
Aggregation Levels in Composable Architectures
-

Small number of

Large Components

Large number of

Small Components

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

The creation of a Product Family is an alternation of decomposition and
synthesis steps. Composable architectures emphasize the composition of products,
decreasing the importance of a priori decomposition. The products and interme-
diate compositions can be viewed as recursive aggregation levels. Careful trade-
offs are required between the size of an aggregation level and the way it will
be deployed. Flexibility and (configuration) manageability amongst others are
balanced.
This article shows multiple viewpoints with respect to aggregation levels, the
concerns per viewpoint and the relevant entities per viewpoint. For every viewpoint
heuristics are given for the level of granularity.
This article is to be used in the "Family Engineering Handbook", a collective effort
of Philips Research employees to consolidate family engineering based experi-
ences.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 2.4 status: draft September 1, 2020



1 Problem description

This article is focusing on ”composable architectures”. Composable architectures
are designed for a single application domain, enabling the composition of products
of which the definition is still evolving or hidden in the future.

A crucial design question is: What is the desired granularity of the design,
what are useful abstractions? The granularity of the design is directly related to
the question: What are the appropriate aggregation levels for composition and
integration?

Most Product Creation Processes are based on a single dominating decompo-
sition and integration model. This oversimplification causes many problems for
development.

This article decribes an approach based on multiple viewpoints, matching the
wide variety of concerns involved. Per viewpoint heuristics are given.

Application of a multiview approach requires customization of viewpoints and
concerns. In general this means identification of the most relevant, important of
critical issues, which are used to select a small manageable amount of viewpoints
as main focus.

2 Views on Aggregation

Product Creation

Integration and Test

Documentation

Source Code
Management

Composition Deployment

Figure 1: Venn diagram showing the overlap between Viewpoints on Aggregation
Levels

Figure 1 shows a Venn diagram with 5 viewpoints with respect to aggregation
levels, in the overall context of Product Creation. For every viewpoint the dominating
concerns are mentioned in table 1 and the related aggregation levels or entities in
table 2.

All entities in Documentation, Repository, Composition and Deployment are
relevant for the Integration and Test viewpoint.

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 1



Viewpoint Concerns

Documentation Requirements, Specification, Design, Transfer, Test, Support

Source Code Management Storage, Management, Generation

Composition System, Subsystem, Function, Application

Deployment Releasing, Distribution, Protection, Update, Installation,
Configuration

Integration and Test Confidence, Problem Tracking

Table 1: Concerns per viewpoint

Viewpoint Entities

Documentation Product Family, Product/System, Function/Feature, Subsystem,
Component, Building Block, Module

Source Code Management Package, File

Composition Product, Executable, Dynamic Library, Component

Deployment Distribution Medium (”CD”), Unit of Licensing (”SW key”),
Package, Patch, Configuration data

Integration and Test Test Configurations, Intermediate Integration results

Table 2: Aggregation Levels or Entities per viewpoint

3 Documentation

Many types of documentation are required when building Product Families by
means of Composable Architectures. The granularity issues with respect to documen-
tation are described in [3].

What

is asked for

(Requirements)

What

will be realized

(Specifications)

How

(Design)

Transfer

to Product Creation

(Support) and Customer

Oriented Process

(Engineering)

Verify

report

(Test)

drivesdrives
con

solid
ated

in

Figure 2: Visualization of documentation concerns

The aggregation levels for documentation are shown in table 2. Figure 2 visualizes
the documentation concerns. For every level relevant documents should be produced,
with respect to the what (requirements, specifications), how (design), transfer (to
Customer Oriented Process), verification (test) and how-to (support to use reusable

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 2



assets in creation of products). In what and how documents a selected amount of
why need to be present.

The documentation structure will evolve in time. This evolution requires explicit
refactoring steps in the product family lifecycle. The why and to a lesser extent the
what will be factored out, because this information is more stable and therefore
re-useable than the how. Part of the information will move ”upward” in the aggre-
gation level stack: generic patterns become clear, which are consolidated as abstrac-
tions on an higher aggregation level.

