
Architecting System Performance; Greedy and Lazy
Patterns

by Gerrit Muller TNO-ESI, University of South-Eastern Norway]
e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

Greedy and lazy are two opposite patterns in performance design. An extreme
application of both patterns is start-up, where greedy starts as much as possible,
and lazy as little as possible.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

September 1, 2020
status: preliminary
draft
version: 0.1

logo
TBD



Greedy and Lazy Patterns

lazy

(on demand, pull)

greedy

(push, forecast)

what

benefits

do nothing until someone needs it

no resource usage unless needed

prepare time consuming operations, 

when resources are idle

results are available immediately

some resource use is wastedtime to result depends on execution

time

disadvantages

when default to achieve required performance

(explore other concepts too!)

this pattern applies to all domains (IT, goods flow, energy)

Architecting System Performance; Greedy and Lazy Patterns
2 Gerrit Muller

version: 0.1
September 1, 2020

ASPGLpatterns



Start up of Systems as Example

initial

running

operating

start system

start operation

How much time does it take

to start a laptop with Windows?

How much time does it take

to start an application (e.g. Word)?

Architecting System Performance; Greedy and Lazy Patterns
3 Gerrit Muller

version: 0.1
September 1, 2020

ASPGLstartup



Example from Cloud Applications

data 

base

server

web 

server

client client

network

network

client

screen screen screen

presentation

computation

communication

storage

legend

Architecting System Performance; Greedy and Lazy Patterns
4 Gerrit Muller

version: 0.1
September 1, 2020

MAFTgenericBlockDiagram



Caching Pattern (Physical Grab Stock)

design parameters

caching algorithm

storage location

cache size

chunk size

format

performance issues

long latency (mass) storage

long latency communication

overhead communication

resource intensive processing

solution patterns

low latency

less communication

large chunks (less overhead)

processing once (keep results)

frequently used subset

in fast local storage

Architecting System Performance; Greedy and Lazy Patterns
5 Gerrit Muller

version: 0.1
September 1, 2020
ASPGLwhyCaching



Many Layers of Caching

back

office

server

mid 

office 

server

client client

network

network

client

screen screen screen

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

100 ms

10 ms

1 s

100 ns

1 ms

cache 

miss 

penalty

1 ms

10 µs

10 ms

1 ns

100 ns

cache hit 
performance

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory

network layer cache

file cache

application cache

 memory caches

L1, L2, L3

virtual memory
typical cache 2 orders

of magnitude faster

Architecting System Performance; Greedy and Lazy Patterns
6 Gerrit Muller

version: 0.1
September 1, 2020

MAFTgenericCaches



Disadvantages of Caching Pattern

robustness for application changes

ability to benefit from technology improvements

robustness for changing context (e.g. scalability)

robustness for concurrent applications

failure modes in exceptional user space

These patterns increase complexity and coupling.

Use only when necessary for performance.

Architecting System Performance; Greedy and Lazy Patterns
7 Gerrit Muller

version: 0.1
September 1, 2020

ASPGLcachingRisks


