
From Legacy to State-of-the-art; Architectural
Refactoring

-

TV domain HW
Computing

HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

TV Hybrid TV Digital TV

"All-in-one" combi TV

Set Top Box
domain HW

Set Top Box Platform

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing
HWTV domain HW

Computing
HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital Video Platform SW

Set Top Box
domain HW

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing HWTV domain HW

TV domain
platform

TV computing
Infra-

structure

TV
applications

Digital Video Platform SW

Set Top Box Platform

Digital TV UI

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

M
H
P

Set Top Box
functions

TV domain
platform

TV
computing

Infra-
structure

Set Top Box Platform

3
rd

 party

stack(s)

TV applications

storage domain HW

Storage

applications

Digital TV UI

Storage srvices

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

re-

ceiver

portable

media-

screen

trans

mitter

game
console

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The market of electronic appliances shows a fast increasing diversity. Manufac-
turers must be able to combine existing functions and new applications in a short
time frame. A large amount of accumulated SW code (legacy) has to be reused in
new ways.
The architecture(s) must be adapted to these new ways of working. Revolu-
tionary adaptations have proven to be extremely risky. Opportunistic extension
and integration decrease the quality of the code base, making it increasingly more
difficult to continue. Architectural refactoring is a feedback based method to evolve
an architecture.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 1.3 status: finished September 1, 2020

1 The problem

1.1 Market trends

Consumer Electronics Products are a large variety of products, which have evolved
from straightforward electronic devices, such as radios, into complex software
intensive systems. Figure 1 shows a typical set of today’s audio and video products.

DVD

VCR

Audio Mini

Audio

Audio Portable

CD man

TV

WalkmanHard Disk

F
ro

m
:
C

O
P

A
 t
u

to
ri
a

l,
 R

o
b

 v
a

n
 O

m
m

e
ri
n

g

Figure 1: Today’s Audio Video Consumer Products

Technological advances and business opportunities result in a convergence of
separate worlds. The worlds of telecommunications, computers and consumer
electronics are converging, see figure 2.

Telecom

Consumer

Computer

Figure 2: Trend: Convergence of separate worlds

This convergence means that functions from the different domains are integrated
in new types of appliances. These appliances are optimized towards the intended
use. User, form factor, function and environment all together determine what an
optimal appliance looks like. The wide variety in users, form factors, functions and
environments requires a very rich variety of appliances.

Figure 3 shows at the left hand side a small subset of existing devices belonging
in one of the three domains. More to the right some of the form factors are shown,

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 1

while the right hand side shows some of the environments. The number of useful
combinations of functions, form factors and environments is nearly infinite!

mp3

dvd

set top box

flat display

pen

speech

cable

modem

firewall

Ambient Intelligence

living room

car

car navigation

pda

surveillance

camera

camera

GSM phone

computer
Communicator

television

games

sailboat

audio

microset

headphone

garment

watch

Figure 3: Integration and Diversity

In this presentation video entertainment will be used as the application area.
Figure 4 shows a typical diagram of the set up of video products in our homes.
We see products to connect with the outside world (set top box), storage products
(Video Cassette Recorder abbreviated as VCR), and conventional TV’s and remote
controls, which are the de facto user interface.

Conventional

TV

Set Top

Box

Video

Recorder

DVD

Player

Cable

Modem

PC

Figure 4: Today’s Video Products

This chain of video products is slowly evolving, as depicted in figure 5. In
the past a straightforward analog chain was used. The elements in this chain are
stepwise changed into digital elements. The introduction of the Large Flat TV’s
breaks open the old paradigm of an integrated TV, which integrates tuner and
related electronics with the monitor function.

In the near future many more changes can be expected, such as the introduction
of the Digital Video Recorder (DVR), a gateway to alternative broadband solutions,

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 2

wireless inputs and outputs, home networks enabling multiple TV’s.

TVVCR

DVD

Set

top

TVVCR

DVD

PDPVCR

DVD

Set

top
elec.

Digital

Cable

Digital

Cable

Analog

Cable

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

Multiple inputs

Multiple stores

Multiple displays

Multiple applications

Multiple formfactors

1

2

3

4
re-

ceiver

portable

media-

screen

trans

mitter

game
console

Figure 5: Evolution of Video Products

The function allocation for this last stage of figure 5 and the network topology
can be solved in several ways. Figure 6 shows four alternatives, based on a client-
server idiom.

