinical

prototype

problem

response

3 months

Figure 1.36: Life-cycle Differences

Imaging and treatment functions are provided of modality systems with the
focus on the patient. Safety plays an important role, in view of all kinds of hazards
such as radiation, RF power, mechanical movements et cetera. The variation
between systems is mostly determined by:

• the acquisition technology and its underlying physics principles.

• the anatomy to be imaged

• the pathology to be imaged

The complexity of these systems is mostly in the combination of many technologies
at state-of-the-art level.

Image handling functions (where the medical imaging workstation belongs)
are distributed over the hospital, with work-spots where needed. The safety related
hazards are much more indirect (identification, left-right exchange). The variation
is more or less the same as the modality systems: acquisition physics, anatomy and
pathology.

The information handling systems are entirely distributed, information needs
to be accessible from everywhere. A wide variation in functionality is caused by
“social-geographic” factors:

• psycho-social factors

• political factors

• cultural factors

• language factors

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 25

information

handling

image handling

archiving

imaging and

treatment

base technology

localised

patient focus

safety critical

limited variation

due to "nature":

human anatomy

pathologies

imaging physics

distributed

limited variation due to "nature":

human anatomy

pathologies

imaging physics

entirely distributed

wide variation due to "socio-geographics":

psycho-social,

political, cultural factors

service business

not health care specific

extreme robust

fire, earthquake,

flood proof

life time

100 yrs (human life)

not health care specific

short life-cycles

rapid innovation

Figure 1.37: Reference model for health care automation

These factors influence what information must be stored (liability), or must not
be stored (privacy), how information is to be presented and exchanged, who may
access that information, et cetera.

The archiving of images and information in a robust and reliable way is a highly
specialized activity. The storage of information in such a way that it survives fires,
floods, and earthquakes is not trivial4. Specialized service providers offer this kind
of storage, where the service is location-independent thanks to the high-bandwidth
networks.

All of these application functions build on top of readily available IT compo-
nents: the base technology. These IT components are innovated rapidly, resulting
in short component life-cycles. Economic pressure from other domains stimulate
the rapid innovation of these technologies. The amount of domain-specific technology
that has to be developed is decreasing, and is replaced by base technology.

4Today terrorist attacks need to be included in this list full of disasters, and secure needs to be
added to the required qualities.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 26

1.6 Process View

The business process for an organization that creates and builds systems consisting
of hardware and software is decomposed in four main processes as shown in figure 1.38.

strategy
process

customer

supplying business

va
lu
e

product creation
process

customer oriented (sales,

service, production) process

people, process and technology
management process

Figure 1.38: Simplified decomposition of the business in 4 main processes

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cash-flow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cash-flow tomorrow
as well.

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

Strategy Process This process is future oriented, not constrained by short term
goals, it is defining the future direction of the company by means of roadmaps.
These roadmaps give direction to the Product Creation Process and the People
and Technology Management Process. For the medium term these roadmaps
are transformed in budgets and plans, which are committal for all stake-
holders.

The simplified process description given in figure 1.38 assumes that product
creation processes for multiple products are more or less independent. When
generic developments are factored out for strategic reasons an additional process is
required to visualize this. Figure 3.25 shows the modified process decomposition

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 27

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

Figure 1.39: Modified Process Decomposition

(still simplified of course) including this additional process "Generic Something
Creation Process".

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

management

tomorrow's cashflow

strategic asset

generation

assets

cashflow generation

Figure 1.40: Financial Viewpoint on Process Decomposition

Figure 3.26 shows these processes from the financial point of view. From
financial point of view the purpose of this additional process is the generation of
strategic assets. These assets are used by the product generation process to enable
tomorrow’s cash-flow.

The consequence of this additional process is an lengthening of the value chain
and consequently a longer feedback chain as well. This is shown in figure 3.27.
The increased length of the feedback chain is a significant threat for generic devel-
opments. In products where integration plays a major role (which are nearly
all products) the generic developments are pre-integrated into a platform or base

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 28

policy and

planning

Philips business

va
lu
e

people and technology management process

create generic components

PCP

fe
e
d
-

b
a
ck

customer

customer oriented process
(sales, service, production)

Figure 1.41: Feedback flow: loss of customer understanding!

product, which is released to be used by the product developments.

feature 1

feature 2

Platform integration

test

Re
le
as
e

Product integration

product feature 1

product feature 2

test

Re
le
as
e

Figure 1.42: The introduction of a new feature as part of a platform causes an
additional latency in the introduction to the market.

The benefit of this approach is separation of concerns and decoupling of products
and platforms in smaller manageable units. Both benefits are also the main weakness
of such a model, as a consequence the feedback loop is stretched to a dangerous
length. At the same time the time from feature/technology to market increases, see
figure 3.29.

The list of pitfalls in Figure 1.43 has been compiled on the basis of many
disastrous or halfway successful efforts of platform developments.

Many different models for the development of generic things are in use. An
important differentiating characteristic is the driving force, which often directly
relates to the de facto organization structure. The main flavors of driving forces are

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 29

Technical

• Too generic

• Innovation stops

(stable interfaces)

• Vulnerability

Process/People/Organization

• Forced cooperation

• Time platform feature to market

• Unrealistic expectations

• Distance platform developer to customer

• No marketing ownership

• Bureaucratic process (no flexibility)

• New employees, knowledge dilution

• Underestimation of platform support

• Overstretching of product scope

• Nonmanagement, organizational scope increase

• Underestimation of integration

• Component/platform determines business policy

• Subcritical investment

Figure 1.43: Sources of failure in platform developments

shown in figure 1.44.

platform

lead customer

carrier product

technology push

direct feedback

too specific?

product feedback

product specific?

policy and

planning

customer

supplying business

Product Creation Process

customer oriented process
(sales, service, production)

people and technology management process

create generic components feedback problem

too generic

no feedback

Figure 1.44: Models for SW reuse

1.6.1 Lead Customer

The lead customer as driving force guarantees a direct feedback path from an actual
customer. Due to the importance of feedback this is a very significant advantage.
The main disadvantages of this approach are that the outcome of such a devel-
opment often needs a lot of work to make it reusable as a generic product. The
focus is on the functionality and performance, while many of the quality aspects
are secondary in the beginning. Also the requirements of this lead customer can be
rather customer specific, with a low value for other customer.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 30

1.6.2 Carrier Product

The combination of a generic development with one of the product developments
also shortens the feedback cycle, although it is not as direct as with the lead
customer. Combination with a normal product development will result in a better
balance between performance and functionality focus and quality aspects. Disad-
vantage can be that the operational team takes full ownership for the product (which
is good!), while giving the generic development second priority, which from family
point of view is unwanted.

In larger product families the different charters of the product teams creates a
political tension. Especially in immature or power oriented cultures this can lead
to horrible counterproductive political games.

Lead customer driven product development, where the product is at the same
time the carrier for the platform combines the benefits of the lead customer and
the carrier product approach. In my experience this is the most effective approach
of generic developments. A prerequisite for success is an open and result driven
culture to preempt any political game mentioned before.

1.6.3 Platform

In maturing product families the generic developments are often decoupled from
the product developments. In products where integration plays a major role (which
are nearly all products) the generic developments are pre-integrated into a platform
or base product, which is released to be used by the product developments.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 31

1.7 Market Driven

A useful top level decomposition of an architecture is provided by the so-called
“CAFCR” model, as shown in figure 1.45. The customer objectives view and
the application view provide the why from the customer. The functional view
describes the what of the product, which includes (despite the name) also the non
functional requirements. The how of the product is described in the conceptual
and realization view, where the conceptual view is changing less in time than the
fast changing realization (Moore’s law!).

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

drives, justifies, needs

enables, supports

Customer

objectives

Application Functional Conceptual Realization

Figure 1.45: The “CAFCR” model

The job of the architect is to integrate these views in a consistent and balanced
way. Architects do this job by frequent viewpoint hopping, looking at the problem
from many different viewpoints, sampling the problem and solution space in order
to build up an understanding of the business. Top down (objective driven, based
on intention and context understanding) in combination with bottom up (constraint
aware, identifying opportunities, know how based), see figure 1.46.

In other words the views must be used concurrently, not top down like the
waterfall model. However at the end a consistent story must be available, where the
justification and the needs are expressed in the customer side, while the technical
solution side enables and support the customer side.

The model will be used to provide a next level of reference models and methods.
Although the 5 views are presented here as sharp disjunct views, many subse-
quent models and methods don’t fit entirely in one single view. This in itself not a
problem, the model is a means to build up understanding, it is not a goal in itself.

One of the key success factors of platform development is scoping. The opposing
forces are the efficiency drive by higher management teams, increasing the scope,
and the need for customer specifics by project teams, minimizing the platform
scope. Scope overstretching is one of the major platform pitfalls: in best case the
result is that the organization is very efficient, but customers are dissatisfied. Worst
case the entire organization drowns in the overwhelming complexity. Blindly

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 32

Customer

objectives

Application Functional Conceptual Realization

intention

constraint
awareness

objective
driven

context
understanding

oppor-
tunities

know how
based

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Figure 1.46: Five viewpoints for an architecture. The task of the architect is
to integrate all these viewpoints, in order to get a valuable, usable and feasible
product.

following (potential) customers is another pitfall: best case we end up with a
satisfied customer and a good starting point for next products. The real challenge
is to build up sufficient understanding to find the sweet spot for the platform scope:
efficient by leveraging synergy, but sufficiently agile to be responsive to customers.

Figure 2.11 shows an example of platform scoping. In this case the synergy of
the producer is in technologies, such as Closed Circuit TV (CCTV), audio, broad-
casting, access control, and networking. These technologies are used in widely
differing application domains: airports, railway stations, intelligent buildings and
motorway management systems. These heterogeneous domains can share a platform,
as long as the functionality is restricted to the shared technologies. The analysis

heterogeneous domains

and application

shared core

technology

motorway

management

intelligent

buildings

railway

stations

airport

terminals

Closed

Circuit TV

audio

broadcasting

access

control

networking

Figure 1.47: Example of Scoping of a Platform.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 33

to find the right level of synergy is based on the key driver method [14]. The
essence of the objectives of the customers can be captured in terms of customer
key drivers. The key drivers provide direction to capture requirements and to focus
the development. The key drivers in the customer objectives view will be linked
with requirements and design choices in the other views. The key driver submethod
gains its value from relating a few sharp articulated key drivers to a much longer
list of requirements. By capturing these relations a much better understanding of
customer and product requirements is achieved.

Safety

Effective

Flow

Smooth

Operation

Environment

Reduce accident rates

Enforce law

Improve emergency

response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimize road surface

Speed up target groups

Anticipate on future traffic condition

Ensure traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Early hazard detection

with warning and signaling

Maintain safe road

condition

Classify and track dangerous

goods vehicles

Detect and warn

noncompliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

Key-drivers Derived application drivers Requirements

Automatic upstream

accident detection

Weather condition

dependent control

Deicing

Traffic condition

dependent speed control

Traffic speed and

density measurement

Note: the graph is only partially elaborated

for application drivers and requirements

Cameras

Figure 1.48: Example of the four key drivers in a motorway management system

Figure 1.48 shows an example of key drivers for a motorway management
system, an analysis performed at Philips Projects in 1999. The same method has
been applied on the other domains.

The key drivers and design decisions can be visualized as a thread of reasoning [23]
during the development of products and platform. This thread of reasoning captures
the essential relations between customers needs and technological decisions, with
emphasis on tensions and trade-offs. Figure 1.49 shows an example of such a
thread of reasoning for the Medical Imaging Workstation.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 34

Philips operational view
(manufacturing, service, sales)

Conceptual

efficient

useable

RealizationCustomer

objectives

Application Functional

diagnosis

time efficient
throughput processing

library

cost revisited in context of clinical needs and

realization constraints; note: original threads are significantly simplified

diagnostic

quality

image

quality IQ spec

pixel

depth

CPU

budget
typical

case

common

console

memory

limit

BoM
Moore's

law

purchase

price
CoO

economic

sound

render

engine

effective

operational

constraints

M'

S

M

B

U"

P'

T

U

U' P

profit margin

standard workstation

C

memory budget

Figure 1.49: Example Thread of Reasoning from the Medical Imaging Workstation

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 35

1.8 Recommendations

identify

key drivers

accept

heterogeneous

solutions

stimulate evolution,

and continuous

refactoring

implement agile

lifecycle

decoupling

maintain

focused scope

ensure market

and business

feedback

Q: How to manage

platform architectures?

case

architecting

platform
time

dimension

process

market

driven

Recommendations

educate artful

architects

to create

successful

products

Figure 1.50: Summary of recommendations to manage platform architectures

Figure 1.50 summarizes the recommendations to manage platform architec-
tures. We traverse in the opposite direction of the description in this paper. Identi-
fication of the key drivers is the first step in understanding the essence from market
point of view. The key drivers are used to define the platform scope; a well defined
scope provides focus to the development organization. The process of developing
a platform requires special attention for frequent and to-the-point feedback from
the business and the market. The time dimension emphasizes the many different
rhythms in product and platform development and the dynamics of both application
and technology. The recommendation to cope with rhythms and dynamics is to
stimulate evolutionary approaches and to invest sufficiently in continuous refac-
toring of the architecture. Also agile life-cycle decoupling facilitates the different
rhythms and dynamics. For the platform itself it is important to understand the
versatility and the heterogeneity involved. Platform development should avoid
dogmatic unification, instead recognition of heterogeneous solution results in more
robust platform development. The overall activities described so far require a few
skilled and artful architects. Artful means creative, open minded, humans; the
complexity and dynamics of the context does not allow for mechanistic or dogmatic
solutions. Satisfying all of the recommendations will help to create nice, innovative
and successful products!

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 36

Chapter 2

A Method to Explore Synergy
between Products

P1800

P1900

P2600

P2200

1 2 3 4

changing

cost
mature cost

mature

performing

changing

performing

cost

volume

traffic

taste

quality

power

CPU RAM

drivers scheduler
OS

etc

file-

system
networking

workflow

browse
packing process

adjust order

climate

subsystem control subsystem

feedi

ng

bufferi

ng

heati

ng

cooli

ng

clean

ing

fast imaging

handling

subsystem

drivers

store conveyor robot

power

prepare

basic

feeder

buffer

hf feeder

sunp.

1800k/hr 2100k/hr 3000k/hr

market

segments

customer

key drivers

components

products

features

2.1 Introduction

Customer

objectives

Application Functional

Multiple

markets

for example

electron

microscope

markets:

Single

market

for example,

health care,

radiology

market

different

customers

different

applications

similar

products

same

customers

different

applications &

stakeholders

different

products

material sciences

life sciences

semiconductors

EM specialists

biologists

process quality

everything possible

specific handling

high throughput

radiology

department

gastrointestinal

orthopedics

neurology

radiography

x-ray diagnostics

MRI, CT scanner

viewing

Conceptual Realization

shared

concepts

shared

technology

shared

concepts

shared

technology

e-beam sources, optics

vacuum

acquisition control

patient support

patient information

image information

storage & communication

Figure 2.1: Types of synergy

We cab distinguish two types of situations where we can strive to harvest
synergy, as illustrated in Figure 2.1:

Single market, different products where the customer world is homogeneous,
while products can be quite heterogeneous in both concepts and technologies
that are used.