4 Source Code Management viewpoint

The elementary description of the system is in the source code. This source code is
stored in a structured way in a repository, see figure 3. There is no hard requirement
that the source code structure maps one-to-one on semantic entities in the compo-
sition world. However a one-to-one mapping helps in maintaining overview and
understanding.

Repository

Packages

Source Files

C
o

n
ta

in
s

C
o

n
ta

in
s

SystemsGenerated from

Subsystems

Applications

Services

Generated from

C
o

m
p

o
se

d
 f

ro
m

Classes

Modules

C
o

m
p

o
se

d
 f

ro
m

Generated from

using or

recursive

composed from

Figure 3: The source code is stored in files in a repository. The unit of structuring
is called a package. These source code aggregation levels get a more semantic
meaning when being used.

The main concerns in this view have to do with source code management:

• storage and accessibility of all source code

• version management; complete traceability of all versions and changes

• ownership for performance, quality and maintenance

The most widely used unit for management and storage of source data is file.

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 3



Source code in this context means all original formal descriptions, such as C,
C++, include, text, data, make et cetera files. Original means that generated C-
code does not belong to the source code, the data used for generating this code
does belong to the source code.

The provide and require interface descriptions belong to the source code according
to this definition, as do IDL interface definitions. For example see the KOALA
component model as described in [6]. Generic subsystem configuration data defining
the composition also belong to the source code.

Most source code need to be transformed in computer oriented intermediate
formats before it can be used run time. The build step (compilation, building et
cetera) required for this transformation may influence the repository structure. A
well defined compile time dependency structure is desirable to enable a predictable
composition step.

Table 3 shows the typical sizes, anno 2000, of source code repositories. The
size is expressed in lines of code (loc). Historical data, see cost models in [2]
and [1] shows a remarkable constant relationship between lines of code and the
required manpower to create and maintain the software. The observed productivity
in the Medical Imaging case study was ca. 10 kloc per manyear. Taking this
number for a zero-order approximation the size of entities can be transformed in
effort.

Entity Typical size loc packages

repository 1M-10M 10-100

package 10k–100k

file 100-1k

Table 3: Typical Sizes of SW for Aggregation Levels

This simple table illustrates a number of very essential design criteria, in relation
to granularity of management.

Rules of thumb for typical file sizes are:

• Files should be larger than 100 loc;
The overhead per file and the ”value” per file must be balanced.

• Files should be less than 1000 loc;
Large files reduce the overview within the module. Larger files are an indication
for a lack of modularity.

The number of packages in the repository is mostly restricted by usage and
testing configuration management concerns. A fine granularity with respect to
packages (subsystems, applications or services in the composition view) enables
a fine grained and powerful composition. Coarse granularity of packages means

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 4



that more code is a priori bundled, constraining the freedom of the composer The
downside of fine granularity is a combinatorial explosion of the amount of config-
urations.

From more pure source code point of view the considerations for package size
are:

• at least 10 files per package;
Packaging files or modules generates some overhead in usage and management.
The value of this packaging must be substantial to offset this additional
overhead.

• at most 100 kloc per package to maintain overview;
For unambiguous package-ownership and sufficient overview.

5 Composition viewpoint

Composition involves glueing together and configuring available components. The
result of the composition process are ”executable” entities such as components and
plug-ins and more conventional executables and dynamic link libraries.

The granularity of these entities determines at the one hand the deployment
flexibility at the other hand it determines the amount of testing and configuration
management work.

Small number of

Large Components

Large number of

Small Components

Figure 4: Coarse versus Fine grained with respect to the number of connections
and relations; 9 large Components with 18 Connections, 81 small Components
with 648 Connections

The number of relations between components is roughly in the order of n1.5.
Table 4 shows the number of components and the number of connections between

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 5



them. The number of desired architects is derived from the number of connections
by means of zeroth order model. The ”capacity” of an architect, the number of
relations kept consistent and balanced by one architect, is used to determine the
required number of architects:

NumberOfArchitects = NumberOfConnections/Capacity

Capacity of architects c 10 20 40

Number of
components

Number of
relations

Number of Architects

n r = n
√
n a = r/c

2 3 0 0 0
4 8 1 0 0

10 32 3 2 1
20 89 9 4 2
40 253 25 13 6

100 1000 100 50 25
300 5196 520 260 130

1000 31623 3162 1581 791

Table 4: The relation between the number of components and the required number
of architects, zero order model

A somewhat more realistic model takes into account that large components
will have more complex connections with other components than small compo-
nents. Table 5 shows the same model with an additional weight factor to model
the complexity of the connection. The weight curve applied is rather arbitrary, it
reflects the experience of the author.