The expectation is that all alternatives will materialize, where the consumer
chooses a solution which fits his needs and environment.

Network

Thin

Clients

All-in-one

Server

All-in-one

Combi's

Thin

Servers

Clients

Network

Network

BA C

Network

Server

Server

Server

Client

Client

Client

D
"All-in-one"

Combi's

"Thin

Servers"

"All-in-one"

Home server
"Modular"

Figure 6: Distribution Scenario’s

These alternatives require different packaging of functions into products, as
shown in figure 7.

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 3

TV2

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

4A

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

4B

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL

4D

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

4C

re-

ceiver

portable

media-

screen

trans

mitter

game
console

"All-in-one"

Digital TV

"Thin Servers" "All-in-one"

Home server

"Modular"

TV2

Figure 7: Product Packaging Options

1.2 Technology trends

The major trend for electronic devices is Moore’s law, roughly stating that the
available amount of transistors in an integrated circuit doubles every 18 months.
Devices based on IC’s follow this trend. Figure 8 shows the growth of the amount
of memory in TV’s.

1965 1979

2000 1990

1 kB

64 kB2 MB

Moore's law

F
ro

m
:
C

O
P

A
 t
u

to
ri
a

l,
 R

o
b

 v
a

n
 O

m
m

e
ri
n

g

Figure 8: Moore’s law

The amount of software in products, measured as lines of code, more or less
follows Moore’s law. Unfortunately the software engineering discipline did not
proceed at the same rate, which is reflected by a fault metric expressed as fault per
thousand lines of code, varying between 1 for very rigid organized producers, to

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 4

10 or more for ad hoc products. Typical values for CE type products is 3 faults per
1000 lines of code. See figure 9 for typical values as function of the year.

1000

100

10

m
a

n
y
e

a
rs

 p
e

r

p
ro

d
u

c
t

1990 1995 2000 2005

1000

10000

ty
p

ic
a

l
a

m
o

u
n

t
o

f

e
rr

o
rs

 p
e

r
p

ro
d

u
c
t

Figure 9: Problem: increasing SW size, decreasing reliability?

The increase of the amount of software causes many problems:

• Increase of development cost

• (Non) availability of skilled engineers

• Increase of development time, and hence time to market

• Decrease of product reliability

REUSE

time

$
$

P
ro

m
is

e

Reality

Figure 10: The Holy Grail: Reuse

Reuse is often presented as the solution for all problems mentioned above.
Experience learns that quite the opposite happens in many cases, see [2], the
challenge of executing a successful reuse program is often severely underestimated.

The most common root-cause of reuse failure is the mistake to see reuse as a
goal rather than a means.

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 5

1.3 Example Digital Television

An example of a new product is a digital television, which is the merger of a set
top box and a television. This television can directly connect to a digital cable
infrastructure and offer services provided by cable or content providers.

One way of realizing such a system is to declare the reuse of existing software,
integrate all this software on a single hardware platform and to support this hardware
platform factor out the “lower” software layers. Figure 11 shows the simplistic
architecting to achieve this merger.

Set Top Box
domain HW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd
 party

stack(s)

Computing
HW

TV domain HW
Computing

HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital Video Platform SW

Set Top Box
domain HW

TV domain HW Computing HW

analog TV Set top box

Digital Video Platform

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd
 party

stack(s)

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital TV UI

Digital TV

Merge

glue

Figure 11: Simplistic Architecting: Digital TV

Figure 12 shows the rationale behind the reuse of existing software packages.
The cumulative effort of the software involved exceeds 500 manyears.

>100 Myr

>100 Myr

>200 Myr >100 Myr

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd
 party

stack(s)

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital TV UI

"Legacy" code > 500 Myr

glue

Figure 12: Available Code Assets

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 6

2 Architectural Refactoring

Combining existing software packages is mostly difficult due to “architectural
mismatches”. Different design approaches with respect to exception handling,
resource management, control hierarchy, configuration management et cetera, which
prohibit straightforward merging. The solution is adding lots of code, in the form
of wrappers, translators and so on, while this additional code adds complexity, it
does not add any end-user value.