Multiple markets, quite similar products where the customer world is hetero-
geneous, while the products are different, but quite similar. The similarity in
the products suggests that synergy is present that can be harvested.

Figure 2.1 also shows one example in both categories. The radiology department
in health care is an example of a homogeneous market, where many different
products are interoperating to provide the desired capabilities. Some of these
systems are diagnostic equipment with different imaging modalities, e.g. X-ray
systems, Magnetic Resonance Imaging, Computer Tomography. However, also
information technology systems are used for administration, viewing, communi-
cation, and archiving. Some functionality is quite similar between these different
systems, and hence might result in synergy opportunities.

2.2 Stepwise method to explore synergy opportunities

explore markets, customers, products and technologies

share market and customer insights

identify product features and technology components

make maps:

discuss value, synergy, and (potential) conflicts

create long-term and short-term plan

market segments - customer key drivers

customer key drivers - features

features - products

products - components

Figure 2.2: Approach to Platform Business Analysis

Figure 2.2 shows the stepwise method to explore and analyze opportunities to
harvest synergy.

Explore markets, customers, products and technologies to create a shared under-
standing of the playing field.

Share market and customer insights by studying one customer and one product,
followed by a more extensive study of work flows.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 38

Identify product features and technology components by doing initial specifi-
cation and design work.

Make maps where the views that resulted from the first steps are related.

Discuss value, synergy and (potential) conflicts to get the main issues on the table
in a factual way.

Create long term and short term plan to transform what can be done into something
that (probably) will be done.

The whole process described by this method should be performed by an explo-
ration team, a small team of key people, including marketing managers, architects,
and key technology experts.

2.2.1 Explore markets, customers, products and technologies

Asian

country

Asian

city

African
US

private

US

social
EU

Won

Lan

JJ

express

Pretoria

national Johnson

Colum

bia

EU

market segments

cost volume

traffic

quality

taste

cost

quality

power

traffic

quality
cost

volume

customers

P1800

P1900

P2600

P2200

products

basic

feeder

buffer

hf feeder

feeder

sunp.

buffer

1800k/hr

2100k/hr

2100k/hr

3000k/hr

feeding power

buffering heating

cooling

cleaning

technology

fast

imaging

brain storm and discuss time-boxed

Figure 2.3: Explore Markets, Customers, Products and Technologies

The exploration is performed by using fixed time boxes to discuss the following
questions by the exploration team:

• What markets do we want to serve?

• What specific customers do we expect? What are the key concerns per
customer?

• What products do we foresee? What are key characteristics of these products?

• What technologies do we need?

The purpose is to make a quick scan of the playing field so that a shared insight is
created between the members of the team. Figure 2.3 shows the typical result of
the exploration: a number of flip-charts with sticky notes. This first scan can be
done in a half day to a full day.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 39

2.2.2 Share market and customer insights

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

Safety

Effective

Flow

Smooth

Operation

Environment

Reduce Accident rates

Enforce law

Improve Emergency

Response

Reduce delay due to accident

Improve average speed

Improve total network throughput

Optimise road surface

Speed up target groups

Anticipate on future traffic condition

Ensure Traceability

Ensure proper alarm handling

Ensure system health and fault indication

Reduce emissions

Early hazard detection

with warning and signalling

Maintain safe road

condition

Classify and track dangerous

goods vehicles

Detect and warn

non compliant vehicles

Enforce speed compliance

Enforce red light compliance

Enforce weight compliance

Key drivers Derived application drivers Requirements

Automatic upstream

accident detection

Weather condition

dependent control

De-icing

Traffic condition

dependent speed control

Automatic counter

flow traffic detection

Note: the graph is only partially elaborated

for application drivers and requirements

basic

product

excluding options

optional option

option dependency

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view PIP

browseviewport menu

adjust
view

TXT

hardware

driver

applications

services

toolboxes

domain specific generic

signal processing subsystem control subsystem

storage

acquisition

processing
compress

encoding

display

processing

de-

compress decoding
display

acquisition

key-driver

graph configuration

physical

model

functional

model

Figure 2.4: Study one Customer and Product

The challenge is to get more substance after the first quick scan. Figure 2.4
shows how the CAFCR model is followed to explore one product for one market
in more depth. The idea is that one such depth probe helps the team to get a deeper
understanding that can be extended to other product by variations on an theme. In
this figure the CAF-views are covered by a key driver graph, the F-view focuses
on the required commercial product structure, The Conceptual view is used for a
functional model of the system internals and the R view shows a block diagram.
This is an example of a CAFCR analysis, but specific markets and products can
benefit from other submethods in the CAFCR views.

corridor

magnet patient table

technical room

cabinets

control room

console

dressing

room rest room waiting room

accessory
cabinet

1

2

3

4
5

6

preparation workflow

1 get patient

2 patient on table

3 get RF coil

4 position RF coil

5 move patient in magnet

6 plan scan

patient

nurse physician

admin

sketch

functional procedure

walk from dressing room to table

sit on table and position patient

move table upwards

position coils and connect

move table and patient into magnet

make plan scan

14:15

14:20

walk sit, position
table

up
coils in magnet plan scantalk walk talk

2D map

Where

time line

When

stakeholders

Who

sketch

How
workflow

What

Figure 2.5: Work Flow Analysis for Different Customers/Applications

The next step in digging in deeper is to explore the work flow of different

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 40

customers. Figure 2.5 shows the different perspectives on the customer work flow:

Where are work flow steps performed?

What is done in the work flow?

Who is involved

When are steps performed, and what is the duration?

How are selected steps performed?

A specific insight in the work flow of different customers and applications
is critical for later choices about synergy. This step is too often skipped, either
because of time pressure or because of ignorance. Insufficient understanding of
the use compromises the products and hence degrades the value for classes of
customers.

many changes

and variations

mature

sales

price

functionality

performance

P1800

P1900

P2200

P2600

P2000

niche

Figure 2.6: Make Map of Customers and Market Segments

At this moment the exploration team has insight in different customers. It helps
the team and its stakeholders if the growing insight of these different customers and
their needs for products can somehow be captured in a single map with a few main
characteristics. Figure 2.6 shows a simplistic example. Often characteristics such
as price and performance parameters are used for such map.

2.2.3 Identify product features and technology components

In this step the commercial structure of the product is further elaborated: What
are the required commercial configurations, what should be optional? Also the
construction decomposition is elaborated: what are the expected hardware and

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 41

features

CPU RAM

drivers scheduler
OS

etc

file-

system
networking

workflow

browse
packing process

adjust order

hardware

driver

applications

services

toolboxes

domain specific generic

climate

subsystem control subsystem

feedingbuffering heatingcooling cleaning

fast

imaging

basic

feeder

buffer

hf

feeder

sunp.

1800k/hr 2100k/hr 3000k/hr

handling

subsystem

drivers

store conveyor robot

power

prepare

Figure 2.7: Identify Product Features and Technology Components

software components or building blocks, what are the dependencies between them?
The main purpose of this step is to understand the potential commercial and technical
modularity. From this modularity the synergy can emerge between products.

2.2.4 Make maps

P1800

P1900

P2600

P2200

1 2 3 4

changing

cost
mature cost

mature

performing

changing

performing

cost

volume

traffic

taste

quality

power

CPU RAM

drivers scheduler
OS

etc

file-

system
networking

workflow

browse
packing process

adjust order

climate

subsystem control subsystem

feedi

ng

bufferi

ng

heati

ng

cooli

ng

clean

ing

fast imaging

handling

subsystem

drivers

store conveyor robot

power

prepare

basic

feeder

buffer

hf feeder

sunp.

1800k/hr 2100k/hr 3000k/hr

market

segments

customer

key drivers

components

products

features

Figure 2.8: Mapping From Markets to Components

The first views have resulted in the identification of market segments, customer
key drivers, features, products, and components. In this step the objective is to
relate these views, e.g.market segments to customer key drivers,

customer key drivers to features, features to products , and products to compo-
nents, see Figure 2.8. Each mapping can be many to many, for example different
market segments can share the same key drivers, while every market segment has
multiple key drivers.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 42

• Value for the customer

• (dis)satisfaction level for the customer

• Selling value (How much is the customer willing to pay?)

• Level of differentiation w.r.t. the competition

• Impact on the market share

• Impact on the profit margin

Use relative scale, e.g. 1..5 1=low value, 5 -high value

Ask several knowledgeable people to score

Discussion provides insight (don't fall in spreadsheet trap)

Figure 2.9: Example Criteria for Determining Value

2.2.5 Discuss value, synergy and (potential) conflicts

In general the wish list for features is longer than can be implemented in the first
releases. We need more insight in the value of the different features to facilitate a
selection process, as discussed in [25].

1

4

2

5

3

2

4

4

1

3

5

2

4

3

2

4

4

1

4

4

2

5

3

2

5

4

4

products

fe
a

tu
re

s

P1800 P1900 P2200

feeder

buffer

hf feeder

sunpower

s
a

ti
s
fa

c
ti
o

n

c
u

s
to

m
e

r

s
a

le
s
 p

ri
c
e

m
a

rk
e

t
s
h

a
re

s
a

ti
s
fa

c
ti
o

n

c
u

s
to

m
e

r

s
a

le
s
 p

ri
c
e

m
a

rk
e

t
s
h

a
re

s
a

ti
s
fa

c
ti
o

n

c
u

s
to

m
e

r

s
a

le
s
 p

ri
c
e

m
a

rk
e

t
s
h

a
re

Figure 2.10: Determine Value of Features

Figure 2.10 shows the results of this selection process. Note that the discussion
provides most of the value to the exploration team. The need to characterize and
agree on the scoring forces the team to compare features and to articulate their
value.

2.2.6 Create long term and short term plan

Practical constraints such as time and effort often determine our choices in synergy
and the order in which we realize these choices. The exploration team has to
translate their vision that has grown into a plan showing in what order it could
be realized. Part of the plan will be short term: what do we do rather concrete in

Gerrit Muller
Composable Architectures
January 21, 2022 version: 0

University of South-Eastern Norway-NISE

page: 43

the next few weeks or months? The long term plan visualizes the big picture of
moving towards synergy: how do we envision that we will migrate to the syner-
getic situation? Note that again making the short term and long term plan serves
the purpose to force the exploration team in this practical discussion.

2.3 Example of synergy

heterogeneous domains

and application

shared core

technology

motorway

management

intelligent

buildings

railway

stations

airport

terminals

Closed

Circuit TV

audio

broadcasting

access

control

networking

Figure 2.11: Example of synergy between heterogeneous markets

Figure 2.11 shows an example of a company serving 4 heterogeneous markets:
intelligent buildings, motor way management systems, airport terminals, and train
stations. This company performs projects in these 4 markets, providing Closed
Circuit Televisions, access control, audio broadcasting, and the integration. The
synergy is in the technical components, such as cameras and loudspeakers. The
question was if there is also potential synergy in the integration, e.g. the networking,
system control, and operator interfaces. For that purpose the key driver diagram in
[24], was developed.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 44

Chapter 3

Software Reuse; Caught between
strategic importance and
practical feasibility

features

performance

expectations

number of

products

release cycle time
years months

feature

interaction

complexity

amount of

software

new methods

new tools

new standards
integration

effort

hardware

performance

reuse
openness

interoperability
reliability

trends consequences solutions

new software

technology

3.1 Introduction

Many good reasons exists to deploy a reuse strategy for product creation, see
figure 3.1. This list, the result of a brainstorm, can be extended with more objec-
tives, but this list is already sufficiently attractive to consider a reuse strategy.

Reuse is deployed already in many product development centers. Brainstorming
with architects involved in such developements about their experiences gives a very
mixed picture, see figure 3.2 for the bad versus the good experiences.

Analysis of the positive experiences show that successful applications of a
reuse strategy share one or more of the following characteristics: homogeneous
domain, hardware dominated or limited scope. Figure 3.3 shows a number of
examples.

Reuse strategies can work successfully for a long time and then suddenly run
into problems. Figure 3.4 shows the limitations of successful reuse strategies.

The main problem with successful reuse strategies is that they work efficient as
long as the external conditions evolve slowly. However breakthrough events don’t

+ reduced time to market

+ reduced cost per function

+ improved quality

+ improved reliability

+ easier diversity management

+ employees only have to understand one base system

+ improved predictability

+ larger purchasing power

+ means to consolidate knowledge

+ increase added value

+ enables parallel developments of multiple products

+ free feature propagation

Figure 3.1: Why reuse: many valid objectives

fit well in the ongoing work which results in a poor response.
About half of this article reuses previous Gaudí articles by copy, paste and

sometimes modify. Articles used are: [19] [18] [20] [13] [22] [17]

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 46

good
reduced time to market

reduced investment

reduced (shared) maintenance cost

improved quality

improved reliability

easier diversity management

understanding of one base system

improved predictability

larger purchasing power

means to consolidate knowledge

increase added value

enables parallel developments

free feature propagation

bad
longer time to market

high investments

lots of maintenance

poor quality

poor reliability

diversity is opposed

lot of know how required

predictable too late

dependability

knowledge dilution

lack of market focus

interference

but integration required

Figure 3.2: Experiences with reuse, from counterproductive to effective

homogeneous domain

hardware dominated

limited scope

cath lab

MRI

television

waferstepper

car

airplane

shaver

television

audio codec

compression library

streaming library

Figure 3.3: Succesful examples of reuse

poor/slow response on paradigm shifts

TV: LCD screens

cath lab: image based acquisition control

struggle with integration/convergence with other domains

TV: digital networks and media

cath lab: US imaging, MRI

software maintenance, configurations, integration, release

MRI: integration and test

wafersteppers: number of configurations

how
 to innovate?

Figure 3.4: Limits of successful reuse

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 47

3.2 Statements about reuse

Reuse of software is a mixture of believe, hype, hope and solution of a set of
problems. To stimulate the discussion about reuse a set of statements is postulated
in figure 3.5 and 3.6 about reuse.

customer diversity

market dynamics
product diversity

reuse shared

proven functionality

1 Reuse of software modules is needed

2 The technical and

reuse

sharing

conflicting

interests

overdesign or

under performance

complicated

supplier customer

relationships

3 organizational challenge

 are underestimated

integrating concepts: performance, resource management, exception handling, etcetera

4 Components are the easy part, integration is difficult

Figure 3.5: Reuse statements

5 Reuse of know how or people instead of

implementation is more effective

6 The platform must evolve continuously

7 Focus on business bottomline and customer

not on reuse

8. Use before reuse

dynamic market

changing applications
served by

up to date

products
based

on

evolving

platform

rapid changing

technology

(Moore!)

using

specification

design

implementation

validation

verification

people

know how

Figure 3.6: Reuse statements continued

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 48

3.3 Software reuse is needed

The trends in the market are towards more products, each with more feature and
higher performance expectations. Products are expected to work seamlessly with
other products, even with new products and formats which did not yet exist when
the product was conceived: openness and interoperability is required. All of these
expectations have to be fulfilled in less and less time, product creation life cycles
have decreased from years to months.

features

performance

expectations

number of

products

release cycle time
years months

feature

interaction

complexity

amount of

software

new methods

new tools

new standards
integration

effort

hardware

performance

reuse
openness

interoperability
reliability

trends consequences solutions

new software

technology

Figure 3.7: Reuse is needed ... as part of the solution

Figure 3.7 show these trends in the market in the left hand column, where the
length of the arrow indicate the relative increase or decrease.

