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Abstract

A threat to performance is the combination of feature creep and technical debt.
This combination causes bloating of the design. In Lean terms, the combination
causes waste. A crucial question is where is the value, and is the value in balance
with the potential degradation of performance.
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From Feature Creep to Performance Problems
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Technical Debt

Technical Debt is a metaphor used within the software 

industry to communicate the consequences of pragmatic 

design decisions deviating from the intended design of a 

system

from: http://gaudisite.nl/INCOSE2016_Callister_Andersson_SMARTtechnicalDebt.pdf

based on Cunningham http://c2.com/doc/oopsla92.html
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Value versus Performance Degradation
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Are benefits (value) in balance with the costs (such as performance degradation)?
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Exploring bloating: main causes
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Necessary functionality � the intended regular function
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The danger of being generic: bloating
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"Real-life" example: redesigned Tool super-class and descendants, ca 1994
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Shit propagation via copy paste
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Example of shit propagation

Class Old:

    capacity = startCapacity

    values = int(capacity)

    size = 0

    def insert(val):

        values[size]=val

        size+=1

        if size>capacity:

            capacity*=2

            relocate(values,

                    capacity)

Class New:

    capacity = 1

    values = int(capacity)

    size = 0

    def insert(val):

        values[size]=val

        size+=1

        capacity+=1

        relocate(values,

                    capacity)

        

Class DoubleNew:

    capacity = 1

    values = int(capacity)

    size = 0

    def insert(val):

        values[size]=val

        size+=1

        capacity+=1

        relocate(values,

                    capacity)

    def insertBlock(v,len):

        for i=1 to len:

            insert(v[i])

copy 
paste

copy 
paste
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Bloating causes more bloating
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Causes even more bloating...
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Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...
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