
Exploration of the bloating of software
by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Present-day products contain one order of magnitude more software code than
is actually needed. The causes of this bloating are explored. If we are able to
reduce the bloating significantly, then the product creation process is simplified
tremendously. Potential handles to attack the bloating are discussed.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

August 21, 2020
status: finished
version: 1.2

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

overhead

value

legend

system

engineering

software

engineering

aggressive

refactoring

incremental

approach

agile

attitude

right

technology

early feedback

system

design

CAFCR

iteration

extensive

regression tests retirement

policy

software

design

Exploring bloating: main causes

overhead

value

legenda

core

function

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

genericity

configurability

provisions for

future

support for

unused legacy

code

Exploration of the bloating of software
2 Gerrit Muller

version: 1.2
August 21, 2020
EASRTbloating

Necessary functionality � the intended regular function

testing

boundary behavior:
exceptional cases

error handling

regular

functionality

instrumentation
diagnostics

tracing

asserts

Exploration of the bloating of software
3 Gerrit Muller

version: 1.2
August 21, 2020

BLOATcoreFunctionality

The danger of being generic: bloating

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned Tool super-class and descendants, ca 1994

Exploration of the bloating of software
4 Gerrit Muller

version: 1.2
August 21, 2020

GDbloatingVisualized

Shit propagation via copy paste

needed code

repair code

needed code

bad code

new needed

code
code not

relevant for new

function

new bad

code

copy
paste
modify

bad code

Exploration of the bloating of software
5 Gerrit Muller

version: 1.2
August 21, 2020

BLOATshitPropagation

Example of shit propagation

Class Old:

 capacity = startCapacity

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 if size>capacity:

 capacity*=2

 relocate(values,

 capacity)

Class New:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

Class DoubleNew:

 capacity = 1

 values = int(capacity)

 size = 0

 def insert(val):

 values[size]=val

 size+=1

 capacity+=1

 relocate(values,

 capacity)

 def insertBlock(v,len):

 for i=1 to len:

 insert(v[i])

copy
paste

copy
paste

Exploration of the bloating of software
6 Gerrit Muller

version: 1.2
August 21, 2020

BLOATshitPropagationExample

Bloating causes more bloating

overhead

value

legenda

core

functionality

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Exploration of the bloating of software
7 Gerrit Muller

version: 1.2
August 21, 2020

EASRTbloatingCausesBloating

Causes even more bloating...

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code
p

o
o

r
d

e
s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

decomposition overhead
poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Exploration of the bloating of software
8 Gerrit Muller

version: 1.2
August 21, 2020

EASRTbloatingCausesBloatingMore

What if we remove half of the bloating?

extrovert benefitsintrovert benefits

code size
reduced with

factor 5

implementation

maintenance

investment

faults

overview

market response

time

reliability

ease of usecommunication cycle time

organization overhead

20%

20%

core

function

generic

legacy

"h
o

w
"

d
o

g
m

a
s

"w
h

a
t"

core function

Exploration of the bloating of software
9 Gerrit Muller

version: 1.2
August 21, 2020

BLOATwhatIf

Impact of size on organization, location, process

1 2 4 8 16 32 64

room

floor

128 256

building

512

campus

Exploration of the bloating of software
10 Gerrit Muller

version: 1.2
August 21, 2020

BLOATorganization

Anti bloating multiplier

less

code

better

overview

better design

integral

understanding

faster

prototyping

better

specification

faster

feedback

concern

locality

expression

power

appropriate

technology

change

locality

refactoring

redesign

viable

same type of diagram can be made for less people
(less communication, space, organization, bureaucracy)

Exploration of the bloating of software
11 Gerrit Muller

version: 1.2
August 21, 2020

BLOATreductionMultiplier

How to reduce bloating

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

p
o

o
r

d
e

s
ig

n
 (

"h
o

w
")

d
o

g
m

a
ti
c
 r

u
le

s
fo

r
in

s
ta

n
c
e

 f
in

e
 g

ra
in

 C
O

M
 i
n

te
rf

a
c
e

s

p
o

o
r

s
p

e
c
if
ic

a
ti
o

n
 (

"w
h

a
t"