The consequence of the market trends for product creation are that more and
more features start to interact and that the complexity increases. This is reflected
in a string growth in the amount of software in products. The integration effort
increases also. The combination of these factors threaten the reliability, products
which simply cease operating have become a fact of life.

To accomodate these trend multiple solutions need to be applied concurrently,
as shown in the right hand column. New methods and tools are needed, which
fit in this fast evolving, connected world. The fast developments of the hardware
(Moore’s law) help significantly in following the expectations in the market. New
software technology, increasing the abstraction level used by programmers, increases
the productivity and reduces complexity. New standards reduce the interoperability
issues.

Reuse of software modules potentially decreases the creation effort, enables
focus on the required feautures and increases the quality if the modules have been
proven.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 49

3.4 The technical challenge

How to determine which functionality is generic and which functionality must be
implemented specific? Practical experience learns that this is a crucial question.
Most attempts to create a platform of reusable components fail due to the creation
of overgeneric components.

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Figure 3.8: The danger of being generic: bloating

Figure 7.3 show an actual example of part of the Medical Imaging system [16],
which used a platform based reuse strategy. The first implementation of a ”Tool”
class was overgeneric. It contained lots of if-then-else, configuration options, stubs
for application specific extensions, and lots of best guess defaults. As a conse-
quence the client code based on this generic class contained lots of configuration
settins and overrides of predefined functions.

The programmers were challenged to write the same functionality specific,
which resulted in significantly less code. In the 3 specific instances of this function-
ality the shared functionality became visible. This shared functionality was factored
out, decreasing maintenance and supporting new applications.

Bloating is one of the main causes of the software crisis. Bloating is the unnec-
essary growth of code. The really needed amount of code to solve a problem is
often an order of magnitude less than the actual solution is using. Figure 7.1 shows
a number of causes for bloating.

One of the bloating problems is that bloating causes more bloating, as shown in
figure 7.6. Software engineering principles force us to decompose large modules
in smaller modules. ”Good” modules are somewhere between 100 and 1000 lines
of code. So where unbloated functionality fits in one module, the bloated version
is too large and needs to be decomposed in smaller modules. This decomposition
adds some interfacing overhead. Unfortunately the same causes of overhead also

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 50

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Figure 3.9: Exploring bloating

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Figure 3.10: Bloating causes more bloating

apply to this decomposition overhead, which means again additional code.
All this additional code does not only cost additional development, test and

maintenance effort, it also has run time costs: CPU and memory usage. In other
words the system performance degrades, in some cases also with an order of magnitude.
When the resulting system performance is unacceptable then repair actions are
needed. The most common repair actions involve the creation of even more code:
memory pools, caches, and shortcuts for critical functions.

The overall aspects of bloating are devastating: increased development, test
and maintenance costs, degraded performance, increased harware costs, loss of
overview, et cetera.

Reuse should not trigger such a bloating process, because the bloating will
undo all the reuse benefits.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 51

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Figure 3.11: causes even more bloating...

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 52

3.5 The organizational challenge

The operational organization of the product creation process for a portfolio or
family of products used to be a simple hierarchy: portfolio, product family, product,
subsystem, module. The 3 main product creation roles are operational (project
management), technical (architecture) and commercial (marketing, product management).
These 3 roles are present at the different hierarchical levels, although the commercial
role is often not needed for the internal subsystems and modules. Figure 3.12

subsystem

single
product

product
family

entire
portfolio

 developersmodule

portfolio

operational

manager

family

operational

manager

(single product)

project

leader

subsystem

project

leader

operational

portfolio

architect

family

architect

product

architect

subsystem

architect

technical

portfolio

marketing

manager

family

marketing

manager

product

manager

commercial

Figure 3.12: Conventional operational organization

The introduction of reuse has a big impact on this hierarchy in the operational
organziation of the PCP. Figure 3.13 shows the organization after the addition of a
shared platform of shared components. The platform project leader reports directly
to the operational manager of the product family. His other core team members also
report directly to the family counter part: platform architect to family architect,
platform manager to family marketing manager. The supplier relationship is that
the platform delivers to the product, in other words the product creation is the
customer of the platform creation.

Figure 3.14 focuses on the tension which created by the sharing of a single
platform creation by multiple product creations. Conflicting interests with respect
to platform functionality or performance cannot be solved by the individual product
creation teams, but is propagated to the family level. At family level the policy is
set, which is executed by the platform creation. The platform team has to disap-
point one or more of its customers in favor of another customer.

The same problems happens with external suppliers, where the supplier has to
satisfy multiple customers. The main difference is that in such a supplier customer
relationship economic rules apply, where a dissatisfied customer will change from
supplier. The threshold to change from supplier in platform driven organizations is

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 53

subsystem

developers

entire

portfolio

product

family

single

product

sub-

system

module

project

leader
platform

component

project

leader

component

developers

platform

architect

component

architect

platform

manager

component

manager

platform

component

portfolio

operational

manager

family

operational

manager

single product

project

leader

subsystem

project

leader

operational

portfolio

architect

family

architect

product

architect

subsystem

architect

technical

portfolio

marketing

manager

family

marketing

manager

product

manager

commercial

Figure 3.13: Modified operational organization

very high, disrupting the normal economic control system.
The ultimate consequence is less commitment and satisfaction in product creation

(receiving the blame, without being in control) plus a lot of political hassle where
people try to achieve their objectives despite the organization.

Figure 3.13 contains a few other pecularities. First of all commercial roles
appear for internal products. At the moment that the organization complexity
increases with internal suppliers and customers also internal ”commercial” functions
appear, such as account managers. They act at the interfaces between the groups,
inventarizing requirements and promoting solutions.

Another pecularity is the existence of both a family architect as well as platform
architect. The family architect has a wider scope than the platform architect,
with more application content. The platform architect is more focused at the
technology/solution side: how to provide the required infrastructure. Note that
both architects must have a lot of overlap: the platform architect must understand
the application context, the family architect must understand the solution space.

One of the frequent occuring mistakes is the inversion of control, where the
platform team starts to determine the family policy. The platform creation must
enable the family policy, but should not determine this policy.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 54

product

creation

family

creation

product

creation

platform

creation

policies

priorities

deliverables

budgets

constraints

deliverables

customer

customer

conflicting

interests

Figure 3.14: Conflicting interests of customers escalate to family level, have impact
on platform, product creation teams benefit or suffer from the top down induced
policy

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 55

3.6 Integration

Many people expect the architect to decompose, as mentioned in the explanation
of ”guiding how”, while integration is severely underestimated, see figure 6.18.
In most development projects the integration is a traumatic experience. It is a
challenge for the architect to make a design which enables a smooth integration.

Decomposition

is "easy"

Integration is

difficult

Figure 3.15: Decomposition is easy, integration is difficult

Projects run without (visible) problems during the decomposition phases. All
components builders are happily designing, making and testing their component.
When the integration begins problems become visible. Figure 3.16 visualizes this
process. The invisible problems cause a significant delay1.

Combining existing software packages is mostly difficult due to ”architectural
mismatches”. Different design approaches with respect to exception handling,
resource management, control hierarchy, configuration management et cetera, which
prohibit straightforward merging. The solution is adding lots of code, in the form
of wrappers, translators and so on, while this additional code adds complexity, it
does not add any end-user value.

Performance and resource usage are most often far from optimal after a merger.
Amazingly many people start worrying about duplication of functionality when

merging, while this is the least of a problem in practice. This concern is the cause
of reuse initiatives, which address the wrong (non-existing) problem: duplication,
while the serious architectural problems are not addressed.

Creating the solution is a collective effort of many designers and engineers.
The architect is mostly guiding the implementation, the actual work is done by the

1This is also known as the 95% ready syndrome, when the project members declare to at 95%,
then actually more than half of the work still needs to be done.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 56

component 1

component 4

component 3

component 2

integration and test

scheduled

closing date

delay

Do you have any design

issues for the design meeting?

The default answer is: No.

realized

closing date

During integration numerous

problems become visible

Figure 3.16: Integration problems show up late during the project, as a complete
surprise

designers and engineers. Guiding the implementation is done by providing guide-
lines and high level designs for many different viewpoints. Figure 3.18 shows some
of the frequently occurring viewpoints for guiding the implementation. Note that
many people think that the major task of the architect is to define the decompo-
sition and to define and manage the interfaces of this decomposition. Figure 3.18
shows that architecting involves many more aspects and especially the integrating
concepts are crucial to get working products.

The deliverables of a platform development can range from requirement speci-
fications, to designs to complete implementations. Figure 3.19 shows a blueprint
of a full blown platform.

The blueprint shows a superset of what can be part of the platform. Figure 3.19
shows different variants, subsets, which can be used as a platform.

The type A platform consists of concepts and small building blocks. The
integration of all blocks has to be done by the product creators.

Type B platforms deliver the generic parts, for instance the computing infras-
tructure. Note that this includes the infrastructure related parts of the architecture
guidelines.

Type C is an application oriented platform. This type of platform is much more
pre-integrated and pre-tested.

At the bottom-right the platforms are positioned in the integration space, see [13].

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 57

tuner
tuner

MPEG MPEG

Duplication

Architectural mismatch:

wrappers, translators, conflicting controls

Poor performance;
additional resource usage

additional code

and complexity,

no added value

UI UI

non problem Problems Architecture Reuse

Figure 3.17: Integration of components from different sources is difficult due to
the architectural mismatch

resource

usage
perfor-

mance

exception

handling

device

abstraction

pipeline

start up

shut down

persistence

IQ

tuner
frame-

buffer
MPEG DSP CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view play browse

storage

acquisition compress encoding

display
de-

compress
decoding

2. construction

decomposition

3. allocation

1. functional

decomposition

4. infrastructure

5. choice of

integrating

concepts

safety

security

Figure 3.18: Integrating concepts

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 58

Architecture

guidelines

Base Product

Hardware Abstraction Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Hardware

Figure 3.19: Platform block diagram

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Hardware Abstraction

Hardware

Hardware Abstraction

Hardware

Hardware Abstraction

Hardware

integration level

system

component

p
re

p
ar

at
io

n
 le

ve
l

subsystem

"platform"

module

s
y
s
te

m

c
o

m
p

o
n

e
n

t

s
u

b
s
y
s
te

m

"p
la

tf
o

rm
"

m
o

d
u

le

"Delegated" integration

Shared integration

A

B

C

A B

C

Figure 3.20: Platform types

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 59

3.7 Evolution

A common pitfall is that managers as well as engineers expect a platform to be
stable; once the platform is created only a limited maintenance is needed. Figure 6.19
explains why this is a myth. A platform is build using technology that itself is
changing very fast (Moore’s law again). At the other hand a platform serves a
dynamic fast changing market, see for example [19]. In other worls it is a miracle
if a platform is stable, when both the supplying as well as the consuming side are
not stable at all.

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 3.21: The outside world is dynamic

The evolution of a platform is illustrated in figure 6.22 by showing the change
in the Easyvision [16] platform in the period 1991-1996. It is clearly visible that
every generation doubles the amount of code, while at the same time half of the
existing code base is touched by changes.

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 3.22: Platform evolution (Easyvision 1991-1996)

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 60

3.8 Reuse of know how

The CAFCR model [21] uses 5 views to look at an architecture. Most discus-
sions about reuse are concerned about the reuse of implementation, working code.
Implementation is part of the realization view. However reuse of the other views is
more easy and can be quite beneficial.

Customer

What

Customer

How

Product

What

Product

How

What does Customer need

 in Product and Why?

Customer

objectives

Application Functional Conceptual Realization

rate of

change

Understanding spec design implemen-

tation

"easy" reuse
costly

reuse

Figure 3.23: Reuse in CAFCR perspective

Figure 3.23 shows the CAFCR model at the top. Below the rate of change is
shown for the different views. The rate of change in the implementation view is
very high. All changes from the other views accumulate here, and on top of that
the fast change of the technology is added.

Reusing an implementation is like shooting for a fast moving target. The actual
benefits might never be harvested, due to obsolescence of the used implementation.
The understanding of the customer is a quite valuable resource. Due to the conser-
vative nature of most humans the half-life of this know how is quite long.

The understanding of the customer is translated into specifications. These
specifications have a shorter half-life, due to the competition and the technology
developments. Nevertheless reuse of specifications, especially the generic parts,
can be very rewarding.

The conceptual view contains the more stable insights of the design. The
CAFCR model on purpose factors out the concepts, because concepts are reused
by nature.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 61

3.9 Focus on business bottomline and customer

One of the big risks of reuse is that the focus of the organization and the people
shifts from solutions and value for the customer to the internals of the product
design, the technology used in the generic components.

This change of focus can be understood by the following simplified model
of a business. The business process for an organization which creates and builds
systems consisting of hardware and software is decomposed in 4 main processes
as shown in figure 3.24.

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

Figure 3.24: Simplified decomposition of the business in 4 main processes

The decomposition in 4 main processes leaves out all connecting supporting
and other processes. The function of the 4 main processes is:

Customer Oriented Process This process performs in repetitive mode all direct
interaction with the customer. This primary process is the cashflow gener-
ating part of the enterprise. All other processes only spend money.

Product Creation Process This Process feeds the Customer Oriented Process with
new products. This process ensures the continuity of the enterprise by creating
products which enables the primary process to generate cashflow tomorrow
as well.

People and Technology Management Process Here the main assets of the company
are managed: the know how and skills residing in people.

Policy and Planning Process This process is future oriented, not constrained by
short term goals, it is defining the future direction of the company by means
of roadmaps. These roadmaps give direction to the Product Creation Process
and the People and Technology Management Process. For the medium term
these roadmaps are transformed in budgets and plans, which are committal
for all stakeholders.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 62

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

Figure 3.25: Modified Process Decomposition

The simplified process description given in figure 3.24 assumes that product
creation processes for multiple products are more or less independent. When
generic developments are factored out for strategic reasons an additional process is
required to visualize this. Figure 3.25 shows the modified process decomposition
(still simplified of course) including this additional process "Generic Something
Creation Process".

policy and

planning

customer

Philips business

va
lu
e

PCP

customer oriented process
(sales, service, production)

people and technology management process

create generic components

management

tomorrow's cashflow

strategic asset

generation

assets

cashflow generation

Figure 3.26: Financial Viewpoint on Process Decomposition

Figure 3.26 shows these processes from the financial point of view. From
financial point of view the purpose of this additional process is the generation of
strategic assets. These assets are used by the product generation process to enable
tomorrow’s cashflow.