5.1 Optimal granularity for composition

The simple models in tables 5 and 4 make it immediately clear that a large quantity
of components is undesirable. Assuming a total crews of circa 100 developers
(which corresponds with today’s multi-million lines of code repositories) it is reasonable
to have 10 architects. The optimal number of components is than in the order 20 to
40.

The above reasoning is entirely macroscopic, calibrated with some typical
Philips products. In specific cases plenty of reasons can exist which enable a higher
number of components. For instance:

• presence of a stable reference model

• variation of components hidden behind an effective abstraction

• tangible and therefore understandable, predictable domain

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 6



Capacity of architects c 10 20 40

Number of
components

Number of
relations

weight Number of Architects

n r = n
√
n w a = (r ∗ w)/c

2 3 12 3 2 1

4 8 9 7 4 2

10 32 4 14 7 3

20 89 2 22 11 5

40 253 2 39 19 10

100 1000 1 114 57 28

300 5196 1 534 267 133

1000 31623 1 3176 1588 794

Table 5: The relation between the number of components and the required number
of architects, first order model

6 Field Deployment viewpoint

The granularity in the field deployment is determined by pragmatics of the Customer
Oriented Process [5]. These pragmatics can be further decomposed, see table 6.

• granularity of sellable features and services

• lifecycle support

• internal logistics and production process

Table 6: Decomposition of Field Deployment granularity drivers

Conventional embedded products do not have any field deployment activity,
these systems run out of the box. The increasing availability of network connec-
tivity enables field updates, with all related configuration management consequences.

At this moment no heuristics are available for the granularity with respect to
the drivers in table 6.

7 Integration and Test viewpoint

The real challenge in composable architectures is the integration and testing. Building
small building blocks is the easy part, getting them to work correctly together with
many other building blocks is more difficult.

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 7



A bottom up test philosophy, where every building block is verified in isolation
helps, because it reduces the number of difficult to trace errors during integration.
Bottom up testing needs to be complemented by an integration philosophy.

The time needed for verification of a building block depends exponentially
or worse on its size. The combinatorial explosion of possible (and useful) states
limits the optimal size of elementary building blocks. The typical size for verifiable
modules is between 100 loc and 10 kloc. In section 5 the optimal number of compo-
nents is derived to be between 20 and 40. For multi-million loc products a typical
component will exceed the size of being bottom up verifiable.

1 1k 1M10 100 10k 100k 10M

file

building block

system
anno 2000

component

cost of bottom up

testing
1

10

100

ar
b

ri
ta

ry
 c

ap
ac

it
y 

sc
al

e

ar
b

ri
ta

ry
 e

la
p

se
d

 
ti

m
e 

sc
al

e

1

2

3

0

duratio
n of

integratio
n

size in loc

confidence level

after integration

Figure 5: Integration and testing as function of size

Figure 5 shows the cost of bottom up testing as function of the size and the
duration of the complementary integration also as function of the size. Note that
the integration duration more or less increases linear, while the size increases
exponential. The simple explication for this is that every integration step halves the
number of modules to be integrated, the schedule looks like an horizontal binary
tree. In other words the duration is logarithmic with the total size.

Integration is a non-exhaustive activity. Best case the most relevant (from usage
and test risks perspective) areas are touched. This means that the level of confi-
dence obtained by integration decreases with increasing size.

An acceptable level of confidence is only reached by a combination of bottom
up testing, integration testing and intermediate common sense verification steps in
between.

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 8



8 Acknowledgements

This paper has been written as part of the ”composable project”. The project
members are: Pierre America, Hans Jonkers, Jürgen Müller, Henk Obbink, Rob
van Ommering, William van der Sterren, Jan Gerben Wijnstra and Gerrit Muller.
It has been discussed within the team, and the team contributed significantly to the
contents.