)

overhead

value

legend

system

engineering

software

engineering

aggressive

refactoring

incremental

approach

agile

attitude

right

technology

early feedback

system

design

CAFCR

iteration

extensive

regression tests retirement

policy

software

design

Exploration of the bloating of software
12 Gerrit Muller

version: 1.2
August 21, 2020

BLOATreduce

Improving the specification

poor specification ("what")

system engineering: mature discipline, checklists, literature

CAFCR iteration, early feedback: learn why

Customer

objectives

Application Functional Conceptual Realization

solutionproblem

bottom line

usability

implementation

decisions

sy
st
em

le
ve
l

d
et
ai
l

le
ve
l

Exploration of the bloating of software
13 Gerrit Muller

version: 1.2
August 21, 2020

BLOATreduceWhat

Improve design: use multiple views and methods

explore

specific details

submethods

per view

Customer

objectives

Application Functional Conceptual Realizationarchitecture

decomposition

integration

via qualities

safety

performance

story case
analyse

design

design
analyse

design

a priori solution know howmarket

vision

Philips operational view

diagnosis

time efficient
throughput processing

library

diagnostic

quality

image

quality IQ spec

pixel

depth

CPU

budget

typical

case

standard

workstationcommon

console
memory limit

BoM Moore's

law

purchase

price
CoOeconomic

sound

render

engine

memory

budget

reasoning

+ keydrivers

+ value chain

+ business models

+ supplier map

+ stakeholders

and concerns

+ context diagram

+ entity relationship

models

+ dynamic models

+ use case

+ commercial, logistics

decompositions

+ mapping technical

functions

and several more

+ construction

decomposition

+ functional

decomposition

+ information model

and many more

+ budget

+ benchmarking

+ performance

analysis

+ safety analysis

ans many more

See: Architectural Reasoning http://www.extra.research.philips.com/natlab/sysarch/ArchitecturalReasoning.html

Exploration of the bloating of software
14 Gerrit Muller

version: 1.2
August 21, 2020

BLOAToverviewAMO

Feedback

3 months

25 months

Start

Target

stepsize:

elapsed time:

Exploration of the bloating of software
15 Gerrit Muller

version: 1.2
August 21, 2020

LWAfeedbackLarge

Feedback (2)

3 months

25 months

2 months

12 months

Start Start

Target Target

stepsize:

elapsed time

Exploration of the bloating of software
16 Gerrit Muller

version: 1.2
August 21, 2020

LWAfeedbackMedium

Feedback (3)

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Exploration of the bloating of software
17 Gerrit Muller

version: 1.2
August 21, 2020

LWAfeedbackSmall

Lesson learned about reuse

make
& use 1

make (copy,
paste, modify)

& use 2

make (copy,
paste, modify)

& use 3
refactor
& reuse

time

learn domain, technology, pitfalls,

keydrivers, requirements, costs

harvest and

extend

heuristic: use 3 times before factoring out the generic parts

Exploration of the bloating of software
18 Gerrit Muller

version: 1.2
August 21, 2020

BLOATreuseHeuristic

Examples of ”right” technology choices

highly repeatable problem

non hard real time textual, algorithmic, networking: Python

UI prototyping: GUI editor/generator

small hard real-time or extremely performance critical

dedicated generator tools

hand optimized

Exploration of the bloating of software
19 Gerrit Muller

version: 1.2
August 21, 2020

BLOATrightTechnology

Keep the architecture weight low

Ef
fe

ct
iv

en
es

s

architecture
weight

(for dynamic markets and fast changing technologies)

very low low medium high

overall

effectiveness

Manageability

Flexibility

= Flexibility * Manageability

Exploration of the bloating of software
20 Gerrit Muller

version: 1.2
August 21, 2020

LWAeffectiveness

Reduce unused code

support for unused legacy code

aggressive refactoring

extensive regression tests

retirement policy make explicit what can

not be used anymore

cleanup

reduce fear

reduce surprises

Exploration of the bloating of software
21 Gerrit Muller

version: 1.2
August 21, 2020

BLOATreduceUnused