The consequence of this additional process is an lengthening of the value chain

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 63

policy and

planning

Philips business

va
lu
e

people and technology management process

create generic components

PCP

fe
e
d
-

b
a
ck

customer

customer oriented process
(sales, service, production)

Figure 3.27: Feedback flow: loss of customer understanding!

and consequently a longer feedback chain as well. This is shown in figure 3.27.
The increased length of the feedback chain is a significant threat for generic devel-
opments.

Many different models for the development of generic things are in use. An
important differentiating characteristic is the driving force, which often directly
relates to the de facto organization structure. The main flavors of driving forces are
shown in figure 3.28.

lead customer

carrier product

platform

technology push

good
direct feedback

too specific?

generic?

no feedback

bad

advanced

demanding

innovate for specific customer

refactor to extract generics

innovate for specific product

refactor to extract generics

innovate in generic platform

integrate in products

innovate in research laboratory

transfer to product development

Figure 3.28: Models for SW reuse

3.9.1 Lead Customer

The lead customer as driving force guarantees a direct feedback path from an actual
customer. Due to the importance of feedback this is a very significant advantage.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 64

The main disadvantages of this approach are that the outcome of such a devel-
opment often needs a lot of work to make it reusable as a generic product. The
focus is on the functionality and performance, while many of the quality aspects
are secondary in the beginning. Also the requirements of this lead customer can be
rather customer specific, with a low value for other customer.

3.9.2 Carrier Product

The combination of a generic development with one of the product developments
also shortens the feedback cycle, although it is not as direct as with the lead
customer. Combination with a normal product development will result in a better
balance between performance and functionality focus and quality aspects. Disad-
vantage can be that the operational team takes full ownership for the product (which
is good!), while giving the generic development second priority, which from family
point of view is unwanted.

In larger product families the different charters of the product teams creates a
political tension. Especially in immature or power oriented cultures this can lead
to horrible counterproductive political games.

Lead customer driven product development, where the product is at the same
time the carrier for the platform combines the benefits of the lead customer and
the carrier product approach. In my experience this is the most effective approach
of generic developments. A prerequisite for success is an open and result driven
culture to preempt any political game mentioned before.

3.9.3 Platform

In maturing product families the generic developments are often decoupled from
the product developments. In products where integration plays a major role (which
are nearly all products) the generic developments are pre-integrated into a platform
or base product, which is released to be used by the product developments.

The benefit of this approach is separation of concerns and decoupling of products
and platforms in smaller manageable units. Both benefits are also the main weakness
of such a model, as a consequence the feedback loop is stretched to a dangerous
length. At the same time the time from feature/technology to market increases, see
figure 3.29.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 65

feature 1

feature 2

Platform integration

test

Re
le
as
e

Product integration

product feature 1

product feature 2

test
Re
le
as
e

Figure 3.29: The introduction of a new feature as part of a platform causes an
additional latency in the introduction to the market.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.0

University of South-Eastern Norway-NISE

page: 66

3.10 Use before reuse

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 3.30: Feedback (3)

Understanding of the problem as well as the solution is key to being effective.
Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 7.14 for a visualization of the
influence of feedback frequency on project elapsed time.

Does it satisfy the needs?

Does it fit in the constraints?

Does it fit in the design?

Is the quality sufficient? multiplication of problems

or multiplication of benefits

architectural match

no bloating

cost price

effort

performance

functionality

user interface

Figure 3.31: Use of software modules enables validation before Reuse

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 67

Chapter 4

Aggregation Levels in
Composable Architectures

Small number of

Large Components

Large number of

Small Components

4.1 Problem description

This article is focusing on ”composable architectures”. Composable architectures
are designed for a single application domain, enabling the composition of products
of which the definition is still evolving or hidden in the future.

A crucial design question is: What is the desired granularity of the design,
what are useful abstractions? The granularity of the design is directly related to
the question: What are the appropriate aggregation levels for composition and
integration?

Most Product Creation Processes are based on a single dominating decompo-
sition and integration model. This oversimplification causes many problems for
development.

This article decribes an approach based on multiple viewpoints, matching the
wide variety of concerns involved. Per viewpoint heuristics are given.

Application of a multiview approach requires customization of viewpoints and
concerns. In general this means identification of the most relevant, important of
critical issues, which are used to select a small manageable amount of viewpoints
as main focus.

4.2 Views on Aggregation

Product Creation

Integration and Test

Documentation

Source Code
Management

Composition Deployment

Figure 4.1: Venn diagram showing the overlap between Viewpoints on Aggregation
Levels

Figure 4.1 shows a Venn diagram with 5 viewpoints with respect to aggre-
gation levels, in the overall context of Product Creation. For every viewpoint the
dominating concerns are mentioned in table 4.1 and the related aggregation levels
or entities in table 4.2.

Viewpoint Concerns

Documentation Requirements, Specification, Design, Transfer, Test, Support

Source Code Management Storage, Management, Generation

Composition System, Subsystem, Function, Application

Deployment Releasing, Distribution, Protection, Update, Installation,
Configuration

Integration and Test Confidence, Problem Tracking

Table 4.1: Concerns per viewpoint

All entities in Documentation, Repository, Composition and Deployment are
relevant for the Integration and Test viewpoint.

4.3 Documentation

Many types of documentation are required when building Product Families by
means of Composable Architectures. The granularity issues with respect to documen-
tation are described in [12].

The aggregation levels for documentation are shown in table 4.2. Figure 4.2
visualizes the documentation concerns. For every level relevant documents should
be produced, with respect to the what (requirements, specifications), how (design),
transfer (to Customer Oriented Process), verification (test) and how-to (support to

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 69

Viewpoint Entities

Documentation Product Family, Product/System, Function/Feature, Subsystem,
Component, Building Block, Module

Source Code Management Package, File

Composition Product, Executable, Dynamic Library, Component

Deployment Distribution Medium (”CD”), Unit of Licensing (”SW key”),
Package, Patch, Configuration data

Integration and Test Test Configurations, Intermediate Integration results

Table 4.2: Aggregation Levels or Entities per viewpoint

What

is asked for

(Requirements)

What

will be realized

(Specifications)

How

(Design)

Transfer

to Product Creation

(Support) and Customer

Oriented Process

(Engineering)

Verify

report

(Test)

drivesdrives
con

solid
ated

in

Figure 4.2: Visualization of documentation concerns

use reusable assets in creation of products). In what and how documents a selected
amount of why need to be present.

The documentation structure will evolve in time. This evolution requires explicit
refactoring steps in the product family lifecycle. The why and to a lesser extent the
what will be factored out, because this information is more stable and therefore
re-useable than the how. Part of the information will move ”upward” in the aggre-
gation level stack: generic patterns become clear, which are consolidated as abstrac-
tions on an higher aggregation level.

4.4 Source Code Management viewpoint

The elementary description of the system is in the source code. This source code
is stored in a structured way in a repository, see figure 4.3. There is no hard
requirement that the source code structure maps one-to-one on semantic entities
in the composition world. However a one-to-one mapping helps in maintaining
overview and understanding.

The main concerns in this view have to do with source code management:

• storage and accessibility of all source code

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 70

Repository

Packages

Source Files

C
o

n
ta

in
s

C
o

n
ta

in
s

SystemsGenerated from

Subsystems

Applications

Services

Generated from

C
o

m
p

o
se

d
 f

ro
m

Classes

Modules

C
o

m
p

o
se

d
 f

ro
m

Generated from

using or

recursive

composed from

Figure 4.3: The source code is stored in files in a repository. The unit of structuring
is called a package. These source code aggregation levels get a more semantic
meaning when being used.

• version management; complete traceability of all versions and changes

• ownership for performance, quality and maintenance

The most widely used unit for management and storage of source data is file.
Source code in this context means all original formal descriptions, such as C,

C++, include, text, data, make et cetera files. Original means that generated C-
code does not belong to the source code, the data used for generating this code
does belong to the source code.

The provide and require interface descriptions belong to the source code according
to this definition, as do IDL interface definitions. For example see the KOALA
component model as described in [26]. Generic subsystem configuration data
defining the composition also belong to the source code.

Most source code need to be transformed in computer oriented intermediate
formats before it can be used run time. The build step (compilation, building et
cetera) required for this transformation may influence the repository structure. A
well defined compile time dependency structure is desirable to enable a predictable
composition step.

Table 4.3 shows the typical sizes, anno 2000, of source code repositories. The
size is expressed in lines of code (loc). Historical data, see cost models in [3]
and [1] shows a remarkable constant relationship between lines of code and the
required manpower to create and maintain the software. The observed productivity
in the Medical Imaging case study was ca. 10 kloc per manyear. Taking this
number for a zero-order approximation the size of entities can be transformed in
effort.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 71

Entity Typical size loc packages

repository 1M-10M 10-100

package 10k–100k

file 100-1k

Table 4.3: Typical Sizes of SW for Aggregation Levels

This simple table illustrates a number of very essential design criteria, in relation
to granularity of management.

Rules of thumb for typical file sizes are:

• Files should be larger than 100 loc;
The overhead per file and the ”value” per file must be balanced.

• Files should be less than 1000 loc;
Large files reduce the overview within the module. Larger files are an indication
for a lack of modularity.

The number of packages in the repository is mostly restricted by usage and
testing configuration management concerns. A fine granularity with respect to
packages (subsystems, applications or services in the composition view) enables
a fine grained and powerful composition. Coarse granularity of packages means
that more code is a priori bundled, constraining the freedom of the composer The
downside of fine granularity is a combinatorial explosion of the amount of config-
urations.

From more pure source code point of view the considerations for package size
are:

• at least 10 files per package;
Packaging files or modules generates some overhead in usage and management.
The value of this packaging must be substantial to offset this additional
overhead.

• at most 100 kloc per package to maintain overview;
For unambiguous package-ownership and sufficient overview.

4.5 Composition viewpoint

Composition involves glueing together and configuring available components. The
result of the composition process are ”executable” entities such as components and
plug-ins and more conventional executables and dynamic link libraries.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 72

The granularity of these entities determines at the one hand the deployment
flexibility at the other hand it determines the amount of testing and configuration
management work.

Small number of

Large Components

Large number of

Small Components

Figure 4.4: Coarse versus Fine grained with respect to the number of connections
and relations; 9 large Components with 18 Connections, 81 small Components
with 648 Connections

The number of relations between components is roughly in the order of n1.5.
Table 4.4 shows the number of components and the number of connections between
them. The number of desired architects is derived from the number of connections
by means of zeroth order model. The ”capacity” of an architect, the number of
relations kept consistent and balanced by one architect, is used to determine the
required number of architects:

NumberOfArchitects = NumberOfConnections/Capacity

A somewhat more realistic model takes into account that large components
will have more complex connections with other components than small compo-
nents. Table 4.5 shows the same model with an additional weight factor to model
the complexity of the connection. The weight curve applied is rather arbitrary, it
reflects the experience of the author.

4.5.1 Optimal granularity for composition

The simple models in tables 4.5 and 4.4 make it immediately clear that a large
quantity of components is undesirable. Assuming a total crews of circa 100 devel-
opers (which corresponds with today’s multi-million lines of code repositories) it
is reasonable to have 10 architects. The optimal number of components is than in
the order 20 to 40.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 73

Capacity of architects c 10 20 40

Number of
components

Number of
relations

Number of Architects

n r = n
√
n a = r/c

2 3 0 0 0
4 8 1 0 0

10 32 3 2 1
20 89 9 4 2
40 253 25 13 6

100 1000 100 50 25
300 5196 520 260 130

1000 31623 3162 1581 791

Table 4.4: The relation between the number of components and the required
number of architects, zero order model

The above reasoning is entirely macroscopic, calibrated with some typical
Philips products. In specific cases plenty of reasons can exist which enable a higher
number of components. For instance:

• presence of a stable reference model

• variation of components hidden behind an effective abstraction

• tangible and therefore understandable, predictable domain

4.6 Field Deployment viewpoint

The granularity in the field deployment is determined by pragmatics of the Customer
Oriented Process [17]. These pragmatics can be further decomposed, see table 4.6.

Conventional embedded products do not have any field deployment activity,
these systems run out of the box. The increasing availability of network connec-
tivity enables field updates, with all related configuration management consequences.

At this moment no heuristics are available for the granularity with respect to
the drivers in table 4.6.

4.7 Integration and Test viewpoint

The real challenge in composable architectures is the integration and testing. Building
small building blocks is the easy part, getting them to work correctly together with
many other building blocks is more difficult.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 74

Capacity of architects c 10 20 40

Number of
components

Number of
relations

weight Number of Architects

n r = n
√
n w a = (r ∗ w)/c

2 3 12 3 2 1

4 8 9 7 4 2

10 32 4 14 7 3

20 89 2 22 11 5

40 253 2 39 19 10

100 1000 1 114 57 28

300 5196 1 534 267 133

1000 31623 1 3176 1588 794

Table 4.5: The relation between the number of components and the required
number of architects, first order model

• granularity of sellable features and services

• lifecycle support

• internal logistics and production process

Table 4.6: Decomposition of Field Deployment granularity drivers

A bottom up test philosophy, where every building block is verified in isolation
helps, because it reduces the number of difficult to trace errors during integration.
Bottom up testing needs to be complemented by an integration philosophy.

The time needed for verification of a building block depends exponentially
or worse on its size. The combinatorial explosion of possible (and useful) states
limits the optimal size of elementary building blocks. The typical size for verifiable
modules is between 100 loc and 10 kloc. In section 4.5 the optimal number of
components is derived to be between 20 and 40. For multi-million loc products a
typical component will exceed the size of being bottom up verifiable.

Figure 4.5 shows the cost of bottom up testing as function of the size and
the duration of the complementary integration also as function of the size. Note
that the integration duration more or less increases linear, while the size increases
exponential. The simple explication for this is that every integration step halves the
number of modules to be integrated, the schedule looks like an horizontal binary
tree. In other words the duration is logarithmic with the total size.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.4

University of South-Eastern Norway-NISE

page: 75

1 1k 1M10 100 10k 100k 10M

file

building block

system
anno 2000

component

cost of bottom up

testing
1

10

100

ar
b

ri
ta

ry
 c

ap
ac

it
y

sc
al

e

ar
b

ri
ta

ry
 e

la
p

se
d

ti

m
e

sc
al

e

1

2

3

0

duratio
n of

integratio
n

size in loc

confidence level

after integration

Figure 4.5: Integration and testing as function of size

Integration is a non-exhaustive activity. Best case the most relevant (from usage
and test risks perspective) areas are touched. This means that the level of confi-
dence obtained by integration decreases with increasing size.

An acceptable level of confidence is only reached by a combination of bottom
up testing, integration testing and intermediate common sense verification steps in
between.

4.8 Acknowledgements

This paper has been written as part of the ”composable project”. The project
members are: Pierre America, Hans Jonkers, Jürgen Müller, Henk Obbink, Rob
van Ommering, William van der Sterren, Jan Gerben Wijnstra and Gerrit Muller.
It has been discussed within the team, and the team contributed significantly to the
contents.

