
Bloating, Waste, and Value
by Gerrit Muller TNO-ESI, University of South-Eastern Norway]

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

A threat to performance is the combination of feature creep and technical debt.
This combination causes bloating of the design. In Lean terms, the combination
causes waste. A crucial question is where is the value, and is the value in balance
with the potential degradation of performance.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: planned
version: 0

logo
TBD

From Feature Creep to Performance Problems

maturing of

systems

increasing

number of

features

(feature creep)

technical debt

bloating of

design

increase in

resource

usage

performance

problems

design

complexity

lack of

overview

insight

understanding

loss of knowledge

time effort gain

by taking

shortcuts

Bloating, Waste, and Value
2 Gerrit Muller

version: 0
September 1, 2020
BWVfeatureCreep

Technical Debt

Technical Debt is a metaphor used within the software

industry to communicate the consequences of pragmatic

design decisions deviating from the intended design of a

system

from: http://gaudisite.nl/INCOSE2016_Callister_Andersson_SMARTtechnicalDebt.pdf

based on Cunningham http://c2.com/doc/oopsla92.html

Bloating, Waste, and Value
3 Gerrit Muller

version: 0
September 1, 2020
BWVtechnicalDebt

Value versus Performance Degradation

increasing number of features

(feature creep)

technical debt

bloating of

design

increase in

resource

usage

performance

problems

design

complexity

lack of

overview

insight

understandingtime effort gain by taking

shortcuts

Are benefits (value) in balance with the costs (such as performance degradation)?

Bloating, Waste, and Value
4 Gerrit Muller

version: 0
September 1, 2020

BWVvalueEvaluation

Exploring bloating: main causes

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Bloating, Waste, and Value
5 Gerrit Muller

version: 0
September 1, 2020

EASRTbloating

Necessary functionality � the intended regular function

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Bloating, Waste, and Value
6 Gerrit Muller

version: 0
September 1, 2020

BLOATcoreFunctionality

The danger of being generic: bloating

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Bloating, Waste, and Value
7 Gerrit Muller

version: 0
September 1, 2020

GDbloatingVisualized

Shit propagation via copy paste

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Bloating, Waste, and Value
8 Gerrit Muller

version: 0
September 1, 2020

BLOATshitPropagation

Example of shit propagation

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Bloating, Waste, and Value
9 Gerrit Muller

version: 0
September 1, 2020

BLOATshitPropagationExample

Bloating causes more bloating

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating, Waste, and Value
10 Gerrit Muller

version: 0
September 1, 2020

EASRTbloatingCausesBloating

Causes even more bloating...

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code
p

o
o

r
d

e
s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Bloating, Waste, and Value
11 Gerrit Muller

version: 0
September 1, 2020

EASRTbloatingCausesBloatingMore