Performance and resource usage are most often far from optimal after a merger.
Amazingly many people start worrying about duplication of functionality when

merging, while this is the least of a problem in practice. This concern is the cause
of reuse initiatives, which address the wrong (non-existing) problem: duplication,
while the serious architectural problems are not addressed.

tuner
tuner

MPEG MPEG

Duplication

Architectural mismatch:

wrappers, translators, conflicting controls

Poor performance;
additional resource usage

additional code

and complexity,

no added value

UI UI

non problem Problems Architecture Reuse

Figure 13: Merge problems

The proposed solution to this set of problems is architectural refactoring.
Architectural refactoring is an incremental approach, putting a lot of emphasis on
feedback. Two major criteria to get feedback on are:

• How well does the current architecture support today’s product needs?

• How well will the architecture evolve to follow the market dynamics?

In every increment to the market both concerns should be addresses, which trans-
lates in clear business goals (product, functions, value proposition) and clear refac-
toring goals fitting in a limited investment. The refactoring goals should be based
on a longer term architecture vision, see 14.

Examples of Refactoring goals can be seen in figure 15. These refactoring
goals should be sufficiently “SMART” to be used as feedback criterium.

Note: many refactoring projects spend lots of effort, while critical review after-
wards does not show any improvement. Often loss of goal or focus is the basis for

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 7

Refactoring

within short term business goals

with limited but substantial refactoring goals

clear product

clear value proposition

feedback on direction

limited investment
based on long term architecture vision

Figure 14: Solution: Architectural Refactoring

such a disaster.

+ Decrease Code Size

+ Decrease Resource Usage
* power

* memory

* silicon area

+ Increase Performance
* response time

* throughput

Q
u
al
it
y

time

0%

10%

20%

Improvement investment

as percentage of total budget

+ Increase quality
 * decrease fault density

Figure 15: Example of Refactoring Goals

Architectural refactoring looks at all architectural aspects, from functions and
structure to selection of mechanisms and technologies. Code refactoring, well
known from extreme programming [1], plays a role at a much more microscopic
level. See figure 16 which shows both ways of refactoring side by side. Some code
refactoring requires an update of the architecture. At the other hand architectural
changes quite often have a significant software impact.

2.1 Prerequisites for effective architectural refactoring

Frequent feedback
Understanding of the problem as well as the solution is key to being effective.

Learning via feedback is a quick way of building up this understanding. Waterfall
methods all suffer from late feedback, see figure 17 for a visualization of the
influence of feedback frequency on project elapsed time.

Awareness of dynamics
The world is highly dynamic, the markets and applications change rapidly,

while the famous law of Moore shows the incredible speed of technological devel-

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 8

optimize()

...

add(a)

...

remove()

...

move()

...

accelarate()

...

add(a)

...

remove()

...

optimize()

...
move()

...

accelarate()

...add(a)

...

remove()

...

Code Refactoring

old

new

old

new

new

Architectural Refactoring
Function, Structure, Rationale

Mechanisms, Technologies

return(error)

free, alloc

raise(exception)

garbage collection

old

Figure 16: Architectural and Code refactoring

opments. Unfortunately most people believe in stability and are biased towards
stabilizing architectures. Architectures and their implementations are sandwiched
between the fast moving market at one side and technology improvements at the
other side. Since both sides change quite rapidly, the architecture and its imple-
mentation will have to change in response, see figure 18.

The evolution of a platform is illustrated in figure 19 by showing the change in
the Easyvision [4] platform in the period 1991-1996. It is clearly visible that every
generation doubles the amount of code, while at the same time half of the existing
code base is touched by changes.

Long Term Vision
In order to set refactoring goals it is useful to have a long term vision on the

architecture. Such a long term vision may be quite ambitious. The ambition of the
vision will be balanced by the pragmatics of short term business goals and limited
investments in improvement.

Figure 20 shows an example of a long term vision, where a framework is
foreseen, which decouples 6 design and implementation concerns:

• applications

• services

• personalization

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 9

3 months

25 months

2 months

12 months

1 month

8 months

Start Start Start

Target Target Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Figure 17: Frequent feedback results in faster results and a shorter path to the result

• configuration

• computing infrastructure

• domain infrastructure

The actual implementation will not have such a level of decoupling for a long time,
the penalty in effort, resource usage and many other aspects will be prohibitive
for a long time. Nevertheless the decoupling will become crucial if the variety of
products is really very large and dynamic.