Jürgen Müller suggested several improvements with respect to flow, consis-
tency and balance. Wim Vree indicated multiple improvements, amongst others
”local terminology and acronyms”, which have either to be avoided or explained.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 76

Chapter 5

From Legacy to State-of-the-art;
Architectural Refactoring

TV domain HW
Computing

HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

TV Hybrid TV Digital TV

"All-in-one" combi TV

Set Top Box
domain HW

Set Top Box Platform

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing
HWTV domain HW

Computing
HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital Video Platform SW

Set Top Box
domain HW

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing HWTV domain HW

TV domain
platform

TV computing
Infra-

structure

TV
applications

Digital Video Platform SW

Set Top Box Platform

Digital TV UI

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

M
H
P

Set Top Box
functions

TV domain
platform

TV
computing

Infra-
structure

Set Top Box Platform

3
rd

 party

stack(s)

TV applications

storage domain HW

Storage

applications

Digital TV UI

Storage srvices

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

re-

ceiver

portable

media-

screen

trans

mitter

game
console

5.1 The problem

5.1.1 Market trends

Consumer Electronics Products are a large variety of products, which have evolved
from straightforward electronic devices, such as radios, into complex software
intensive systems. Figure 5.1 shows a typical set of today’s audio and video
products.

Technological advances and business opportunities result in a convergence of
separate worlds. The worlds of telecommunications, computers and consumer
electronics are converging, see figure 6.4.

This convergence means that functions from the different domains are integrated
in new types of appliances. These appliances are optimized towards the intended
use. User, form factor, function and environment all together determine what an
optimal appliance looks like. The wide variety in users, form factors, functions and
environments requires a very rich variety of appliances.

Figure 6.5 shows at the left hand side a small subset of existing devices belonging
in one of the three domains. More to the right some of the form factors are shown,

DVD

VCR

Audio Mini

Audio

Audio Portable

CD man

TV

WalkmanHard Disk

F
ro

m
:
C

O
P

A
 t
u

to
ri
a

l,
 R

o
b

 v
a

n
 O

m
m

e
ri
n

g

Figure 5.1: Today’s Audio Video Consumer Products

Telecom

Consumer

Computer

Figure 5.2: Trend: Convergence of separate worlds

while the right hand side shows some of the environments. The number of useful
combinations of functions, form factors and environments is nearly infinite!

In this presentation video entertainment will be used as the application area.
Figure 5.4 shows a typical diagram of the set up of video products in our homes.
We see products to connect with the outside world (set top box), storage products
(Video Cassette Recorder abbreviated as VCR), and conventional TV’s and remote
controls, which are the de facto user interface.

This chain of video products is slowly evolving, as depicted in figure 5.5. In
the past a straightforward analog chain was used. The elements in this chain are
stepwise changed into digital elements. The introduction of the Large Flat TV’s
breaks open the old paradigm of an integrated TV, which integrates tuner and
related electronics with the monitor function.

In the near future many more changes can be expected, such as the introduction
of the Digital Video Recorder (DVR), a gateway to alternative broadband solutions,
wireless inputs and outputs, home networks enabling multiple TV’s.

The function allocation for this last stage of figure 5.5 and the network topology
can be solved in several ways. Figure 5.6 shows four alternatives, based on a client-
server idiom.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 78

mp3

dvd

set top box

flat display

pen

speech

cable

modem

firewall

Ambient Intelligence

living room

car

car navigation

pda

surveillance

camera

camera

GSM phone

computer
Communicator

television

games

sailboat

audio

microset

headphone

garment

watch

Figure 5.3: Integration and Diversity

Conventional

TV

Set Top

Box

Video

Recorder

DVD

Player

Cable

Modem

PC

Figure 5.4: Today’s Video Products

The expectation is that all alternatives will materialize, where the consumer
chooses a solution which fits his needs and environment.

These alternatives require different packaging of functions into products, as
shown in figure 5.7.

5.1.2 Technology trends

The major trend for electronic devices is Moore’s law, roughly stating that the
available amount of transistors in an integrated circuit doubles every 18 months.
Devices based on IC’s follow this trend. Figure 6.7 shows the growth of the amount
of memory in TV’s.

The amount of software in products, measured as lines of code, more or less
follows Moore’s law. Unfortunately the software engineering discipline did not
proceed at the same rate, which is reflected by a fault metric expressed as fault per
thousand lines of code, varying between 1 for very rigid organized producers, to

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 79

TVVCR

DVD

Set

top

TVVCR

DVD

PDPVCR

DVD

Set

top
elec.

Digital

Cable

Digital

Cable

Analog

Cable

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

Multiple inputs

Multiple stores

Multiple displays

Multiple applications

Multiple formfactors

1

2

3

4
re-

ceiver

portable

media-

screen

trans

mitter

game
console

Figure 5.5: Evolution of Video Products

10 or more for ad hoc products. Typical values for CE type products is 3 faults per
1000 lines of code. See figure 5.9 for typical values as function of the year.

The increase of the amount of software causes many problems:

• Increase of development cost

• (Non) availability of skilled engineers

• Increase of development time, and hence time to market

• Decrease of product reliability

Reuse is often presented as the solution for all problems mentioned above.
Experience learns that quite the opposite happens in many cases, see [13], the
challenge of executing a successful reuse program is often severely underestimated.

The most common root-cause of reuse failure is the mistake to see reuse as a
goal rather than a means.

5.1.3 Example Digital Television

An example of a new product is a digital television, which is the merger of a set
top box and a television. This television can directly connect to a digital cable
infrastructure and offer services provided by cable or content providers.

One way of realizing such a system is to declare the reuse of existing software,
integrate all this software on a single hardware platform and to support this hardware
platform factor out the “lower” software layers. Figure 5.11 shows the simplistic
architecting to achieve this merger.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 80

Network

Thin

Clients

All-in-one

Server

All-in-one

Combi's

Thin

Servers

Clients

Network

Network

BA C

Network

Server

Server

Server

Client

Client

Client

D
"All-in-one"

Combi's

"Thin

Servers"

"All-in-one"

Home server
"Modular"

Figure 5.6: Distribution Scenario’s

Figure 5.12 shows the rationale behind the reuse of existing software packages.
The cumulative effort of the software involved exceeds 500 manyears.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 81

TV2

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

4A

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

4B

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL

4D

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

4C

re-

ceiver

portable

media-

screen

trans

mitter

game
console

"All-in-one"

Digital TV

"Thin Servers" "All-in-one"

Home server

"Modular"

TV2

Figure 5.7: Product Packaging Options

1965 1979

2000 1990

1 kB

64 kB2 MB

Moore's law

F
ro

m
:
C

O
P

A
 t
u

to
ri
a

l,
 R

o
b

 v
a

n
 O

m
m

e
ri
n

g

Figure 5.8: Moore’s law

1000

100

10

m
a

n
y
e

a
rs

 p
e

r

p
ro

d
u

c
t

1990 1995 2000 2005

1000

10000

ty
p

ic
a

l
a

m
o

u
n

t
o

f

e
rr

o
rs

 p
e

r
p

ro
d

u
c
t

Figure 5.9: Problem: increasing SW size, decreasing reliability?

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 82

REUSE

time

$
$

P
ro

m
is

e

Reality

Figure 5.10: The Holy Grail: Reuse

Set Top Box
domain HW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd
 party

stack(s)

Computing
HW

TV domain HW
Computing

HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital Video Platform SW

Set Top Box
domain HW

TV domain HW Computing HW

analog TV Set top box

Digital Video Platform

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd
 party

stack(s)

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital TV UI

Digital TV

Merge

glue

Figure 5.11: Simplistic Architecting: Digital TV

>100 Myr

>100 Myr

>200 Myr >100 Myr

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd
 party

stack(s)

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital TV UI

"Legacy" code > 500 Myr

glue

Figure 5.12: Available Code Assets

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 83

5.2 Architectural Refactoring

Combining existing software packages is mostly difficult due to “architectural
mismatches”. Different design approaches with respect to exception handling,
resource management, control hierarchy, configuration management et cetera, which
prohibit straightforward merging. The solution is adding lots of code, in the form
of wrappers, translators and so on, while this additional code adds complexity, it
does not add any end-user value.

Performance and resource usage are most often far from optimal after a merger.
Amazingly many people start worrying about duplication of functionality when

merging, while this is the least of a problem in practice. This concern is the cause
of reuse initiatives, which address the wrong (non-existing) problem: duplication,
while the serious architectural problems are not addressed.

tuner
tuner

MPEG MPEG

Duplication

Architectural mismatch:

wrappers, translators, conflicting controls

Poor performance;
additional resource usage

additional code

and complexity,

no added value

UI UI

non problem Problems Architecture Reuse

Figure 5.13: Merge problems

The proposed solution to this set of problems is architectural refactoring.
Architectural refactoring is an incremental approach, putting a lot of emphasis on
feedback. Two major criteria to get feedback on are:

• How well does the current architecture support today’s product needs?

• How well will the architecture evolve to follow the market dynamics?

In every increment to the market both concerns should be addresses, which trans-
lates in clear business goals (product, functions, value proposition) and clear refac-
toring goals fitting in a limited investment. The refactoring goals should be based
on a longer term architecture vision, see 5.14.

Examples of Refactoring goals can be seen in figure 5.15. These refactoring
goals should be sufficiently “SMART” to be used as feedback criterium.

Note: many refactoring projects spend lots of effort, while critical review after-
wards does not show any improvement. Often loss of goal or focus is the basis for

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 84

Refactoring

within short term business goals

with limited but substantial refactoring goals

clear product

clear value proposition

feedback on direction

limited investment
based on long term architecture vision

Figure 5.14: Solution: Architectural Refactoring

such a disaster.

+ Decrease Code Size

+ Decrease Resource Usage
* power

* memory

* silicon area

+ Increase Performance
* response time

* throughput

Q
u
al
it
y

time

0%

10%

20%

Improvement investment

as percentage of total budget

+ Increase quality
 * decrease fault density

Figure 5.15: Example of Refactoring Goals

Architectural refactoring looks at all architectural aspects, from functions and
structure to selection of mechanisms and technologies. Code refactoring, well
known from extreme programming [2], plays a role at a much more microscopic
level. See figure 5.16 which shows both ways of refactoring side by side. Some
code refactoring requires an update of the architecture. At the other hand architec-
tural changes quite often have a significant software impact.

5.2.1 Prerequisites for effective architectural refactoring

Frequent feedback
Understanding of the problem as well as the solution is key to being effective.

Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 7.14 for a visualization of the
influence of feedback frequency on project elapsed time.

Awareness of dynamics
The world is highly dynamic, the markets and applications change rapidly,

while the famous law of Moore shows the incredible speed of technological devel-

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 85

optimize()

...

add(a)

...

remove()

...

move()

...

accelarate()

...

add(a)

...

remove()

...

optimize()

...
move()

...

accelarate()

...add(a)

...

remove()

...

Code Refactoring

old

new

old

new

new

Architectural Refactoring
Function, Structure, Rationale

Mechanisms, Technologies

return(error)

free, alloc

raise(exception)

garbage collection

old

Figure 5.16: Architectural and Code refactoring

opments. Unfortunately most people believe in stability and are biased towards
stabilizing architectures. Architectures and their implementations are sandwiched
between the fast moving market at one side and technology improvements at the
other side. Since both sides change quite rapidly, the architecture and its imple-
mentation will have to change in response, see figure 6.19.

The evolution of a platform is illustrated in figure 6.22 by showing the change
in the Easyvision [16] platform in the period 1991-1996. It is clearly visible that
every generation doubles the amount of code, while at the same time half of the
existing code base is touched by changes.

Long Term Vision
In order to set refactoring goals it is useful to have a long term vision on the

architecture. Such a long term vision may be quite ambitious. The ambition of the
vision will be balanced by the pragmatics of short term business goals and limited
investments in improvement.

Figure 5.20 shows an example of a long term vision, where a framework is
foreseen, which decouples 6 design and implementation concerns:

• applications

• services

• personalization

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 86

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 5.17: Frequent feedback results in faster results and a shorter path to the
result

• configuration

• computing infrastructure

• domain infrastructure

The actual implementation will not have such a level of decoupling for a long time,
the penalty in effort, resource usage and many other aspects will be prohibitive
for a long time. Nevertheless the decoupling will become crucial if the variety of
products is really very large and dynamic.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 87

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 5.18: Myth: Platforms are Stable

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 5.19: Platform Evolution (Easyvision 1991-1996)

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 88

Computing

Infrastructure

Domain

Infrastructure

ServicesApplications

C
on

fig
ur

at
io
n

i.e
. I

nt
er

na
tio

na
liz

at
io
n

pe
rs

on
al
iz
at

io
n

i.e
. t

un
es

, t
he

m
es

Framework

Long Term Vision:

Reference Architecture +

Sample implementation

of Framework and

Components

Reference

Architecture

Figure 5.20: Example Long Term Vision

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.3

University of South-Eastern Norway-NISE

page: 89

5.3 Conclusion

Figure 5.21 shows how not to work towards the future:

• Don’t merge blindly

• Don’t a priori declare SW to be reusable

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDP

DVR

DVD

RW

Set

top

elec.

Gate

way

re-

ceiver

trans

mitter

Digital TV

Opportunistic

Legacy

Integration

Proclaimed

reuse

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd

party

stack(s)

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital TV UI

glue

Figure 5.21: Don’t do

While figure 5.22 illustrates architectural refactoring, applied on the example
of a digital television. The steps taken here are:

From TV to Hybrid TV. The conventional TV is refactored to use a more modern
HW platform, while the lower layer is factored out. The set top box is physically
integrated in the television, while at software level both applications are pragmati-
cally interfaced.

From Hybrid TV to Digital TV. More hardware is shared between the TV part
and the set top box part of the system, with as refactoring goals: reduction of
resource usage and enabling a more harmonized user interface. The set top box
platform is redesigned to make this possible.

From Digital TV to “All-in-one” TV. The TV computing infrastructure is simplified
(reduce lines of count), while the next “legacy” application is merged in: storage.

5.4 Acknowledgements

Lex Heerink patiently listened to the presentation and provided valuable feedback.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 90

TV domain HW
Computing

HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

TV Hybrid TV Digital TV

"All-in-one" combi TV

Set Top Box
domain HW

Set Top Box Platform

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing
HWTV domain HW

Computing
HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital Video Platform SW

Set Top Box
domain HW

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing HWTV domain HW

TV domain
platform

TV computing
Infra-

structure

TV
applications

Digital Video Platform SW

Set Top Box Platform

Digital TV UI

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

M
H
P

Set Top Box
functions

TV domain
platform

TV
computing

Infra-
structure

Set Top Box Platform

3
rd

 party

stack(s)

TV applications

storage domain HW

Storage

applications

Digital TV UI

Storage srvices

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

re-

ceiver

portable

media-

screen

trans

mitter

game
console

Figure 5.22: Conclusion: Refactoring the Architecture is a must

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 91

Chapter 6

Light Weight Architecture: the
way of the future?