Jürgen Müller suggested several improvements with respect to flow, consis-
tency and balance. Wim Vree indicated multiple improvements, amongst others
”local terminology and acronyms”, which have either to be avoided or explained.

References

[1] Chris M.S. Abts, Barry W. Boehm, and Elizabeth Bailey Clark. COCOTS:
A COTS software integration lifecycle cost model- model overview
and preliminary data collection findings. http://sunset.usc.
edu/publications/TECHRPTS/2000/usccse2000-501/
usccse2000-501.pdf, 2000.

[2] Barry W. Boehm et al. Cocomo ii homepage. http://sunset.usc.edu/
research/COCOMOII/index.html, 2000.

[3] Gerrit Muller. Granularity of documentation. http://www.gaudisite.
nl/DocumentationGranularityPaper.pdf, 1999.

[4] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

[5] Gerrit Muller. Process decomposition of a business. http://www.
gaudisite.nl/ProcessDecompositionOfBusinessPaper.
pdf, 2000.

[6] Henk Obbink, Jürgen Müller, Pierre America, and Rob van Ommering. COPA:
A component-oriented platform architecting method for families of software-
intensive electronic products. http://www.hitech-projects.com/
SAE/COPA/COPA_Tutorial.pdf, 2000.

History
Version: 2.4, date: June 13, 2002 changed by: Gerrit Muller
• minor change

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 9

http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-501/usccse2000-501.pdf
http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-501/usccse2000-501.pdf
http://sunset.usc.edu/publications/TECHRPTS/2000/usccse2000-501/usccse2000-501.pdf
http://sunset.usc.edu/research/COCOMOII/index.html
http://sunset.usc.edu/research/COCOMOII/index.html
http://www.gaudisite.nl/DocumentationGranularityPaper.pdf
http://www.gaudisite.nl/DocumentationGranularityPaper.pdf
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.gaudisite.nl/ProcessDecompositionOfBusinessPaper.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf
http://www.hitech-projects.com/SAE/COPA/COPA_Tutorial.pdf


Version: 2.2, date: February 16, 2001 changed by: Gerrit Muller
• layout update

Version: 2.1, date: November 28, 2000 changed by: Gerrit Muller
• extended the abstract
• added a description of ”composable architectures” to the problem description
• Source Code management:

• ”MGR” replaced by Koala-citation

• added explanation of loc and relation to amount of work

• more explanation added about package size considerations

Version: 2.0, date: october 13, 2000 changed by: Gerrit Muller
• added section "problem description"
• redesign of figure 1, "Venn diagram"
• extended table 1 with "integration and test"
• replaced ”engineering” by ”transfer”
• replaced ”repository” by ”source code management”

Version: 1.2, date: september 29, 2000 changed by: Gerrit Muller
• Added ”support” as documentation concern
• Adapted layout change of frontpage

Version: 1.1, date: september 28, 2000 changed by: Gerrit Muller
• removed error in table ComponentFirstOrderConnectionTable
• Figure Views on Aggregation Levels renewed
• removed the Integration and Test column from the concerns and entities tables

Version: 1.0, date: september 27, 2000 changed by: Gerrit Muller
• ALsourceCodeViewpoint: ”Component” removed
• AggregationLevelsViews split up in new figure plus 2 tables, one with concerns per viewpoint, the other with entities per viewpoint
• Added documentation viewpoint figure
• Added documentation concerns: engineering and test
• replaced ”object” by ”building block” and ”module”
• Composition viewpoint: tables reorganized, ”span-width” replaced by ”capacity”
• Slides: Titles reflect viewpoint

Version: 0.2, date: september 25, 2000 changed by: Gerrit Muller
• no changelog maintained yet

Version: 0.1, date: september 19, 2000 changed by: Gerrit Muller
• no changelog maintained yet

Version: 0, date: april 3, 2000 changed by: Gerrit Muller
• Created, no changelog yet

Gerrit Muller
Aggregation Levels in Composable Architectures
September 1, 2020 version: 2.4

University of South-Eastern Norway-NISE

page: 10


	Problem description
	Views on Aggregation
	Documentation
	Source Code Management viewpoint
	Composition viewpoint
	Optimal granularity for composition

	Field Deployment viewpoint
	Integration and Test viewpoint
	Acknowledgements