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 10

Architecture

Platform

Dynamic Market

Fast changing Technology

How stable

is a platform

or an architecture?

Components

Figure 18: Myth: Platforms are Stable

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd

 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Figure 19: Platform Evolution (Easyvision 1991-1996)

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 11

Computing

Infrastructure

Domain

Infrastructure

ServicesApplications

C
on

fig
ur

at
io
n

i.e
. I

nt
er

na
tio

na
liz

at
io
n

pe
rs

on
al
iz
at

io
n

i.e
. t

un
es

, t
he

m
es

Framework

Long Term Vision:

Reference Architecture +

Sample implementation

of Framework and

Components

Reference

Architecture

Figure 20: Example Long Term Vision

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 12

3 Conclusion

Figure 21 shows how not to work towards the future:

• Don’t merge blindly

• Don’t a priori declare SW to be reusable

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

re-

ceiver

portable

media-

screen

trans

mitter

game
console

PDP

DVR

DVD

RW

Set

top

elec.

Gate

way

re-

ceiver

trans

mitter

Digital TV

Opportunistic

Legacy

Integration

Proclaimed

reuse

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

Set Top Box Platform

MHP
Set Top Box

functions
3

rd

party

stack(s)

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital TV UI

glue

Figure 21: Don’t do

While figure 22 illustrates architectural refactoring, applied on the example of
a digital television. The steps taken here are:

From TV to Hybrid TV. The conventional TV is refactored to use a more modern
HW platform, while the lower layer is factored out. The set top box is physically
integrated in the television, while at software level both applications are pragmati-
cally interfaced.

From Hybrid TV to Digital TV. More hardware is shared between the TV part
and the set top box part of the system, with as refactoring goals: reduction of
resource usage and enabling a more harmonized user interface. The set top box
platform is redesigned to make this possible.

From Digital TV to “All-in-one” TV. The TV computing infrastructure is simplified
(reduce lines of count), while the next “legacy” application is merged in: storage.

4 Acknowledgements

Lex Heerink patiently listened to the presentation and provided valuable feedback.

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 13

TV domain HW
Computing

HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

TV Hybrid TV Digital TV

"All-in-one" combi TV

Set Top Box
domain HW

Set Top Box Platform

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing
HWTV domain HW

Computing
HW

TV domain
platform

TV
computing

Infra-
structure

TV applications

Digital Video Platform SW

Set Top Box
domain HW

M
H
P

Set Top
Box

functions
3

rd
 party

stack(s)

Computing HWTV domain HW

TV domain
platform

TV computing
Infra-

structure

TV
applications

Digital Video Platform SW

Set Top Box Platform

Digital TV UI

Set Top Box
domain HW

TV domain HW Computing HW

Digital Video Platform SW

M
H
P

Set Top Box
functions

TV domain
platform

TV
computing

Infra-
structure

Set Top Box Platform

3
rd

 party

stack(s)

TV applications

storage domain HW

Storage

applications

Digital TV UI

Storage srvices

PDPDVR

DVD

RW

Set

top
elec.

Digital

Cable

Gate

way
ADSL TV2

re-

ceiver

portable

media-

screen

trans

mitter

game
console

Figure 22: Conclusion: Refactoring the Architecture is a must

References

[1] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA, 2000.

[2] Gerrit Muller. Product families and generic aspects. http://www.
gaudisite.nl/GenericDevelopmentsPaper.pdf, 1999.

[3] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[4] Gerrit Muller. Case study: Medical imaging; from toolbox to product to
platform. http://www.gaudisite.nl/MedicalImagingPaper.
pdf, 2000.

History
Version: 1.3, date: June 13, 2002 changed by: Gerrit Muller

• minor change
Version: 1.2, date: September 12, 2001 changed by: Gerrit Muller

• "long term vision" sheet added to presentation

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 14

http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/GenericDevelopmentsPaper.pdf
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/MedicalImagingPaper.pdf
http://www.gaudisite.nl/MedicalImagingPaper.pdf

Version: 1.1, date: September 6, 2001 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
From Legacy to State-of-the-art; Architectural Refactoring
September 1, 2020 version: 1.3

University of South-Eastern Norway-NISE

page: 15

	The problem
	Market trends
	Technology trends
	Example Digital Television

	Architectural Refactoring
	Prerequisites for effective architectural refactoring

	Conclusion
	Acknowledgements