Ef
fe

ct
iv

en
es

s

architecture
weight

(for dynamic markets and fast changing technologies)

very low low medium high

overall

effectiveness

Manageability

Flexibility

= Flexibility * Manageability

6.1 Introduction

Architecture is the combination of the know how of the solution (technology)
with understanding of the problem (customer/application). The architect must
play an independent role in considering all stakeholders interests and searching
for an effective solution. The fundamental architecting activities are depicted in
figure 6.1.

Do the right things

Do the things right

How
Guiding

Why
Understanding

What
Describing

Figure 6.1: What is Architecture?

Do the right things is addressed in section 6.2. Do the things right is addressed
in section 6.3. The weight of an architecture is discussed in section 6.4. This
structure of the presentation is visualized in figure 6.2.

1A. Do the right things; The Dynamic Market

1B. Do the things right; Lessons from Practice

25 Kg

Why What How

Understanding Describing Guiding

2. The Weight of an Architecture;

Architectural Chaos or Bureaucratic Control?

On/Off

This appliance may only be used for non commercial use

accuracy +/- 200 g

Figure 6.2: Table of Contents

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 93

6.2 Do the right things; The Dynamic Market

Philips Semiconductors (PS) plays a part in a longer value chain as depicted in
figure 6.3. Typical the components of PS, such as single chip TV’s, are used
by system integrators, which build CE appliances, such as televisions. These
appliances can be distributed via retail channels or via service providers to end
consumers.

Providers
UPC

Canal+ AOL

AT&T

Retailers
Fry's

Dixon

Consumers Boonstra

Peper
Kok

Chirac

Blair

Pietersen
Smith

Jones

Jansen

Muller

Kleisterlee

Clinton

v.d. Spijker

Meulengraaf
der Kinderen

Reinders

Bush

Rooyakkers

de Vries

Koch

d'Oliviera

van Oranje

Obbink

v.d. Hamer
Charite

Cruijf

Neeskens
van Hanegem

Goedkoop

Sharon

El Khatabi

de Gruijter

Heijn

Schijvens

Waterreus

Leonardo

van Bommel

Nistelrooij

Gandhi

Pinochet

Bakker

v.d. Meulen

Hoessein

Schroder

Schweitzer

Peters

Gore

System Integrators
Sony Philips CE-DN

Loewe

NokiaPhilips CE-TV

Philips CE-PCC

Component and

Platform Suppliers
Philips Semiconductors

Philips Components ST

TI

Samsung

Microsoft

Intel

Liberate

Micron

LG

It's

Prodi

Figure 6.3: Value chain

One of the major trends in this industry is the magic buzzword convergence.
Three more or less independent worlds of computers, consumer electronics and
telecom are merging, see figure 6.4; functions from one domain can also be done
in the other domain.

The name convergence and the visualisation in figure 6.4 suggest a more uniform
set of products, a simplification. However the opposite is happening. The conver-
gence enables integration of functions, which were separate sofar for technical
reasons. The technical capabilities have increased to a level, that required function-
ality, performance, form factor and environment together determine the products
to be made. Figure 6.5 shows at the left hand side many of today’s appliances,
in the middle many form factors are shown and the right hand side shows some
environments.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 94

Telecom

Consumer

Computer

Figure 6.4: Convergence

mp3

dvd

set top box

flat display

pen

speech

cable

modem

firewall

Ambient Intelligence

living room

car

car navigation

pda

surveillance

camera

camera

GSM phone

computer
Communicator

television

games

sailboat

audio

microset

headphone

garment

watch

Figure 6.5: Integration and Diversity

Note that making all kind of combination products, with many different form
factors for different environments and different price performance points creates a
very large diversity of products!

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 95

AOL

Amazon.com

source: BigChart.com

dd march 19, 2001

1997 1998 1999 2000 2001

Figure 6.6: Uncertainty (Dot.Com effect)

Another market factor to take into account is the uncertainty of all players in
the value chain. One of the symptoms of this uncertainty is the strong fluctuation
of the stock prices, see figure 6.6.

1965 1979

2000 1990

1 kB

64 kB2 MB

Moore's law

F
ro

m
:
C

O
P

A
 t
u

to
ri
a

l,
 R

o
b

 v
a

n
 O

m
m

e
ri
n

g

Figure 6.7: Moore’s law

An historical trend is that the amount of software is increasing proportional
with Moore’s law, see figure 6.7.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 96

time to

market
effort

10 100

digital TV

GSM

application

infrastructure

1 10

100

manyearmonths

volume

units

10
6

10
3

personalized

(skins, themes)

TV

1000

1

GSM

Figure 6.8: System Integrator Problem Space - Business

From business point of view the products and/or markets of the system integrators
can be characterized by time to market, volume, effort to create. In these 3 dimen-
sions a huge dynamic range need to be covered. Infrastructure (for instance the
last mile to the home) takes a large amount of time to change, due to economical
constraints, while new applications and functions need to be introduced quickly (to
follow the fashion or to respond to a new killer application from the competitor).
The volume is preferably large from manufacturing point of view (economy of
scale), while the consumer wants to personalize, to express his identity or community
(which means small scale). As mentioned before the effort to create is increasing
exponentially, which means that the effort is changing order of magnitudes over
decades. Figure 6.9 summarizes these characteristics.

10
6

10
9

10
12

performance power

10
-3

1

home

server

digital TV
home

server

digital TV

GSM

GSM

storage

10
6

10
9

10
12

digital TV

home

server

GSM

Operations/s Watt Byte

10
3

Figure 6.9: System Integrator Problem Space - Technology

Main technology concerns of the system integrators are performance, power

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 97

and storage. Again a huge dynamic range need to be covered in these dimensions.
Video based applications have much higher processing demands than GSM speech
audio. While for power portable appliances like a GSM have severe constraints
and should use orders of magnitude less power than TV’s or set top boxes. The
amount of storage is again highly function dependent, for instance a home server
which must be able to store many hours of video needs a huge amount of storage,
while the address book of a GSM phone is very limited in its storage needs. The
technology parameters and dynamic range are visualized in figure 6.9.

Problem space

10
6

10
9

10
12

home

server

digital TV

GSM

Operations/s

10
-3

1

home

server

digital TV

GSM

10
3

10
6

10
9

10
12

digital TV

home

server

GSM

Byte

10

application

infrastructure

1

100

months
units

10
6

10
3

TV

1

GSM

personalized

(skins, themes)

100

digital TV

GSM

10

manyear

1000

p
e

rfo
rm

a
n

c
e

p
o

w
e

r

s
to

ra
g

e

tim
e

 to

m
a

rk
e

t

v
o

lu
m

e

e
ffo

rt

Watt

Figure 6.10: System profile

Combining the figures in one picture enables the visualization of a system
profile. Figure 6.10 shows the profiles for a digital TV and for a GSM cell phone.
The profile is not extended to the time to market measure, because several different
time constants play a role for both GSM phones and televisions. The device itself,
the applications running on the devices, the services offered on device plus infras-
tructure, and the infrastructure itself all have different time constants.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 98

10
6

10
9

10
12

performance power

10
-3

1

home

server

digital TV
home

server

digital TV

GSM

GSM

Operations/s Watt

10
3

Motion

detector MPEG

decoder

MP3

WAP

TCP/IP

Bluetooth

1394

USB

802.11

TriMedia

MIPS

ARM

Real

GSM

GPS

pSOS

WinCE

RF

amp

Figure 6.11: PS Technology solutions

The Philips product division Semiconductors has many hardware and software
solutions available in IP-blocks. For a single problem many solutions are available.
These solutions differ in their characteristics, such as performance, power and
storage. The choice of the solution is driven by the specific product requirements.
Figure 6.11 shows a subset of the available solutions and shows for 3 specific
solutions their performance and power characterization.

watch

digital TV

set top box

communicator

pda

M
P

E
G

d
e

c
o

d
e

r

M
P

3

T
C

P
/I
P

B
lu

e
to

o
th

1
3

9
4

T
ri
M

e
d

ia

M
IP

S

A
R

M

R
e

a
l

G
S

M

G
P

S

p
S

O
S

W
in

C
E

R
F

a
m

p

camcorder

required

optional

Technologies

Systems

Figure 6.12: Partial Solution: Configurable Component Platform

The convergence problem (diversity and integration) can be tackled by a platform
approach, where all the solutions must be available to be combined in one integrated
solution. Figure 6.12 shows how appliances could be composed from available
solutions.

Figure 6.13 summarizes the exploration of the problem and solution space. The
uncertainty and diversity is addressed by programmability, flexibility, composable
architecture, product family approach and configurability. The increased effort
is addressed by shifting development effort to suppliers. The dynamic range of

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 99

Increase

supplier

content

Programmability,

flexibility

Family of

products

Configurability

Competitive

Performance /

cost / power

Solution

ingredients

Composable

Architecture

Problem space

10
6

10
9

10
12

home

server

digital TV

GSM

Operations/s

10
-3

1

home

server

digital TV

GSM

10
3

10
6

10
9

10
12

digital TV

home

server

GSM

Byte

10

application

infrastructure

1

100

months
units

10
6

10
3

TV

1

GSM

personalized

(skins, themes)

100

digital TV

GSM

10

manyear

1000

p
e

rfo
rm

a
n

c
e

p
o

w
e

r

s
to

ra
g

e

tim
e

 to

m
a

rk
e

t

v
o

lu
m

e

e
ffo

rt

Watt

watch

digital TV

set top box

communicator

pda

M
P

E
G

d
e

c
o

d
e

r

M
P

3

T
C

P
/I
P

B
lu

e
to

o
th

1
3

9
4

T
ri
M

e
d

ia

M
IP

S

A
R

M

R
e

a
l

G
S

M

G
P

S

p
S

O
S

W
in

C
E

R
F

a
m

p

camcorder

required

optional

Technologies

Systems

Figure 6.13: Exploring problem space and solution ingredients

requirements is addressed by supplying the right solutions at different competitive
performance/cost/power points.

From: COPA tutorial;

Philips SW conference 2001.

Architecture only works if the complementary

viewpoints are addressed consistently

B
Business

O
Organization

P
Process

A
Architecture

Figure 6.14: More than Architecture

This presentation focuses on architecture. Being good in architecting is not
sufficient to be successfull in the market. Addressing the Business, Process and
Organization (People) issues also is essential for success, see figure 6.14

Figure 6.15 summarizes the conclusions of the first part of the article.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 100

What

Describing

Why
Understanding

Dynamic Market
Convergence
Integration

Diversity

Configurable Component Platform

Portfolio and Family architecture

Figure 6.15: Conclusions Part 1A

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 101

6.3 Do the things right; Lessons from Practice

Creating the solution is a collective effort of many designers and engineers. The
architect is mostly guiding the implementation, the actual work is done by the
designers and engineers. Guiding the implementation is done by providing guide-
lines and high level designs for many different viewpoints. Figure 6.16 shows some
of the frequently occurring viewpoints for guiding the implementation. Note that
many people think that the major task of the architect is to define the decompo-
sition and to define and manage the interfaces of this decomposition. Figure 6.16
shows that architecting involves many more aspects and especially the integrating
concepts are crucial to get working products.

4. Infra-

structure

2. Construction

Decomposition

3. Allocation

5. Choice of

integrating

concepts

1. Functional

Decomposition

tuner
frame-

buffer
MPEG

DS

P
CPU RAM

drivers scheduler OS

etc

audio video TXT
file-

system
networkingetc.

view play browse

storage

acquisition compress encoding

display
de-

compress
decoding

Resource

usage
Performance

Exception

handling

Device

abstraction

Pipeline

Figure 6.16: ”Guiding How” by providing rules for:

Architecting involves amongst others analyzing, assessing, balancing, making
trade-offs and taking decisions. This is based on architecture information and facts,
following the needs and addressing the expectations of the stakeholders. A lot of
the architecting is performed by the architect, which is frequently using intuition.
As part of the architecting vision, overview, insight and understanding are created
and used.

The strength of a good architect is to do this job in the real world situation,
where the facts, expectations and intuition sometimes turn out to be false or
changed! Figure 6.17 visualizes this art of architecting.

Many people expect the architect to decompose, as mentioned in the expla-
nation of ”guiding how”, while integration is severely underestimated, see figure 6.18.
In most development projects the integration is a traumatic experience. It is a
challenge for the architect to make a design which enables a smooth integration.

A common pitfall is that managers as well as engineers expect a platform
to be stable; once the platform is created only a limited maintenance is needed.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 102

Intuition, assumptions, beliefs, bias

Expectations

Facts

Architecture(s)

Architecture

Architect(s)

Stakeholders

analyze

assess

balance

trade-off

decide

vision

overview

insight

understanding

Architecting

problems, legacy

uncertainties

unknowns

Facts, Expectations and

Intuition may be false

Integration requires a

critical mindset that is alert

for unknowns

Figure 6.17: The Art of Architecting

Figure 6.19 explains why this is a myth. A platform is build using technology that
itself is changing very fast (Moore’s law again). At the other hand a platform served
a dynamic fast changing market, see section 6.2. In other words it is a miracle if a
platform is stable, when both the supplying as well as the consuming side are not
stable at all.

The more academical oriented methods propose a ”first time right approach”.
This sounds plausible, why waste time on wrong implementations first? The practical
problem with this type of approach is that it does only work in very specific circum-
stances:

• well defined problem

• few people (few background, few misunderstandings)

• appropriate skill set (the so-called ”100%” instead of ”80/20” oriented people)

The first clause for our type of products is nearly always false, remember the
dynamic market. The second clause is in practical cases not met (100+ manyear
projects), although it might be validly pointed out that the size of the projects is the
cause of many problems. The third clause is very difficult to meet, I do know only
a handful of people fitting this category, none of them making out type of products
(for instance professors).

Figure 6.20 shows the relationship between team size and the chance of success-
fully following the first time right approach.

Understanding of the problem as well as the solution is key to being effective.
Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 7.14 for a visualization of the
influence of feedback frequency on project elapsed time.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 103

Decomposition

is "easy"

Integration is

difficult

Figure 6.18: Architecting is much more than Decomposition

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 6.19: Myth: Platforms are Stable

The evolution of a platform is illustrated in figure 6.22 by showing the change
in the Easyvision [16] platform in the period 1991-1996. It is clearly visible that
every generation doubles the amount of code, while at the same time half of the
existing code base is touched by changes.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 104

1

maybe

10

unlikely

100

miracle

1000

impossible

person years

First time right?

Figure 6.20: The first time right?

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 6.21: Example with diffrent feedback cycles (3, 2, and 1 months) showing
the time to market decrease with shorter feedback cycles

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 6.22: Platform Evolution (Easyvision 1991-1996)

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 105

6.4 The Weight of an Architecture; Architectural Chaos
or Bureaucratic Control?

Does an architecture help to be successfull in the business or does it harm the
success? As always the answer from the architect is: it depends. The crucial
success factor is the weight of the architecture.

scope (impact) ,

level of enforcement ,

size,
level of coupling or

number of dependencies

= f (

)

weight (rule) guideline

portfolio

weight

multi-page

builds on

 many rules
stand-alone

productcomponent

weight(architecture) =  weight(rule)

all rules

conditional

rule

mandatory

rule

single-line multi-line

low high

Rule

1

25 Kg
On/Off

Rule

1
Rule

2

Rule

1Rule

1

Rule

1 Rule

n

Figure 6.23: Architecture Weight

Figure 6.23 gives a definition for the weight of the architecture. The simple
definition is that the overall weight of an architecture is the sum of the weight of
all rules which together form the architecture.

