Architecture and Design Fundamentals

by Gerrit Muller University of South-Eastern Norway]
e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Defining and illustrating architectures. Architectures go beyond system structure (parts, interfaces, fucntions, allocation). Architectures connect design to the context, by capturing customer value proposition, and the business proposition.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

August 21, 2020 status: planned version: 0

One Architecture Facilitates many Solutions

Architecture Description

	Valu Why does cu Why do users customer key driver cost of ownership customer business customer stakehold work flow or ConOp et cetera	e Proposition ustomer want to buy? like to use the system? s analysis ers and concerns s	Business Propositi How do we earn mon How do we run a healthy life cycle key drivers business model cash flow analysis life cycle stakeholders and concer life cycle model supply chain	ion ney? business? ns	Why
System Specification					

What does customer get? What is the system-of-interest that we deliver? functions qualities (e.g. quantified performance) interfaces constraints, standards, regulations Design How will we realize this specification? How do we ensure performance, safety, robustness, etc.? partitioning and interfaces dynamic behavior, e.g. functional model performance models and budgets concept and technology selection Engineering Getting all details right for all business functions. technical product documentation

How

Structure = Parts + Interfaces + Configuration

ultimate goal: modular component catalogue • well-defined interfaces • independent testable • •

to facilitate:

- fast creation of solutions
- concurrent engineering
- logistics and production
- variations and changes

Designing Desired Qualities and Behavior

- How do parts interact to create desired dynamic behavior?
 - allocate functions
- How do desired qualities and performance emerge from the interaction?
 - dimension and configure parts and functions

Design = Structure + Dynamics + Quantification

system of interest

Architecture and Design Fundamentals 8 Gerrit Muller Version: 0 August 21, 2020 SEMABcoreEntities

Context, Zoom-out and Zoom-in

Adding the Time Dimension

		past	current	future
customer	ţ	oast super	super	future super
organization		system	system	system
developing	p	ast system	system of	future system
organization		of interest	interest	of interest
architect		knowle	edge innovation	
supplier	on past		subsystems	future
organization	subsystems			subsystems

based on TRIZ

Architect, Architecture, Architecting