The weight of a single rule is determined by level of enforcement, scope (impact),
size, level of coupling or number of dependencies. Figure 6.23 gives for each of
these parameters a scale from low weight to high weight.

Business or Portfolio

Product Family

Product

Subsystem

Component

n

m

n

m

n

m

n

m

Heavy-weight

High impact

Large scope

Small scope

Low impact

Light-weight

Figure 6.24: Scope and Impact

Figure 6.24 zooms in on the scope parameter to make clear the relation between
the scope of the rule and the consequence for the weight.

For instance a rule like: all the functions in all the products of the portfolio
must (manadatory) return an complete predefined status object as defined in the

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 106

system design specification, chapter exception handling, making use of the template
as described in the coding standards and using the prescribed class and include
files as present in the appropriate version of the code repository is a heavy rule
(mandatory, portfolio scope, 4 lines of text (without the appropriate references)
and depending on other entities (system design spec, template and code standard,
prescribed classes and includes, repository).

Business

manager

Engineers

bottomline

future growth

guidance

understandability

accessibility

product feasibility

implementation

decoupling

solution freedom

being informed

functionality

performance

timely available

acceptable cost

Customer

Suppliers

Architecture

Feedback

Responsiveness

Solution Freedom

Communicable

EvolutionOpen

Figure 6.25: Criteria for an Architecture

So far no judgement is provided for having a good or bad architecture. In
order to make a judgement we need to understand the objectives and concerns
of the stakeholders. Figure 6.25 shows a number of the stakeholders and their
main concerns. Note that the stakeholders have different and sometimes conflicting
requirements, such is life.

Ef
fe

ct
iv

en
es

s

architecture
weight

for dynamic markets and fast changing technologies

very low low medium high

Manageability
Integration

Interoperability

Providing control

Flexibility
Evolution

Responsiveness

Maintenance

Figure 6.26: Weight versus Effectiveness

The next step in reaching a judgement is to look at the relation between effec-
tiveness and weight. Figure 6.26 show this relationship for flexibility (evolution,

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 107

responsiveness, maintenance) and manageability (integration, interoperability, providing
control). Flexibility decreases when the weight increases, while the manageability
is proportional with the weight.

Ef
fe

ct
iv

en
es

s

architecture
weight

(for dynamic markets and fast changing technologies)

very low low medium high

overall

effectiveness

Manageability

Flexibility

= Flexibility * Manageability

Figure 6.27: Conclusion Part 2

The question of good of bad depends on the relative importance of flexibility
and manageability. For our dynamic markets and fast moving technology flexibility
is very important, but for customer satisfaction the manageability is also important.
The combination of these 2 requirements is shown in figure 7.17, where the curve
shows that an optimum is achieved when both concerns are sufficiently met.

For different product/market/technology combinations different curves will result.
Mature (stable, certain) markets with slow changing technologies, the optimum is
determined by manageability and hence a heavy architecture. At the other extreme
very dynamic markets and technologies, with forgiving customers or low economic
risks will benefit from extreme flexibility and a very light architecture.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 108

6.5 Light weight how-to

With both the definition of the weight of the architecture and the insight that this
weight should be low it becomes possible to look for ways to minimize the weight.

An high impact way of minimizing the weight is to minimize the number of
the rules. This can be achieved by providing as much as focus to the architecture
as possible. Focus is derived from the market and customer needs. Understanding
of the customer helps to understand and therefore to sharpen the requirements, see
figure 6.28.

weight(architecture) =

all rules

weight(rule)

2. Minimize the weight per rule

1. Reduce the rule set to the (business) essential

Understand

· your customer

· your customer's customer

etcetera

Figure 6.28: Light Weight How -To

The next step is to minimize the weight of every individual rule. Every parameter
influencing the weight of a rule must be minimalized. The level of enforcement can
be minimized by making as few as possible rules manadatory, work with guidelines
as much as possible. The scope can be minimized by empowering and delegating
as much as possible, in other words let component or subsystem architects make
local rules (or better guidelines) for their specific scope. The size of a rule is
minimized by leaving out details in the rule itself, short conceptual rules are very
powerful. The level of coupling is minimized by ”designing” the architecture rules.
Especially multi-view architecting helps to cope with the highly complex reality.
One dimensional decompositions result in highly coupled rules to capture aspects
from other dimensions.

Figure 6.29 visualizes the way to minimize the individual weight of a rule.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 109

scope (impact) ,

level of enforcement ,

size,

level of coupling or

number of dependencies

f (

)

weight(rule)= minimize number of mandatory rules

empower, delegate

minimize implementation details

focus on essential concepts

Apply design principles on architecture

Multi-view architecting

Figure 6.29: Minimize Rule Weight

Gerrit Muller
Composable Architectures
January 21, 2022 version: 2.3

University of South-Eastern Norway-NISE

page: 110

6.6 Summary

Figure 6.30 summarizes the full presentation. The market to be served is highly
dynamic. Lessons from practice show that changes are normal, stability of the
solution is the exception. In this dynamic market with a changing solution space
the architecture must be light weight.

Problem space

106

109

1012

home

server

digital TV

GSM

Operations/s

10-3

1

home

server

digital TV

GSM

103

106

109

1012

digital TV

home

server

GSM

Byte

10

application

infrastructure

1

100

months
units

106

103

TV

1

GSM

personalized

(skins, themes)

100

digital TV

GSM

10

manyear

1000

p
e

rfo
rm

a
n

c
e

p
o

w
e

r

s
to

ra
g

e

tim
e

 to

m
a

rk
e

t

v
o

lu
m

e

e
ffo

rt

Watt

2. Optimal architecture: Light weight !

1B. Architecting in Practice:

Change is normal,

Stability is the exception

1A. Dynamic Market: Understand Your

Customer

GrowthChange

Ef
fe

ct
iv

en
es

s

architecture
weight

very low low medium high

overall

effectiveness

Figure 6.30: Summary

6.7 Acknowledgements

This presentation has been enabled by the inspiring and critical comments of:

• Jürgen Müller

• Peter van den Hamer

• Lex Heerink

• William van der Sterren

Remarks and textual improvements were made by Pierre van de Laar.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 111

Chapter 7

Exploration of the bloating of
software

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

overhead

value

legend

system

engineering

software

engineering

aggressive

refactoring

incremental

approach

agile

attitude

right

technology

early feedback

system

design

CAFCR

iteration

extensive

regression tests retirement

policy

software

design

7.1 Introduction

Bloating is one of the main causes of the software crisis. Bloating is the unnec-
essary growth of code. The really needed amount of code to solve a problem is
often an order of magnitude less than the actual solution is using. Most SW based
products contain an order of magnitude more software than is required. The cause
of this excessive amount of software is explored in section 7.2 and 7.3.

The overall aspects of bloating are devastating: increased development, test
and maintenance costs, degraded performance, increased hardware costs, loss of
overview, et cetera.

7.2 Module level bloating

Figure 7.1 shows a number of causes for bloating. The specification of what need
to be made is often wrong: too much functionality, wrong functionality, personal
hobbyhorses, repair for previous poor specifications, et cetera. The main cause is
insufficient understanding of the application, the customer needs and concerns, in

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Figure 7.1: Exploring bloating

other words insufficient understanding of the why behind the specification.
The design is the next source of bloating: ineffective design choices increase

the code size. For example dynamic allocation is used, where the context allows
for static allocation (dynamic uncertainty is added and need to be coped with,
without adding value) or static allocation is used in a dynamic context (which
results in dynamics to be added in an unnatural way, benefits of statics are not
harvested, while a lot of complexity is added to cope with the dynamics). Insuffi-
cient design causes also a lot of bloating, for instance lots of duplicated function-
ality. Generic core functionality should have been factored out during design (but
read the remarks about generic solutions below, factoring out requires know-how
and skills).

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Figure 7.2: Necessary functionality is more than the intended regular function

Note that the core functionality in the center is all the required functionality
to obtain a well behaved product. This means that it includes much more than the

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 113

regular functionality, as shown in figure 7.2. This includes the boundary behavior
(worst case situations, exceptions), instrumentation for development (tracing, debugging
support, assertions, et cetera) and testing functionality. Note that all causes of
bloating result in bloating of all these categories of regular functionality.

The drive towards generic solutions is often counterproductive. Figure 7.3
shows an actual example of part of the Medical Imaging system [16], which used
a platform based reuse strategy. The reuse vision create a significant counterpro-
ductive drive towards generic solutions.

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Figure 7.3: The danger of being generic: bloating

The first implementation of a ”Tool” class was over-generic. It contained lots
of if-then-else, configuration options, stubs for application specific extensions, and
lots of best guess defaults. As a consequence the client code based on this generic
class contained lots of configuration settings and overrides of predefined functions.

The programmers were challenged to write the same functionality specific,
which resulted in significantly less code. In the 3 specific instances of this function-
ality the shared functionality became visible. This shared functionality was factored
out, decreasing maintenance and supporting new applications.

The next source of added overhead is caused by the dogmatic application of
architecture rules. For instance the rule that components always communicate via
COM. Such a rule might be very applicable for coarse grain components, but can
ruin a fine grain design.

The last item which increases the code size is the accumulation of unused code.
This happens slowly. In first instance the team is not aware of the fact that part of
the functionality is not used anymore. Much later nobody knows what the effect
will be if the unused code is removed. The motto becomes ”if it ain’t broke, don’t

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 114

fix”, which results in an ever growing legacy of dead code.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 115

7.3 Bloating causes more bloating

The bloating starts at low level. Via copy/paste modify existing bloating is propa-
gated to new parts of the system. Figure 7.4 shows what happens with low level
copy paste activities. An existing module is reused via copy-paste. The bad parts
of the code are copied as well, which means that we now have the bad code twice
in the repository. The new module has to do perform some new functionality,
which means that new code, with its own bloating problems, is added. However
in the copied code some unused code is not removed, while the bad code causes
problems. These problems are solved by work-arounds.

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Figure 7.4: Shit propagation via copy paste

All together the new module is much worse bloated than the old module: shit
propagation and amplification.

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Figure 7.5: Example of shit propagation

An example of such shit propagation is shown in figure 7.5. An original
module, with a locally embedded dynamic array pattern is copied in a new class.
The original capacity doubling strategy is replaced by an incremental increase of
the array. The original way of working with a size and a capacity has become
obsolete, but it is not removed. The result is that the new class contains useless
code, as well as uses more run time resources than strictly needed.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 116

This poor implementation is itself again copied. Some new functionality is
added, in this example a block insert. The block insert is implemented as repeated
single inserts. Not only is the obsolete capacity structure still present, on top of that
a very inefficient insertion is implemented, where for every element a complete re-
allocate is performed.

This type of quality degradation can be found in many places in software repos-
itories.

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Figure 7.6: Bloating causes more bloating

One of the bloating problems is that bloating causes more bloating, as shown in
figure 7.6. Software engineering principles force us to decompose large modules
in smaller modules. ”Good” modules are somewhere between 100 and 1000 lines
of code. So where non-bloated functionality fits in one module, the bloated version
is too large and needs to be decomposed in smaller modules. This decomposition
adds some interfacing overhead. Unfortunately the same causes of overhead also
apply to this decomposition overhead, which means again additional code.

All this additional code does not only cost additional development, test and
maintenance effort, it also has run time costs: CPU and memory usage. In other
words the system performance degrades, in some cases also with an order of magnitude.
When the resulting system performance is unacceptable then repair actions are
needed. The most common repair actions involve the creation of even more code:
memory pools, caches, and shortcuts for critical functions. This is shown in figure 7.7.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 117

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Figure 7.7: causes even more bloating...

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 118

7.4 What if we are able to reduce the bloating?

Lets assume that we are able to reduce the code size with a factor 5, in other
words we can make an equivalent product with only 20% of the code size. Such
a reduction would have a tremendous impact on the creation and the life-cycle
afterwards of the product. Figure 7.8 shows some of the consequences.

extrovert benefitsintrovert benefits

code size
reduced with

factor 5

implementation

maintenance

investment

faults

overview

market response

time

reliability

ease of usecommunication cycle time

organization overhead

20%

20%

core

function

generic

legacy

"h
o

w
"

d
o

g
m

a
s

"w
h

a
t"

core function

Figure 7.8: What if we remove half of the bloating?

The immediate consequence is that all parameters which are in first approx-
imation proportional with the code size, will be reduced with the same factor.
Imagine the impact of having 5 times less faults on the reliability or on the time
needed for integration!

The creation crew and the maintenance crew decrease also proportional, which
eases the communication tremendously. The organization also becomes much
simpler and more direct. The housing demands are smaller, the crew fits in a
smaller location. Figure 7.9 shows the relation between crew size, organization
and housing.

1 2 4 8 16 32 64

room

floor

128 256

building

512

campus

Figure 7.9: Impact of size on organization, location, process

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 119

Of course a reduction with a factor 5 is a tremendous challenge, a plan to
attack the bloating is discussed in section 7.5. To achieve such an improvement the
estimated overhead (circa 90% of the code) has to be reduced with a factor 8, and
the core code has to be reduced with about 15% at the same time.

less

code

better

overview

better design

integral

understanding

faster

prototyping

better

specification

faster

feedback

concern

locality

expression

power

appropriate

technology

change

locality

refactoring

redesign

viable

same type of diagram can be made for less people
(less communication, space, organization, bureaucracy)

Figure 7.10: Anti bloating multiplier

If we are able to reverse the trend of bloating, an anti bloating multiplier effect
will help us, as shown in figure 7.10. Less code helps in many ways to reduce
the code even more: less code enables faster prototyping, which helps to get
early feedback, which in turn improves the specification, and a better specification
reduces the amount of code! Similar circular effects are obtained via the use of
right technology, via refactoring and through improved overview.

The same multiplier effect is also present when we are able to reduce the crew
size. Less people means easier communication, less distance, less need for bureau-
cratic control, less organizational overhead, all of them again reducing the amount
of people needed!

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 120

7.5 How to attack the bloating?

The bloating must be attacked by coping with all the different causes of bloating as
discussed in section 7.2. Figure 7.11 summarizes all different approaches that can
be used to attack these different causes.

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

overhead

value

legend

system

engineering

software

engineering

aggressive

refactoring

incremental

approach

agile

attitude

right

technology

early feedback

system

design

CAFCR

iteration

extensive

regression tests retirement

policy

software

design

Figure 7.11: How to reduce bloating

7.5.1 Improving the specification

The systems engineering discipline is a matured discipline, for instance in the
military and aero space domain, see for instance: [8] and [11]. Deploying methods
and checklists from this discipline can help to improve specifications.

A major cause of poor specifications is late feedback, both from the customer
side as well as from the technical cost and feasibility side. All modern product
creation processes stress the importance of early feedback or an incremental approach,
see [6], [4] and [10].

In [21] the CAFCR model is introduced as a means for architectural reasoning.
From specification point of view it is important that the specification in the Functional
view fits in the context of the Customer objectives, Application, Conceptual and
Realization views. The architectural reasoning method is based upon fast iteration
over the views and the different levels of abstraction.

7.5.2 Improving the design

One of the frequent design pitfalls is the dominance of a single decomposition.
The consequence is that many other design dimensions are insufficiently taken into

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 121

poor specification ("what")

system engineering: mature discipline, checklists, literature

CAFCR iteration, early feedback: learn why

Customer

objectives

Application Functional Conceptual Realization

solutionproblem

bottom line

usability

implementation

decisions

sy
st
em

le
ve
l

d
et
ai
l

le
ve
l

Figure 7.12: Improving the specification

account. The architectural reasoning method as described in [21] emphasizes the
need for multiple views and methods in order to cope with many relevant design
dimensions.

Figure 7.13 provides an overview of the architectural reasoning method based
on the CAFCR model. Core to the deployment of the method is the availability of a
rich collection of submethods, such that for each problem an approach is available,
or at least that inspiration can be obtained from this rich set.

System design, software design and software engineering are closely related
disciplines. System design can be tackled by means of CAFCR, as mentioned
above. Software design requires sufficient conceptual skills: determining the concepts
to be used: which generic functionality can (must) be factored out, where are
specific solutions required. Finally good software engineering practices (naming
conventions, tools, configuration management, et cetera) help to avoid commonly
known mistakes. Trivial misnaming mistakes may cause lots of bloating, due to
not recognizing concepts or structures.

7.5.3 Avoiding the genericity trap

Many software developers and architects love to create powerful and generic solutions.
A truly powerful and generic solution can indeed be marvelous. Unfortunately
these type of solutions often emerge after a lot of hard work and many trials. The
mistake made by many of us is that we try to invent this ideal solution out of
nothing, while the problem and solution know how is still rudimentary.

To avoid this genericity trap frequent feedback is essential. Understanding of

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 122

explore

specific details

submethods

per view

Customer

objectives

Application Functional Conceptual Realizationarchitecture

decomposition

integration

via qualities

safety

performance

story case
analyse

design

design
analyse

design

a priori solution know howmarket

vision

Philips operational view

diagnosis

time efficient
throughput processing

library

diagnostic

quality

image

quality IQ spec

pixel

depth

CPU

budget

typical

case

standard

workstationcommon

console
memory limit

BoM Moore's

law

purchase

price
CoOeconomic

sound

render

engine

memory

budget

reasoning

+ keydrivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

ans many more

See: Architectural Reasoning http://www.extra.research.philips.com/natlab/sysarch/ArchitecturalReasoning.html

Figure 7.13: Use multiple views and methods

the problem as well as the solution is key to being effective. Learning via feedback
is a quick way of building up this understanding. Waterfall methods all suffer
from late feedback, see figure 7.14 for a visualization of the influence of feedback
frequency on project elapsed time.

A more practical way to obtain more powerful and generic solutions is to
start with learning. In practice after 3 initial implementations (often with some
copy/paste based reuse), sufficient know how is available to factor out the generic
part, see figure 7.15

7.5.4 Match solution technology with problem

The size of the functionality itself can often reduced by using the appropriate
technology for the specific type of problem. Figure 7.16 shows some different
types of technologies and the potential technology choice which can reduce the
amount of code required to tackle the problem.

For user interface prototyping dedicated user interface or application gener-
ators are valuable tools. Many non hard real time problems of all kind of natures
(textual, algorithmic, networking) can be expressed in high level problem terms
by high level languages such as Python. When programming in Python much less
code is required for all kinds of solution technology oriented needs.

For small hard real time or performance critical functions (for instance audio or
image processing, or motion control) straightforward hand optimization is sometimes
the most effective. All kinds of high level constructs in this problem domain trigger

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 123

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 7.14: Feedback (3)

make
& use 1

make (copy,
paste, modify)

& use 2

make (copy,
paste, modify)

& use 3
refactor
& reuse

time

learn domain, technology, pitfalls,

keydrivers, requirements, costs

harvest and

extend

heuristic: use 3 times before factoring out the generic parts

Figure 7.15: Lesson learned about reuse

the bloating process due to all additional measures needed to meet performance or
timing needs.

Highly repeatable problems, with small variations, can be addressed by specialized
generators. Development of dedicated toolkits for this class of problems is often
highly efficient in terms of amount of code and cost.

7.5.5 Agility instead of dogmatism

An agile attitude is needed to avoid dogmatic application of all kinds of architecture
rules. In [19] recommendations are given to achieve a light weight architecture.

Figure 7.17 from [19] shows the tension between the different objectives of an
architecture. Flexibility requires agility, while manageability requires more control
through architecture rules. Organizational growth or maturity often involves an
increase of manageability, which can backfire if this translates in dogmatism.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 124

highly repeatable problem

non hard real time textual, algorithmic, networking: Python

UI prototyping: GUI editor/generator

small hard real-time or extremely performance critical

dedicated generator tools

hand optimized

Figure 7.16: Examples of ”right” technology choices

Ef
fe

ct
iv

en
es

s

architecture
weight

(for dynamic markets and fast changing technologies)

very low low medium high

overall

effectiveness

Manageability

Flexibility

= Flexibility * Manageability

Figure 7.17: Keep the architecture weight low

7.5.6 Reduce unused code

The first step in removing unused code is to have a retirement policy: how is
retirement communicated, how long are old features supported, support for obsoles-
cence detection et cetera.

When features are retired a cleanup of the associated code is required. Quite
some drive is required to actually do this, an aggressive refactoring mentality is
quite helpful to achieve this.

As described in the problem analysis the cleanup is often not done out of fear:
what might happen somewhere else in the code if we remove this? Extensive
regression test suites help to detect this kind of problems and help to remove the
fear of cleanup.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 125

support for unused legacy code

aggressive refactoring

extensive regression tests

retirement policy make explicit what can

not be used anymore

cleanup

reduce fear

reduce surprises

Figure 7.18: Reduce unused code

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 126

7.6 Acknowledgements

Wim Mosterman reminded me of the “shit propagation” effect, which causes a
significant amount of bloating. Nick Maclaren pointed out that factoring out generic
functionality during design (not during programming!) is an effective anti-bloat
measure. Tom Hoogenboom for providing feedback.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 127

Bibliography

[1] Chris M.S. Abts, Barry W. Boehm, and Elizabeth Bailey Clark.
COCOTS: A COTS software integration lifecycle cost model-
model overview and preliminary data collection findings. http:
//sunset.usc.edu/publications/TECHRPTS/2000/
usccse2000-501/usccse2000-501.pdf, 2000.

[2] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA, 2000.

[3] Barry W. Boehm et al. Cocomo ii homepage. http://sunset.usc.
edu/research/COCOMOII/index.html, 2000.

[4] B.W. Boehm. A spiral model of software development and enhancement.
IEEE Computer, May 1988.

[5] Dana Bredemeyer. Definitions of software architecture. http://www.
bredemeyer.com/definiti.htm, 2002. large collection of definitions
of software architecture.

[6] Thomas Gilb. Evolutionary object management. http://www.gilb.
com/Download/EVOART95.ZIP, 1996.

[7] Derek K. Hitchins. Putting systems to work. http://www.hitchins.
co.uk/, 1992. Originally published by John Wiley and Sons, Chichester,
UK, in 1992.

[8] INCOSE. International council on systems engineering. http://www.
incose.org/toc.html, 1999. INCOSE publishes many interesting
articles about systems engineering.

[9] Carnegie Mellon Software Engineering Institute. How do you define software
architecture? http://www.sei.cmu.edu/architecture/
definitions.html, 2002. large collection of definitions of software
architecture.

http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-501/usccse2000-501.pdf
http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-501/usccse2000-501.pdf
http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-501/usccse2000-501.pdf
http://sunset.usc.edu/research/COCOMOII/index.html
http://sunset.usc.edu/research/COCOMOII/index.html
http://www.bredemeyer.com/definiti.htm
http://www.bredemeyer.com/definiti.htm
http://www.gilb.com/Download/EVOART95.ZIP
http://www.gilb.com/Download/EVOART95.ZIP
http://www.hitchins.co.uk/
http://www.hitchins.co.uk/
http://www.incose.org/toc.html
http://www.incose.org/toc.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html

[10] Philippe B. Kruchten. A rational development process. Crosstalk 9, pages
11–16, July 1996.

[11] James N. Martin. Systems Engineering Guidebook. CRC Press, Boca Raton,
Florida, 1996.

[12] Gerrit Muller. Granularity of documentation. http://www.gaudisite.
nl/DocumentationGranularityPaper.pdf, 1999.

[13] Gerrit Muller. Product families and generic aspects. http://www.
gaudisite.nl/GenericDevelopmentsPaper.pdf, 1999.

[14] Gerrit Muller. Requirements capturing by the system architect. http://
www.gaudisite.nl/RequirementsPaper.pdf, 1999.

[15] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[16] Gerrit Muller. Case study: Medical imaging; from toolbox to product to
platform. http://www.gaudisite.nl/MedicalImagingPaper.
pdf, 2000.

[17] Gerrit Muller. Process decomposition of a business. http://www.
gaudisite.nl/ProcessDecompositionOfBusinessPaper.
pdf, 2000.

[18] Gerrit Muller. From legacy to state-of-the-art; archi-
tectural refactoring. http://www.gaudisite.nl/
ArchitecturalRefactoringPaper.pdf, 2001.

[19] Gerrit Muller. Light weight architectures; the way of the future? http:
//www.gaudisite.nl/info/LightWeightArchitecting.
info.html, 2001.

[20] Gerrit Muller. The system architect; meddler or savior? http://www.
gaudisite.nl/MeddlerOrSaviorPaper.pdf, 2001.

[21] Gerrit Muller. Architectural reasoning explained. http://www.
gaudisite.nl/ArchitecturalReasoningBook.pdf, 2002.

[22] Gerrit Muller. The importance of system architecting
for development. http://www.gaudisite.nl/
ImportanceOfSAforDevelopmentPaper.pdf, 2002.

[23] Gerrit Muller. CAFCR: A multi-view method for embedded systems archi-
tecting: Balancing genericity and specificity. http://www.gaudisite.
nl/ThesisBook.pdf, 2004.

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 129

http://www.gaudisite.nl/DocumentationGranularityPaper.pdf
http://www.gaudisite.nl/DocumentationGranularityPaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/RequirementsPaper.pdf
http://www.gaudisite.nl/RequirementsPaper.pdf
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ArchitecturalRefactoringPaper.pdf
http://www.gaudisite.nl/ArchitecturalRefactoringPaper.pdf
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/info/LightWeightArchitecting.info.html
http://www.gaudisite.nl/MeddlerOrSaviorPaper.pdf
http://www.gaudisite.nl/MeddlerOrSaviorPaper.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ArchitecturalReasoningBook.pdf
http://www.gaudisite.nl/ImportanceOfSAforDevelopmentPaper.pdf
http://www.gaudisite.nl/ImportanceOfSAforDevelopmentPaper.pdf
http://www.gaudisite.nl/ThesisBook.pdf
http://www.gaudisite.nl/ThesisBook.pdf

[24] Gerrit Muller. Key drivers how to. http://www.gaudisite.nl/
KeyDriversHowToPaper.pdf, 2010.

[25] Gerrit Muller. Requirements elicitation and
selection. http://www.gaudisite.nl/
RequirementsElicitationAndSelectionPaper.pdf, 2010.

[26] Henk Obbink, Jürgen Müller, Pierre America, and Rob van Ommering.
COPA: A component-oriented platform architecting method for
families of software-intensive electronic products. http://www.
hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf, 2000.

History
Version: 0.4, date: July 13, 2010 changed by: Gerrit Muller
• Added ”A Method to Explore Synergy between Products”

Version: 0.3, date: june 6, 2003 changed by: Gerrit Muller
• Added ”How to Create a Manageable Platform Architecture?”

Version: 0.2, date: june 6, 2003 changed by: Gerrit Muller
• Added ”Exploration of the bloating of software”

Version: 0.1, date: March 7, 2003 changed by: Gerrit Muller
• Added ”Software Reuse; Caught between strategic importance and practical feasibility” no changelog yet

Version: 0, date: June 13, 2002 changed by: Gerrit Muller
• Created very preliminary bookstructure, no changelog yet

Gerrit Muller
Composable Architectures
January 21, 2022 version: 1.2

University of South-Eastern Norway-NISE

page: 130

http://www.gaudisite.nl/KeyDriversHowToPaper.pdf
http://www.gaudisite.nl/KeyDriversHowToPaper.pdf
http://www.gaudisite.nl/RequirementsElicitationAndSelectionPaper.pdf
http://www.gaudisite.nl/RequirementsElicitationAndSelectionPaper.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf

	Introduction
	How to Create a Manageable Platform Architecture?
	Introduction
	Case: Medical Imaging Workstation
	Product Context
	Historic Phases
	Basic Application and Toolboxes
	Medical Imaging X-Ray
	Second Concurrent Product: Medical Imaging CT/MR
	Towards Workflow

	Architecture
	Platform
	The Time Dimension
	Process View
	Lead Customer
	Carrier Product
	Platform

	Market Driven
	Recommendations

	A Method to Explore Synergy between Products
	Introduction
	Stepwise method to explore synergy opportunities
	Explore markets, customers, products and technologies
	Share market and customer insights
	Identify product features and technology components
	Make maps
	Discuss value, synergy and (potential) conflicts
	Create long term and short term plan

	Example of synergy

	Software Reuse; Caught between strategic importance and practical feasibility
	Introduction
	Statements about reuse
	Software reuse is needed
	The technical challenge
	The organizational challenge
	Integration
	Evolution
	Reuse of know how
	Focus on business bottomline and customer
	Lead Customer
	Carrier Product
	Platform

	Use before reuse

	Aggregation Levels in Composable Architectures
	Problem description
	Views on Aggregation
	Documentation
	Source Code Management viewpoint
	Composition viewpoint
	Optimal granularity for composition

	Field Deployment viewpoint
	Integration and Test viewpoint
	Acknowledgements

	From Legacy to State-of-the-art; Architectural Refactoring
	The problem
	Market trends
	Technology trends
	Example Digital Television

	Architectural Refactoring
	Prerequisites for effective architectural refactoring

	Conclusion
	Acknowledgements

	Light Weight Architecture: the way of the future?
	Introduction
	Do the right things; The Dynamic Market
	Do the things right; Lessons from Practice
	The Weight of an Architecture; Architectural Chaos or Bureaucratic Control?
	Light weight how-to
	Summary
	Acknowledgements

	Exploration of the bloating of software
	Introduction
	Module level bloating
	Bloating causes more bloating
	What if we are able to reduce the bloating?
	How to attack the bloating?
	Improving the specification
	Improving the design
	Avoiding the genericity trap
	Match solution technology with problem
	Agility instead of dogmatism
	Reduce unused code

	Acknowledgements

